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Abstract

Artificial neural networks (ANNs, or simply NNs) are in-
spired by biological nervous systems and consist of simple
processing units (artificial neurons) that are interconnected
by weighted connections. Neural networks can be ”trained”
to solve problems that are difficult to solve by conven-
tional computer algorithms. This paper presents the develop-
ment and implementation of a generalized back-propagation
multi-layer perceptron (MLP) neural network architecture de-
scribed in very high speed hardware description language
(VHDL). The development of hardware platforms has been
complicated by the high hardware cost and quantity of the
arithmetic operations required in an online MLP, i.e., one
used to solve real-time problems. The challenge is thus to find
an architecture that minimizes hardware costs while maxi-
mizing performance, accuracy, and parameterization. The
paper describes herein a platform that offers a high degree of
parameterization while maintaining performance comparable
to other hardware based MLP implementations.

Introduction

Artificial neural networks (ANNs) present an unconven-
tional computational model characterized by densely inter-
connected simple adaptive nodes. From this model stem sev-
eral desirable traits uncommon in traditional computational
models; most notably, an ANN’s ability to learn and gener-
alize upon being provided examples. Given these traits, an
ANN is well suited for a range of problems that are challeng-
ing for other computational models like pattern recognition,
prediction, or optimization (Basheer and Hajmeer 2000;
Paliwal and Kumar 2008; Widrow, Rumelhart, and Lehr
1994).

An ANN’s ability to learn and solve problems relies in
part on the structural characteristics of that network. Those
characteristics include the number of layers in a network,
the number of neurons per layer, and the activation func-
tions of those neurons, among others. There remains a lack
of a reliable means for determining the optimal set of net-
work characteristics for a given application. Lacking any
defined heuristic, the potential for fast prototyping to enable
the search for an optimal network setup becomes an impor-
tant consideration for any given platform.
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Numerous implementations of ANNs already ex-
ist (Schrauwen et al. 2008; Mead and Mahowald 1988;
Theeten et al. 1990; Liu and Liang 2005), but most of
them in software on sequential processors (Paliwal and
Kumar 2008). Software implementations can be quickly
constructed, adapted, and tested for a wide range of ap-
plications. However, in some cases the use of hardware
architectures matching the parallel structure of ANNs is
desirable to optimize performance or reduce the cost of
the implementation, particularly for applications demand-
ing high performance (Ienne, Cornu, and Kuhn 1996;
Omondi and Rajapakse 2002). Unfortunately, hardware
platforms suffer from several unique disadvantages such as
difficulties in achieving high data precision with relation to
hardware cost, the high hardware cost of the necessary cal-
culations, and the inflexibility of the platform as compared
to software.

In our work we aimed to address some of these disadvan-
tages by developing and implementing a field programmable
gate array (FPGA) based architecture of a parameterized
online neural network. Exploiting the reconfigurability of
FPGAs, we are able to perform fast prototyping of hard-
ware based ANNs find optimal application specific configu-
rations.

Background Information

Previous Work

Many ANNs have already been implemented on FPGAs.
The vast majority are static implementations for specific of-
fline applications. In these cases the purpose of using an
FPGA is generally to gain performance advantages through
dedicated hardware and parallelism. Far fewer are examples
of FPGA based ANNs that make use of the reconfigurability
of FPGAs.

FAST (Flexible Adaptable Size Topology) (Sanchez
1996) is an FPGA based ANN that utilizes run-time recon-
figuration to dynamically change its size. In this way FAST
is able to skirt the problem of determining a valid network
topology for the given application a priori. Run-time re-
configuration is achieved by initially mapping all possible
connections and components on the FPGA, then only acti-
vating the necessary connections and components once they
are needed. FAST is an adaptation of a Kohonen type neural
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network and so has a significantly different architecture than
our multi-layer perceptron (MLP) network. The result is a
network with the ability to organize itself based correlations
in the input, and thereby reveal those correlations.

