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Abstract

The aim of this paper is to define a both pragmatic and
formal method allowing a social or technical entity to
define its own strategic goals and plans. Indeed, by def-
inition, an autonomous entity ought to be governed only
by its own principles and laws. Thus, the core concept
of autonomy is the capability of defining this principles
regarding its own objectives and plans. Thus, the robustness
of any autonomous system relies on the pivotal concept
of Self-Orientation. This paper focuses on the first for-
mal steps of Self-Orientation theories for any group of agents.

As an introductory test, we propose a pragmatic formal
approach to the modelling of the Self-Orientation of the
generic case of a research lab: a descriptive model for the
autonomously defined orientation of a scientific program in a
research establishment is described thanks to a Galois lattice
based model.
Then in the sequel, a theoretical model is developed so as to
build relevant algebraic, topological and axiomatic properties
of any self-orientation systems.
This formal apparatus aims also at allowing to provide mea-
sures of the complexity of any self-orientation computation
process.

Introduction: Self-Orientation of a lab

The concept of Self-Orientation Process

In the research activity, the evaluation and orientation
methodologies are included in the organization of the lab-
oratories. Indeed as science research aims at producing new
knowledge, the management of this production is naturally
conducted not only thanks to the publication activity but
also through a permanent process of scientific committees
chaired by external experts. But in a perfect world, the sci-
entists that are evaluated are supposed to be the best experts
of their own domain; thus why couldn’t they propose the ori-
entations of their own discipline?.. Beyond the ethic issues, a
methodological drawback appears: on what philological and
theoretical grounding could such a self-orientation be based
on? The autonomy of the laboratory relies on its capabilities
to manage a dynamic of its self-orientation process. That is,
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on one hand, such a social organization cannot exist out-
side a modern society whose foundations were built by antic
Greeks and on the other hand, such an entity cannot be sub-
ordinated to the modern society in which it lives. In other
words, the transformation process involved by such an en-
tity must agree with conservation laws whereas it generates
entropy at the same time.

In this introductory section, a very simple algebraic model
is proposed. Let us consider a research entity as a prototype
of any social system claiming for autonomy (with the com-
plexity and diversity of its agents) i.e. a living self-analyzing
system, capable of defining in a thoughtful process its own
objectives. If this conceptual challenge is fixed, the chal-
lenge becomes: which mathematical structure can capture
the self-orientation process, SOP, i.e. the aggregation of
the individual orientation proposals in a consistent collec-
tive program responding to the ambient social needs?

A Formal Model of a SOP

The concepts will be simplified so as to allow formal defi-
nitions: SOP is a set of scientists: S = {Sn}, n ∈ [1,N]. In
any research entity, thus in the SOP, a fundamental ordering
is the research activities based on scientific specialties (auto-
matic, quantum physics, aerodynamics..) addressing social
challenges through purposes (noise reduction, air safety, ..).
This universal binary relation between the set Spec of spe-
cialties and the set Purp of purposes: Spec × Purp. If all
elements of S (both the CEO and the scientists) of a SOP
may get some synthetic view of ”what is done and for what
in our lab.”, the Spec× Purp table, cannot provide any ori-
entation cue. Those two sets have to be described through
detailed subcategories so as to capture the natural expres-
sion of any orientation statement: ”in order to improve these
parts of this purpose and for this performance level, we have
to program the development of these techniques of this sci-
entific specialty in that way”. Thus each purpose P of the
set Purp is described through a spectrum of parameters
P = {pi}i ∈ [1, I] (eg: 10 main issues of the air safety...).

The societal challenges are combinations of various pur-
poses (eg: improve air safety and reduce noise and im-
prove speed of aircraft..) and theses societal challenges con-
stitute a database: E = {Em}m ∈ [1,M ]. Naturally
each Em is decomposed on the spectrum of parameters P
: Em � (pm,1, .., pm,i, .., pm,I). As expert in her/his own
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domain, a scientist, element of S, will propose to valu-
ate the development of some characteristics of the scien-
tific specialties she/he considers as pivotal for the success
of the challenges thanks to a set of evaluation characteris-
tics: V = {Vj}, j ∈ [1, J ] given one subject Sn and one
challenge Em, the final result of her/his valuation is a vec-
tor: (v(n,m,1), v(n,m,2), ., v(n,m,j), .., v(n,m,J)).

At this point, a standard requirement of the SOP will be
successful if all the members of the SOP can submit their
proposals, and if an aggregation means allows to summarize
the individual proposals in a collective consistent program.
It is easy to consider that the global set of the individual val-
uation is a relational database of N ×M items: (challenge,
subject, list of parameters of challenge, list of valuations by
the subject).