Izeboudjen et al. presented an implementation of an
FPGA based MLP with back-propagation in (Izeboudjen et
al. 2007). Like ours, their design is flexible, allowing for
the adjustment of network data width and precision as well
as the possibility to copy and paste or remove neurons to
generate new network architectures. Some important dif-
ferences exist in terms of which network characteristics are
parameterized as well as differences in the implementation
approach.

Platform

Our development platform is the Xilinx Virtex-5 SX50T
FPGA (Xilinx 2007). While our design is not directed exclu-
sively at this platform and is designed to be portable across
multiple FPGA platforms, we will mention some of the char-
acteristics of the Virtex-5 important to the design and perfor-
mance of our system.

This model of the Virtex-5 contains 4,080 configurable
logic blocks (CLBs), the basic logical units in Xilinx FP-
GAs. Each CLB holds 8 logic function generators (in lookup
tables), 8 storage elements, a number of multiplexers, and
carry logic. Relative to the time in which this paper is writ-
ten, this is considered a large FPGA; large enough to test a
range of online neural networks of varying size, and likely
too large and costly to be considered for most commercial
applications.

Arithmetic is handled using CLBs containing DSP48E
slices. Of particular note is that a single DSP48E slice can
be used to implement one of two of the most common and
costly operations in ANNs: either two’s complement mul-
tiplication or a single multiply-accumulate (MACC) stage.
Our model of the Virtex-5 holds 288 DSP48E slices.

Artificial Neural Networks

Artificial neural networks are characterized by their densely
interconnected neurons, which are implemented as simple
adaptive processing elements (PEs). MLPs (Fig. 1) are lay-
ered fully connected feed-forward networks. That is, all PEs
(Fig. 2) in two consecutive layers are connected to one an-
other in the forward direction. Data is presented via the in-
put layer through which the current input vector enters the
network but no computation is made. The input layer is fol-
lowed by any number of hidden layers, followed by an out-
put layer, the output of which is the output of the network.

Figure 1: Multi-layer Perceptron model.

Figure 2: Processing element.

During the network’s forward pass each PE computes its

output yk from the input�ik it receives from each PE in the
preceding layer as shown here:

yk = ϕk

∑

j

wkjikj + θk (1)

where ϕk is the squashing function of PE k whose role is to
constrain the value of the local field,

vk =
∑

j

wkjikj + θk (2)

wkj is the weight of the synapse connecting neuron k to neu-
ron j in the previous layer, and θk is the bias of neuron k.
Equation 1 is computed sequentially by layer from the first
hidden layer which receives its input from the input layer to
the output layer, producing one output vector corresponding
to one input vector.

Back-Propagation Algorithm

The back-propagation learning algorithm (Rumelhart, Hin-
ton, and Williams 1986) allows us to compute the error of
a network at the output then propagate that error backwards
to the hidden layers of the network adjusting the weights of
the neurons responsible for the error. The network uses the
error to adjust the weights in an effort to let the output yj

approach the desired output dj .
Back-propagation minimizes the overall network error by

calculating an error gradient for each neuron from which a
weight change �wji is computed for each synapse of the
neuron. The error gradient is then recalculated and propa-
gated backwards to the previous layer until weight changes
have been calculated for all layers from output to the first
hidden layer.

The weight correction for a synaptic weight connecting
neuron i to neuron j mandated by back-propagation is de-
fined by the delta rule:

Δwji = ηδjyi (3)

where η is the learning rate parameter, δj is the local gradient
of neuron j, and yi is the output of neuron i in the previous
layer.

Calculation of the error gradient can be divided into two
cases: for neurons in the output layer and for neurons in the
hidden layers. This is an important distinction because we
must be careful to account for the effect that changing the
output of one neuron will have on subsequent neurons. For
output neurons the standard definition of the local gradient
applies.

δj = ejϕj
′ (vj) (4)
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For neurons in a hidden layer we must account for the lo-
cal gradients already computed for neurons in the following
layers up to the output layer. The new term will replace the
calculated error e since, because hidden neurons are not vis-
ible from outside of the network, it is impossible to calculate
an error for them. So, we add a term that accounts for the
previously calculated local gradients:

δj = ϕj
′ (vj)

∑

k

δkwkj (5)

where j is the hidden neuron whose new weight we are cal-
culating, and k is an index for each neuron in the next layer
connected to j.