Formally this ”Programmatic Database” is a set of iden-
tifiers challenge×subject, say ES verifying a list of values,
ie:
(ESm,n, {pm,1, .., pm,i, .., pm,I ,
v(n,m,1), v(n,m,2), ., v(n,m,j), .., v(n,m,J)).

Such a data base is a natural candidate to be analyzed by
Galois Lattice theory (say also: Formal Concept Analysis)
(Ganter and Wille 1999) thanks to which a relevant aggrega-
tion process can be defined.

A large body of literature exists on the “association rules”
based on Galois Lattices, and a generic approach has been
defined in (Chaudron, Maille, and Boyer 2003). This theory
allows to generate a Rule data base S∗ containing all the
rules of the template: (rule identifier, confidence, portance,
conclusion, list of premises). The confidence c is by defi-
nition the proportion of challenge×subject that verify the
rule among those who verify all the premises in the ”Pro-
grammatic Database” (conversely: 1 − c is the proportion
of counter-examples). The portance is the global proportion
among all the database (thus 0 < p < c < 1). Many al-
gorithms exist so as to compute extensively these rules (and
generally considering only those for which: 0.5 < c).

The “association rules” approach is known to be the more
generic non-supervised rule induction method.

Intuitively a Galois lattice expresses in an algebraic fash-
ion the ability to compose compatible sub-goals in order to
define a constructive orientation for the SOP. That is, the
modelling task leads to provide a separated representation
of the SOP consistent dynamic into relevant sites connected
with association rules and afterwards to provide amalgama-
tion operators in order to ensure the global consistency of
the living entity to represent.

Autopoı̈esis and Self-Orientation

Back to a conceptual level, so-called autopoı̈etic systems
distinguish themselves from their environment and produce
themselves their own be and their own identity: autopoı̈etic
comes from the Greek “auto” (self) and “poien” (to pro-
duce). Autopoı̈esis is a closed process in the sense where
it specifies itself. By its organization an autopoı̈etic system
is able to regenerate itself, to make its own survival, in fact
to behave as being “alive”. In (Varela 1995) Varela states
simply: “Organization of alive systems is autopoı̈esis”.

Autopoı̈esis implies that the evolution and all the transfor-
mations of the system are subordinated to the preservation of
its organization and such a preservation of its unity and of its
identity is based on the capability to self-orient the actions.

Thus S∗ is by definition the SOP which represents the
autopoı̈esis by aggregation (to the c and p thresholds) of
the scientists S = {Sn}n ∈ [1, N ] responding to the so-
cietal challenges E = {Em},m ∈ [1,M ]. This model of
autopoı̈esis by aggregation was programmed in constrained
logic programming language and applied to a research lab
of Onera (70 persons), during up to ten years, thus proving
the feasibility of such an approach. Nevertheless, no formal
model of the semantic aspects of the Self-Orientation pro-
cesses is yet defined in this first step. Thus in the sequel, a
second model dedicated to a general algebraic description of
any self-orientation process is detailed.

The problem is as follows; any SOP lives according to
an inherited information system and this information system
holds according to some compact support. Therefore one has
to assume that some folding process is to be performed in
order to provide that support.

One can define autopoı̈esis according to the following
equivalence : production is ensured by an autonomous sys-
tem and conversely, if the latter doesn’t hold, no production
is to be expected.

In terms of algebras, it consists to express autonomous
consistency according to some involutive operator (Barr
1979; Blute 1993); that is autonomous systems are self-dual.
However, in order to compute a consistent behaviour, one
has to embed any autonomous entity inside a global struc-
ture called the environment Ω; if the environment is cultural,
then it is a social organization.

If one expresses the behaviour of any SOP according to
operators and if the set of operators is the smallest non-trivial
possible, then either a SOP sustains the social organization
in which it lives (according to the positive polarity ↑) or it
denies it (according to the negative polarity ↓).

The formal theory of self-orientation consists of alge-
braic tools required in order to compute a consistent self-
orientation merging both conservation laws ↑ and the chaos
generated by the entropy of the system ↓ according to au-
topoı̈esis. It turns out that the expected algebra in order
to express the 2-element set {↑, ↓} is based on a non-
commutative composition of irreducible components, the
rising edges ↗ and the falling edges ↘.

Recall that falling edges are not productive and must be
handled in the computation as alternative self-orientations
incompatible with rising edges. Managing exclusion rules
between rising edges and falling edges inside a sequence of
edges ↗↘ . . . ↗↘ leads in general to endless loops. The
main assumption in this paper is to consider that autopoı̈esis
performed by a SOP leads to compute a continuous single
transition as a quantum step inside a double consistent box
�. What we’re actually looking for is a double box-algebra,
i.e. a simplicial complex1 able to host inside its convex en-

1A simplicial complex is a topological space, constructed by
“gluing together” points, line segments, triangles, and their n-
dimensional counterparts.
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velope the set of merging edges ↗↘ in order to compute a
single transition.

The formal Theory of Self-Orientation

The main issue of this second part can be depicted as fol-
lows: assume that candidate self-orientations form a set S
or a vector space V or more generally an algebraic struc-
ture A (e.g. a partially ordered set P , a monoid M , a semi-
group S, . . .); if the computation of a self-orientation refers
to a motivated choice among possible orientations inside an
algebraic structure, one should be able in this structure to
separate “good” and “bad” self-orientations. That is, con-
sistency is required and as such needs to be defined. Take
a self-orientation process S; a “good” valuation is called a
S-model and is noted S� and a “bad” valuation is called
S-counter-model and is noted S⊥.

Therefore, consistent self-orientations can be called for-
mal actions provided that the algebraic structure must agree
with the separable property which in terms of polynomial
algebra corresponds to the reducible property. Intuitively,
if a SOP is able to compute the algebraic roots of its self-
orientation vector, then it gets consistency.

In order to understand the dynamic of autonomous self-
orientation models, one can be interested in behavioral mod-
els for cognitive entities. Cognition is a collection of pro-
cesses including attention, memory, producing and under-
standing language, solving problems, and making decisions
and is studied in various disciplines such as psychology, phi-
losophy, linguistics, science and computer science. Cogni-
tion is also a faculty for the processing of information, ap-
plying knowledge, and changing preferences.

The two associated terms knowledge and change mean
to use knowledge as some stable information devoted to al-
low a self-orientation process as a cognitive entity to evolve
safely inside dynamic environments. That means that action
is necessary associated to knowledge and knowledge is re-
quired in order to ensure some space/time stability.

Assume that the central issue of a SOP is actually : how
to organize the orientation of actions, goals and plans ? The
algebraic apparatus should help us in order to tackle the sep-
arability issue as : what is consistency in that framework ?

In order to define what a self-orientation and what an ac-
tion can be, one can select common widely used mathemat-
ical tools; in particular, one can start from 17th century’s
analytic geometry, matrices, systems of linear equations and
Euclidean vectors and one can retain the 19th century’s def-
inition of a vector space able to extend classical geometric
ideas like lines, planes and their higher-dimensional analogs.
That is, at first sight, an orientation should be efficiently rep-
resented as an angle valuation θ characterizing a vector ξ, an
element of a vector space V . That is, the set of possible self-
orientations form an operator algebra A acting on a k-vector
space V where k is a field2; an action a acts on vectors as
a k-linear operator on V and the set of actions is a k-matrix
algebra A.

2a field k is a triple (k,+, .) where k is an abelian group under
+ and k − {0} acts multiplicatively on k

If the computation of a self-orientation refers to a mo-
tivated choice among possible self-orientations inside the
vector space V , then a S-model is a subset A� ⊂ A and
a S-counter-model is a subset A⊥ ⊂ A. For instance, the
“good” attribute means that elements of A� are invertible
matrices whereas the “bad” attribute means that elements of
A⊥ are singular matrices3. But in that case, inconsistency is
everywhere and must be managed according to a combina-
toric decomposition of A using a finite set of multiplicative
subsets of A which correspond to A-ideals. Thanks to the
Stone representation theorem (Johnstone 1982), A becomes
a boolean lattice if A-ideals are expressed according to irre-
ducible maximal-ideals which are in one-to-one correspon-
dence thanks to De Morgan laws with ultrafilters.

If a SOP S would have a complete representation of the
environment Ω in which it evolves, for instance as a k-vector
space V , one can use standard convergent algorithms; but
the knowledge of S on its environment Ω is partial and in
that case, there is a random issue preventing to ensure un-
conditional stability; therefore consistency is required and
is that way, a discrete combinatoric process as for instance
deduction. This random issue is assumed to be unavoidable
and can be summarized by the following statement :

Statement 0.1 Any SOP S must encode a inner com-
pact representation of the environment Ω (a compact Ω-
encoding) in which it evolves (therefore the S-representation
of Ω is partial and a random issue holds).

Consequently, autopoı̈esis is ensured by a compact Ω-
encoding and the following statement holds :

Statement 0.2 Self-orientation for a SOP S inside Ω is
necessary consistent and the self-orientation structure must
agree with the separable property in order to separate S-
models S� and S-counter-models S⊥.

One has to refine the compact representation as follows

Statement 0.3 A SOP S has a definite consistent inner sub-
space � and a definite outer subspace ⊥,� 
= ⊥ with the
incompleteness axiom � ∩ ⊥ 
= ∅ due to the partial repre-
sentation of Ω.