As we can see from (4) and (5), we are required to dif-
ferentiate the activation function ϕj with respect to its own
argument, the induced local field vj . In order for this to be
possible, the activation function must of course be differen-
tiable. This means that we cannot use non-continuous acti-
vation functions in a back-propagation based network. Two
continuous, nonlinear activation functions commonly used
in back-propagation networks are the logistic function:

ϕ (vj) =
1

1 + e−avj
(6)

and the hyperbolic tangent function:

ϕ (vj) =
eavj − e−avj

eavj + e−avj
(7)

Training is performed multiple times over all input vec-
tors in the training set. Weights may be updated incremen-
tally after each input vector is presented or cumulatively af-
ter the training set in its entirety has been presented (1 train-
ing epoch). This second approach, called batch learning, is
an optimization of the back-propagation algorithm designed
to improve convergence by preventing individual input vec-
tors from causing the computed error gradient to proceed in
the incorrect direction.

Hardware Implementation
Our design approach is characterized by the separation of
simple modular functional components and more complex
intelligent control oriented components. The functional
units consist of signal processing operations (e.g. multipli-
ers, adders, squashing function realizations, etc.) and stor-
age components (e.g. RAM containing weights values, input
buffers, etc.). Control components consist of state machines
generated to match the needs of the network as configured.
During design elaboration, functional components match-
ing the provided parameters are automatically generated and
connected, and the state machines of control components are
tuned to match the given architecture.

Network components are generated in a top-down hierar-
chical fashion as shown in Fig. 3. Each parent is responsible
for generating its children to match the parameters entered
by the user prior to elaboration and synthesis.

Data Representation

Network data is represented using a signed fixed point no-
tation. This is implemented in VHDL with the IEEE pro-
posed fixed point package (Bishop ). Fixed point notation

Figure 3: Block view of the hardware architecture. Solid ar-
rows show which components are always generated. Dashed
arrows show components that may or may not be generated
depending on the given parameters.

serves as a compromise between traditional integer math and
floating point notation. While of the available options, float-
ing point notation offers the best precision for the number
of bits used, floating point arithmetic is prohibitively costly
in terms of hardware (Nichols, Moussa, and Areibi 2002).
Conversely, integer math lacks the necessary precision. Us-
ing fixed point notation we are able to represent non integer
values while maintaining comparable speeds and hardware
costs to standard integer arithmetic.

Our network has a selectable data width which is subdi-
vided into integer and fractional portions. For example a
sign bit, 1 integer place, and 3 fractional places:

SI.FFF

This gives network data a precision of 2−F (0.125 in our
example) where F is the number of fraction bits and gives
the data set D a maximum range of

−2N−1 ≤ D ≤ 2N−1 − 2−F (8)

(−2 ≤ D ≤ 1.875 in our example) where N = 1 + I + F
is the total data width.

The choice of data width and precision has a direct impact
on the width of the data paths in the network and the width of
the necessary operators. The parameter thus acts as means to
adjust the tradeoff between the size of the hardware footprint
of the network and its accuracy.

Processing Element

An effort was made to keep the realization of a single PE
as simple as possible. The motivation for this was that in
our parallel hardware design many copies of this component
would be generated for every network configuration. So,
keeping this component small helps to minimize the size of
the overall design. The control scheme was centralized ex-
ternal to the PE component to prevent the unnecessary du-
plication of functionality and complexity.
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Figure 4: Functional blocks of the PE component.

In paring the design of the PE component down to its es-
sential features we are left with a multiply-accumulate func-
tion with a width equal to the number of neurons in the pre-
vious layer, the selected squashing function implementation,
and memory elements such as registers contained the synap-
tic weights and input buffers.

The PE, whose structure is shown in Fig. 4, is responsible
for the full calculation of its output (1).