Therefore a SOP must be taken as a dynamic system rep-
resented by an algebra A inside which information was com-
pacted by some densification operator ↑ and with which
some decision process can be performed according to some
unfolding step ↓ . The unfolding process generates en-
tropy, i.e. some chaos in order to control and to transform
in a constructive fashion ↗ the environment Ω according
to autopoı̈esis. The adequate structure for this dual fold-
ing/unfolding process is a Hopf algebra.

Definition 0.1 A vector space A is a Hopf algebra (Blute

3A non invertible square matrix C is is called singular or de-
generate; C is singular if and only if det(C) = 0.
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1993) if it is equipped with morphisms of the following form:

bialgebra

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

coalgebra
{

Δ : A → A ⊗ H
ε : A → k

antipode S : A → A

algebra
{

μ : A ⊗ A → A
η : k → H

The unfolding process is represented by the coalgebraic
part (Δ, ε); resp. the coproduct and the counity are able to
decompose some element a ∈ A according to two operands
a1, a2 ∈ A2 such that a = a1.a2. This process is non
deterministic and must be confirmed by the algebraic part
(μ, η) resp. the product and the unity recomputing the prod-
uct a = a1.a2 according to the antipode bridge S which
is able to connect the coalgebraic and the algebraic compo-
nents. If the computation converges, then a self-orientation
is expected as a result.

Therefore the main issue can be stated as follows:

1. How to get a faithful consistent computation of a self-
orientation for a given SOP S due to the incompleteness
assumption ?

In order to answer that question, one has to look carefully
at topological and algebraic structures tailored for deductive
systems theory and proof-theory.

Algebraic characterization of operator

algebras

Topological characterization of deductive systems

A first characterization of deductive systems can be de-
scribed in terms of topology : for sake of completeness
and correctness, the topology of deductive systems is Haus-
dorff4, i.e. discrete and separable.

In the frame of operator systems or of action systems, con-
sequences are as follows:

Statement 0.4 Consider an action system A, in which one
can select instances of generic action patterns and one can
order them along a time line indexed by a denumerable sub-
set of relative integers Z; if a deductive system holds in order
to compute consistent action sequences, infinite action loops
are perfectly valid.

This corresponds to the following problem for action
computation: there is not enough reaction generated by the
affine Z-time line of ordered actions sequences. Therefore,
one can exploit the following topological assumption:

Statement 0.5 A suitable Ω-encoding requires a compact
representation which is not Hausdorff, i.e. with a certain loss
of consistent information.

Consequently:

4A topological space X is Hausdorff if for every x, y ∈ X,x �=
y, there are open neighbourhoods Ox � x,Oy � y so that
Ox ∩ Oy = ∅

Statement 0.6 A compact non Hausdorff Ω-encoding
means that connectedness “=” and disconnectedness “
=”
are both valid, i.e. components are inseparable.

Therefore the separability problem is the central issue for
the computation of operator sequences. Assume that such
a computation is equivalent to compute an action plan Π;
the inner consistency expressed by the separable condition
cannot be ensured at start-up but is actually the aim of the
computation for the whole plan Π.

In order to reinforce the relevance of algebraic charac-
terization, one can propose to replace separability by re-
ducibility. Consequently, the separability issue becomes the
reducibility issue. Irreducible components can be depicted
using the simple property for algebras. According to abstract
algebra definitions, this corresponds to identify properties of
two-sided ideals5 (i.e. special multiplicative subsets of the
operator algebra A).

In a way, this corresponds intuitively to force any ac-
tion sequence α1, α2, . . . , to be of length 1 (that is,
|α1, α2, . . . , | = 1) and to force possible reactions between
elements of the operator algebra by maximizing operator in-
teractions. The simple assumption is very restrictive and pre-
vents classical consistency representation to be used. Recall
that the required structure in order to encode both knowl-
edge and entropy as continuous non-commutative simple
morphisms is the double box �.

Simple algebras

In mathematics, specifically in ring theory, an algebra A is
simple if it contains no intermediate non-trivial two-sided
ideals and the set {ab|a ∈ A, b ∈ A} 
= {0} (this condition
ensures that the algebra has a minimal nonzero left ideal).
Note that this corresponds to the assumption “no action se-
quence is of length less than 1 and greater than 1”.