Squashing Function

The direct implementation of the preferred squashing func-
tion, a sigmoid function, presents a problem in hardware
since both the division and exponentiation operations re-
quire an inordinate amount of time and hardware resources
to compute. The only practical approach in hardware is to
approximate the function (Tommiska 2003). But, in order
for training to converge or for us to obtain accurate offline
results, a minimum level of accuracy must be reached (Holt
and Hwang 1993). More accurate approximations will re-
sult in faster, better convergences and a hence more ac-
curate results. There has thus been a significant amount
of research into how a sigmoid function can be efficiently
be approximated in hardware while maintaining an accept-
able degree of accuracy and the continuity required for re-
liable convergence in back-propagation learning (Tommiska
2003). To create a generalized design we must add one addi-
tional requirement for sigmoid function approximation, that
the method of approximation must be valid for a variety of
sigmoid functions.

Based on size and accuracy requirements to be met by
the network we are generating, we may select one of two
implementation styles for a sigmoid function that we have
implemented in our generalized design: a uniform lookup
table (LUT) or a LUT with linear interpolation.

Uniform Lookup Table Implementation

A uniform LUT implemented in block RAM may be used to
approximate a function of any shape.

The LUT is addressed using the local field. The address is
formed by taking the inverse of the sign bit of the local field

Figure 5: (a) Sigmoid function implemented on a uniform
LUT. (b) Uniform LUT error distribution for a sigmoid func-
tion. (c) Example of partitioning for a variable resolution
LUT.

and concatenating the most significant bits required to rep-
resent the highest input value of the function mapped onto
the LUT down to the number of address bits of the LUT. All
told, the computation requires one cycle and minimal hard-
ware beyond that which is required to hold the table itself.

The uniform LUT implementation, despite being popu-
lar in FPGA based ANNs and while efficient in terms of
speed and size, presents a problem in terms of its size vs.
accuracy tradeoff when it comes to modeling functions with
steep slopes like a sigmoid function. As the slope increases
so does the quantization error between LUT entries (Fig. 5).
A common solution for this problem is the use of a LUT with
variable resolution (Fig. 5c). That is, a LUT with higher
resolution for portions of the function with steeper slopes.
However, this is a solution that must be custom crafted for
every given sigmoid and thus is not easily generalized as we
would like.

To address the diminished accuracy of a uniform LUT
while maintaining generalizability over a variety of func-
tions, we incorporate linear interpolation alongside the LUT.
This solution effectively draws a line between each point of
a uniform LUT as in Fig. 6. The resulting activation function
is

y =
LUT(d + 1) − LUT(d)

2N−M
qe + LUT(d) (9)

where LUT(d) is the value returned by a uniform LUT rep-
resenting the target function for index d (done as described
in section ), N is the bit widths of the local field, M is the
bit width of the LUT address bus, and qe is the quantization
error described by:

qe = ϕ(v) − LUT(d) (10)

The algorithm flow is controlled by a state machine inside
the squashing function component enabled by the network
controller. After receiving input, the result is registered at
the output after 5 clock cycles.
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Figure 6: The hyperbolic tangent function is approximated
by finding the nearest indices of the LUT corresponding to
the local field, then drawing a line between the values ref-
erenced by those indices. The quantization error is then
used to find the corresponding point on the line segment

LUT(d)LUT(d + 1).

Figure 7: Back-propagation implementation.

Back-Propagation Computation

The back-propagation algorithm relies on the calculation of
the network error at the output layer to estimate the error
of neurons in the previous layers. The error is estimated
and propagated backwards layer by layer until the first hid-
den layer is reached. It follows that the error estimation of
any given layer except the output layer is dependent on the
error calculation of its successor. Because of this, the train-
ing algorithm must be computed sequentially, layer by layer
limiting parallelism to the neuron level.

The hardware implementation once again seeks to sep-
arate control and functional based components. Each layer
contains its own back-propagation teacher component which
is responsible for the control flow of the algorithm for its
layer. Because the back-propagation algorithm is only being
executed for one layer at a time we need only one set of the
necessary arithmetic components.