An immediate example of simple algebras are division al-
gebras, where every element has a multiplicative inverse, for
instance, the real algebra of quaternions H6. The physical
interpretation of a division ring D in the frame of action se-
quences is as follows : every action α has an inverse α−1;
this would be the more powerful representation of an action
system but this representation is to be altered into something
weaker : the algebra of n × n matrices with entries in a di-
vision ring D which is a simple algebra. In fact, this charac-

5For an arbitrary ring (R,+, .), let (R,+) be the underlying
additive group. A subset I is called a two-sided ideal (or sim-
ply an ideal) of R if it is an additive subgroup of R that “ab-
sorbs multiplication by elements of R”. Formally we mean that
I is an ideal if it satisfies the following conditions: (i) (I,+) is
a subgroup of (R,+), (ii) ∀x ∈ I, ∀r ∈ R : x.r ∈ I , (iii)
∀x ∈ I, ∀r ∈ R : r.x ∈ I

6The quaternions H are a four-dimensional R-algebra gener-
ated by the identity element 1 and the symbols i, j and k, so
H = {r0 + r1i + r2j + r3k : r0, . . . , r3 ∈ R}. Quaternions are
added together component by component, and quaternion multipli-
cation is given by the quaternion relations ij = −ji = k, jk =
−kj = i, ki = −ik = j, i2 = j2 = k2 = 1 and the distribu-
tive law. The quaternion algebra is not commutative, though it does
obey the associative law. The quaternions are a division algebra (an
algebra with the property that ab = 0 implies that a = 0 or b = 0).
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terizes all finite dimensional simple algebras up to isomor-
phism, i.e. any finite dimensional simple algebra is isomor-
phic to a matrix algebra over some division ring.

The simple qualifier in the frame of the planning
calculus

In order to qualify computation issues for self-orientation
as formal actions, one can examine carefully the definition
of the so-called AI Classical Planning Calculus, a quite old
fashion concept (Newell and Simon 1959), (Fikes and Nils-
son 1971) imagined in the early days of Artificial Intelli-
gence (1959) and check it out in which case the simple qual-
ifier holds in that frame.
Definition 0.2 (AI Classical Planning Calculus) The AI
Classical Planning Calculus is a process used in Artificial
Intelligence which is intended given :
• a world description,
• a goal to achieve,
• a set of actions which can be brought into play in this

world,
to find a correct sequence of actions to apply in this world
in order to transform the initial state Σi into a state Σf

compatible with the goal to achieve.

Definition 0.3 (State) A planning state Σ is taken to be a
non void conjunction of planning atoms, at(ball1,roomb) ∧
at(ball2,roomb) ∧ free(left) ∧ . . .; the set of planning states
S∧ is the free subalgebra of propositional conjunctive for-
mulæ F∧ defined wrt to the domain D minus the empty for-
mula ∅. A planning transition is an element of S∧ × S∧.

It is crucial to note that one cannot identify a planning
state using the empty formula ∅ !!! Therefore:
Statement 0.7 Unlike deduction, the planning calculus
agrees with a inner differential feature; it is equivalent to
assume that the deduction theorem

left︷︸︸︷
A �

right︷︸︸︷
B ∼=

left︷︸︸︷
�

right︷ ︸︸ ︷
A ⊃ B

no longer holds. In effect, deduction requires to void the left
hand side of � (or to set the assumptions equal to ∅) in order
to prove consistency.

Definition 0.4 (Heyting’s paradigm) The HEYTING’s
paradigm — a proof of f : A ⊃ B (A “implies” B) is
a function which associates a proof of B to every proof
of A — allows deductions to be representable arrows
in a discrete category. The consequence relation for the
intuitionnist deduction is functional.

From the previous definition, one can infer
Statement 0.8 The planning arrow f : Σi → Σf doesn’t
verify a consistent partial order relation ⊆ and cannot be
expressed as an Σf -algebraic extension of the consistency
of the initial state Σi as in the Heyting’s paradigm.

Finally
Statement 0.9 The planning arrow f : Σi → Σf is not
a causal law whereas a causal representation holds in the
neighborhood of Σi due to the consistency of the initial state.

If the last remark is ignored, then one can propose end-
less diverging algorithms whose main useless activity is to
manage mutex (mutual exclusions), i.e. to remove unwanted
pairs (↗,↘); we claim that a SOP doesn’t produce any in-
teresting result that way. Mutex are computed because of the
stability of the initial state Σi which turns out to be the sup-
port of the consistent environment Ω (recall that Ω is a social
organization); therefore computing the final state Σf means
to define autopoı̈esis as the annihilator of the social orga-
nization. Therefore the SOP consistency can be defined as
follows :

How to represent the annihilator applying on Ω
as a constructive transformation ?

This constructive representation requires is to condense pure
action (simple groups) according two kinds of orthogonal
arrows : the “state creator” �↗ and the “state annihilator”
�↘ and to apply them both on the initial state Σi and on the
final state Σf .

The simple qualifier and the quantum step

Since the planning arrow f is not a causal law, one should
define what sort of algebraic property holds in the neighbor-
hood of the final state Σf . From the conjunctive expression
of the final state,

Σf = at(ball1,roomb) ∧ at(ball2,roomb) ∧ free(left) ∧ . . .

one can compute the self of local orientations

O = {↗ at(ball1,roomb),↗ at(ball2,roomb),↗ free(left), . . .}
as the bundle of proofs allowing the set of goals to be acti-
vated locally (i.e. each activation function for given positive
literal ends with a rising edge in the neighborhood of the
final state Σf ).

The simple assumption means that these activation func-
tions between two boundaries,

1. the initial state Σi as a left boundary �,
2. the final state Σf as a right boundary �.
are irreducible as polynomials.

In other words, it exists a single quantum step → from
� to � which does not agree with causal laws but which
is nevertheless consistent. This single quantum step (Majid
2000) requires a polynomial functional space of activation
functions, those with a rising edge in the neighborhood of
the final state Σf .

Reactive representation of consistency and

bi-orthogonality

One can force the completion of the triple (�,→,�) by sev-
eral ways; one can assume that it may exist something before
� and something after � (in other words, one has to build a
5-sequence whose first component is a “state creator” �↗
and whose last component is a “state annihilator” �↘).

One obtains a 5-tuple (→−1,�,→0,�,→+1) on which
one can restore involutive symmetry by equalizing the first
component →−1 and the fifth one →+1 which corresponds
to the torsion condition

−1 ∼= +1 (1)
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One obtains a quaternary structure (→−1,�,→0,�)
where the two boundaries are assumed to be dense states
whereas the two arrows aren’t and one can define reactive
consistency in some looping algebraic structure modulo 4
which cannot be deductive. Assume that →−1 is a fork; then
it has two codomains and therefore one can propose another
diagram for the simple quantum step assumption

�
−1 ↗
−1 ↘

�⏐⏐0

�
(2)

which looks like a Larmor precession7 (the fork −1 forms
a cone whose base is a circle containing � and � and for
which 0 is a diameter.

Self-orientation and algebraic characterization of
the initial state Σi

One can use the statement 0.3 page 3 in order to define a rep-
resentation of self-orientation according to the initial state
Σi and this kind of quaternary box. One should add another
crucial assumption:

Statement 0.10 The Ω-encoding is ensured by a compact-
ification operator condensing knowledge on a finite set of
vertexes on which one can define a maximal clique struc-
ture (a hyper connected graph); this kind of information is
a phase structure (i.e. a representation of periodic functions
wrt to a orthogonal base of characters, the harmonics of the
function).

From the previous statement and statement 0.9 page 5 ,
one can infer the following assumptions:

1. Σi is causal
2. Σi is a phase structure
3. Σi is a stabilizer (8 )
4. Σi is an idempotent operator 1
5. Σi is a knowledge representation

Therefore one can assimilate the initial state Σi to inner
consistency � and one can generate reflections in the quater-
nary box by facing against the initial state and the final state
as follows:

1. Σf is anti-causal
2. Σf is a anti-phase

3. Σf is a anti-stabilizer (i.e. an orbit 9 )

7In physics, Larmor precession (named after Joseph Larmor)
is the precession of the magnetic moments of electrons, muons,
all leptons with magnetic moments, which are quantum effects of
particle spin, atomic nuclei, and atoms about an external magnetic
field

8For every x ∈ X , we define the stabilizer subgroup of x (also
called the isotropy group or little group) as the set of all elements
in G that fix x : {g ∈ G|g ◦ x = x}

9Consider a group G acting on a set X . The orbit of a point
x ∈ X is the set of elements of X to which x can be moved by the
elements of G. The orbit of x is denoted by Gx = {g ◦ x|g ∈ G}

4. Σf is an anti-idempotent (i.e. a nilpotent operator) 0

5. Σf is a anti-knowledge representation

However, one cannot assimilate the final state Σf to outer
consistency ⊥ because Σf is not outside due to the torsion
condition 1 page 5 . The best constructive representation of
the anti-functor would be an inverse operator able to encode
Σf in the same Σi-algebra; in that case the operator algebra
is a unified field F ; but this is not possible because actions
are not invertible;

The consistent interpretation is as follows:

Statement 0.11 Due to the partial representation assump-
tion, any non trivial consistent theory Θ has two roots (i.e.
is ambivalent): a low-level root � and a high-level root �;
the consistency of Θ always stabilizes in the neighborhood
of the idempotent low-level root � in which � → � holds
and which is an altered form of consistency. A quantum step
is required in order to reach the local form of plain consis-
tency in the neighborhood of � and to stabilize around this
high-level root.