Since the number of multipliers and adders, and the size
of the MACC are dependent on the size of a given layer and
its predecessor, we must compute and generate the worst
case number of arithmetic components that are needed dur-
ing elaboration of the given network design. The set of arith-
metic components used in the back-propagation calculation

are then packaged into the BP ALU component.
The BP ALU is accessed by each back-propagation teacher

via an automatically generated multiplexer (Fig. 7) which is
controlled by the network controller.

To optimize the performance of the training algorithm we
begin execution during the forward pass of the network. In
the forward pass we are able to compute two elements of

the algorithm: η�i once a given layer receives its input, and
ϕ′(v) once the layer’s output has been computed. In the
hidden layers, the results of these preprocessing steps are
then saved until the error gradient reaches them in the back-
ward pass. The output layer teacher continues immediately
by calculating the output error and the local error gradient
(4) for every neuron in the output. Once the error gradient
has been calculated at the output layer, the final hidden layer
may calculate its own error gradient (5) and pass that back.

Network Controller

The design of the network controller was strongly guided by
the highly generalized design of the network and the initial
decision to separate functional and control units. The deci-
sion to centralize control of the network was based on the
goal of minimizing the size and complexity of components
that must be generated multiple times. This is contrary to a
distributed control mechanism made up of independent com-
ponents capable of determining their own state and commu-
nicating that state to one another. This would be the more
modular solution, but would also inflict a significant time
and hardware penalty caused by the control overhead in the
network, since control mechanisms would be repeated many
times through the network. The centralized control scheme
on the other hand, relies on the predictability of the timing
and behavior of any generated network configuration.

Depending on the network to be generated, the network
controller is created as either an online or offline network
controller. Different implementations are necessary since in
offline mode a pipelined network is generated and the online
controller must include control for the computation of the
back-propagation algorithm. Despite this, both controllers
are implemented in the same manner.

The network controller is a Mealy state machine based on
a counter indicating the number of clock cycles that have
passed in the current iteration (in the case of an online net-
work) or the total number of clock cycles passed (in the case
of an offline network). For the value of the counter to have
any meaning we must be able to pre-calculate the latency to
reach milestones in the forward and back passes of the net-
work. These milestones are calculated during elaboration
of the design. Based on these milestones the state machine
outputs a set of enable signals to control the flow of the net-
work.

LUT with Linear Interpolation

To judge the accuracy of our approximation technique for
sigmoid function using a LUT with linear interpolation we
calculated the average error and worst case error of the tech-
nique for a range of network data precisions and LUT sizes.
Using a uniform LUT as a control, we approximated the hy-
perbolic tangent with input ranging [-4:4]. Table 1 shows
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Table 1: Worst case error of approximated hyperbolic tan-
gent using a LUT with linear interpolation and a uniform
LUT.

Table 2: Average error of approximated hyperbolic tangent
function using a LUT with linear interpolation and a uniform
LUT.

the worst case error using the two techniques and table 2 the
average error. From the results we see that the LUT with
linear interpolation provides a significant improvement in
accuracy. For example, in a case with a network that uses
15-bit fractional precision, an 8192 element uniform LUT
can be replaced by a 128 element LUT with linear interpo-
lation and achieve a slightly better quality approximation on
average.

Using the LUT with linear interpolation it becomes pos-
sible to reduce the error such that the magnitude of the error
falls under the resolution of the network data precision. At
this point we have reached a maximally precise approxima-
tion for the given network. Table 3 shows the resolution nec-
essary to register the approximation error in the worst case
for each set up in our tests. The boxed entries show the min-
imum LUT size for a given network data resolution to reach
a maximally precise approximation.

Conclusion

In this paper we have presented the development and im-
plementation of a parameterized FPGA based architecture
for back-propagation MLPs. Our architecture makes native

Table 3: Bit resolution required to resolve the worst case
approximation error.

prototyping and design space exploration in hardware pos-
sible. Also presented was a new method for approximation
of a sigmoid function in hardware. We showed that by ap-
plying a linear interpolation technique to a uniform LUT,
we could significantly reduce the size of the necessary LUT
while maintaining the same degree of accuracy at the cost of
implementing one adder and one multiplier.
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