One can interpret that way the meaning of the simple as-
sumption: thanks to the simple assumption one can separate
in an orthogonal fashion stabilizer subgroups and orbit sub-
groups; that is the planning algorithm looks like a three step
consistency process:

1. perform a stabilizer in the neighborhood of the low-level
root �

2. perform an quantum orbit → from �
3. perform a stabilizer in the neighborhood of the high-level

root �

The splitting operator

The purpose is to split consistency in two parts � → �×�
and to work in that weak consistent space on which we hope
to define a tensor product in order to encode the direct prod-
uct in a functional algebra and to refine the previous arrow
as follows � → � ⊗ � in the frame of strong involutive
structures : Hopf Algebras defined in definition 0.1 page 3 .
The quantum step corresponds to the following twist :

(�0,�1,⊥0,⊥1) → (�0,⊥0,�1,⊥1)

Intuitively the initial state is the idempotent part to remove
�1 and to be replaced by the final state ⊥0 by a switch be-
tween the second and the third component; �0 remains con-
sistent while ⊥1 remains inconsistent. It is interesting to note
that one can represent duality (�,⊥) by something like C-
algebras; the dense part � is the R-part whereas the nowhere
dense part ⊥ is the imaginary part. Therefore the quaternion
algebra H, as a simple four dimensional R-algebra can be a
starting point in order to encode quaternary boxes.

((�0,�1), (�0,�1) → (�0,�0,�1,�1)

In the frame of self-orientation, the problem is to moti-
vate an orientation for a SOP S and consequently a change
whereas the Ω-encoding is currently stable (i.e. where the
idempotent acts as a stabilizer). In other words, the SOP
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S performs the orthogonal of a stabilizer : the orbit oper-
ator in order to locally curve (and therefore to locally con-
trol) the environment Ω in which it evolves. Assume that
biorthogonality means both faithful (not altered) and stable;
in the neighborhood of the initial state, a SOP S has not the
biorthogonal condition, and computes the self-orientation
in order to gain biorthogonality and to perform a consis-
tent quantum step extension (the consistency extension by
biorthogonality is not causal). Biorthogonality corresponds
to some consistent result : the action plan to compute; that is
biorthogonality characterizes some truth valuation; in partic-
ular, in deductive system theory, a type is bi-orthogonal (one
can define for each subset a its orthogonal a⊥ = a –◦ ⊥ and
a fact a is any subset equal to its biorthogonal a ∼= a⊥⊥).

Bi-representations and planning consistency

In order to express the action planning consistency in the
frame of representation theory, one can use Kelvin-Planck’s
second principle of thermodynamic : “let a monotherm cy-
cle; it cannot provide any motion ” which becomes that way
“let a unique representation system; it cannot provide any
interesting computation”. That is, a double representation
arrow (i.e. a biarrow) (→,←) holds and one can propose
a reflector to term/type duality; the expression t ∈ T which
means that the term t is of term T can be reversed as t � T .
One can define idempotent consistency �e ∈ Ω as a maxi-
mal clique on which one can define the spectrum of periodic
functions and nilpotent semantic consistency ⊥e � Ω as the
anti-support of this maximal clique.

When one examines carefully deductive systems and in
particular the role of inference rules as geometric operators
on a functional set of proofs, one can note that consistency
requires strong duality results to hold in order to encode
negation. An interesting framework is to connect in a a bial-
gebra (a same full dual structure), an algebraic part and a
coalgebraic wrt involutive rules. This involutive implemen-
tation must be valid in the frame of planning calculus as well
except that the consistency support is not binary but quater-
nary in order to be implemented using quaternary boxes.

Reflections in algebraic characterization of
deductive systems

According to Gerhard GENTZEN’s formal model (Szabo
1969), the support of a deductive system is set of involu-
tive inference rules; the carrier of consistency is a multi-
functional sequent f

f : Γ � Θ ∼= f :

∧︷ ︸︸ ︷
A1, . . . , An �

∨︷ ︸︸ ︷
B1, . . . , Bm

where formulæ occurring in Γ and Θ travel across the turn-
style symbol � as for instance the major involutive inference
rule for the negation symbol ¬

. . .1 � A, . . .2
. . .1,¬A � . . .2

¬ L
. . .1, A � . . .2
. . .1 � ¬A, . . .2

¬ R (3)

which can be geometrically expressed as a reflector by
the provable statement (¬ ¬ A) ⊃ A or equivalently

“(not not A) implies A” which leads to the “excluded mid-
dle law” (¬ ¬ A) ∼= A provided that one adds the statement
A ⊃ (¬ ¬A) which is true only in classical logic.

Proofs as sequents f, g, . . . are representable “arrows”
in a discrete category (Lambek 1972) containing a “hole”
⊥ (a hyperbolic subspace or a zero divisor) guarded by
the consistency axiom A ∧ (¬ A) ⊃ ⊥ (which means
A and (not A) implies absurd ) or equivalently � ∩ ⊥ = ∅.

Any deductive sequent system is defined according to the
identity group : the initial rule and the cut-rule;

1A : . . .1, A � A, . . .2
initial

f :

(a)︷ ︸︸ ︷
. . .1 � A, . . .3 g :

(b)︷ ︸︸ ︷
. . .2, A � . . .4

gf : . . .1, . . .2 � . . .3, . . .4︸ ︷︷ ︸
(c)

cut

The initial rule stands for the identity axiom; if all leaves
of the proof tree are initial rules, then a correctness result
holds.

The cut-rule stands for free insertion of intermediate for-
mulæ and free splitting of the main proof (c) occurring in the
denominator in two separate subproofs, the numerator sub-
proof on the left (a) whose conclusion is the principal for-
mula A and the numerator subproof (b) on the right whose
assumption is the same the principal formula; consequently,
according to the cut-rule a completeness result holds.

Nevertheless, this rule is paradoxical because the cut-rule
generates short-cuts in a proof and consistency of the de-
ductive systems requires to replace the cut-rule by logical
rules. For every connective of the logical group ⊃,¬ ,∧,∨,
inference rules are pairwise adjoint endo-functors elimina-
tion/introduction as for instance, one of them, the sequent
representation of the deduction theorem (i.e. ⊃L and ⊃R

rules)

. . .1 � . . .3, A B, . . .2 � . . .4
. . .1, . . .2, A ⊃ B � . . .3, . . .4

⊃L

. . .1, A � B, . . .2
. . .1, � A ⊃ B, . . .2

⊃R

For instance a proof of modus ponens (from A and A ⊃
B, one can prove B) can be represented as follows:

. . .1, A � A, . . .3
initial

. . .2, B � B, . . .4
initial

. . .1, . . .2, A,A ⊃ B � B, . . .3, . . .4
⊃L

Cut-elimination is expressed by the following result :

Theorem 0.1 Gerhard GENTZEN’s Hauptsatz : if a sequent
system has a cut-elimination result, each sequent has the
sub-formula property (the proof data required in order to
decide about the validity of the sequent is self-contained).

Statement 0.12 In a sequent system with the cut-
elimination property, the knowledge cannot be partial.

In the sequent calculus, one can relax idempotency A ∧
A 
= A (idempotency is mandatory for classical and in-
tuitionnist logic and requires structural rules : contraction,
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weakening, exchange); then, one can get B, using modus
ponens, from A and A ⊃ B, but in that case A no longer
holds when modus ponens is performed. The conjunction ⊗
replaces ∧, the “linear” implication A –◦ B replaces A ⊃ B,
negation A⊥ ∼= A –◦ ⊥ is orthogonal. That is, according to
tensored involutive structures, one can select relevant struc-
tures for consistency.

A completeness result holds thanks to involutive rules: a
valid coalgebraic proof tree is an element of a cut-free co-
commutative comodule (i.e. a set of acyclic graphs whose
leaves are separable occurrences of initial and nodes are in-
ference rules); the cocommutativity condition for a Hopf al-
gebra ⊗H sets S ◦ S = id (that is an involution between
coalgebra and algebra able to encode negation). Proofs are
representable arrows in linear cocommutative comodule cat-
egory

In the frame of the planning calculus, the algebra (μ, η)
is the compact positive component “⊕�” and the coalgebra
(Δ, ε) is the unfolding negative component “�⊥”.

One can assume that the differential “� ⊥ ⊕ �” is not
commutative and corresponds to the simple quantum step
with respect to the following law :
“In order to gain something, I should remove something”.

Therefore, one should encode the simple property in the
dual frame of Hopf algebras. Planning operators are nat-
urally definable as coalgebraic items whereas activation
polynomial functions for positive literals are definable as
algebraic items. In the bialgebra context, one should de-
fine an algorithm according to the quaternary box structure
H ⊗H ⊗H ⊗H mentioned in the fork diagram 2 page 6 .

Central simple algebras as a host algebra for the
planning algorithm

A central simple algebra A (sometimes called a Brauer al-
gebra) is a simple finite dimensional algebra over a field
F whose center Z(A) (the set of commuting elements) is
F ; intuitively, for an algebra A the “center” Z(A) is real
part of the faithful representation whereas the complement
A−Z(A) is the simple (maximally non-commutative) quan-
tum step. They are finite dimensional associative algebras
over a field F (or over a local ring R) with center F (or
R) and without intermediate non-trivial two sided ideals
(twisted “non-separable” forms of n × n square matrix al-
gebras). One can define a sketch of the planning algorithm:
compute planning operators in order to remove the twist and
to finally obtain a n×n square matrix algebra which is sep-
arable.

Conclusion

If self-orientations are definable in the frame of consistent
representations, one can propose relevant algorithms pro-
vided one is able to enrich the algebraic structure of states
and actions in order to use enough reflection to encode and
decode dynamic information.

Deductive system theory is undoubtedly a suitable frame-
work although it should be used in that frame for totally dif-
ferent purposes.
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