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Abstract 
In resource-constrained environments, supply chains for 
consumables, repairs and calibration of diagnostic 
equipment are generally poor. To obviate this issue, we 
propose the use of widely available hardware with a strong 
supply chain: a cellphone with a hands-free kit. In 
particular, we focus on the use of the audio channel to 
determine heart rate (HR) and heart rate variability (HRV) 
in order to provide a first level screening system for 
infection. This article presents preliminary work performed 
on a gold standard database and a cellphone platform. 
Results indicate that HR and HRV can be accurately 
assessed from acoustic recordings of heart sounds using 
only a cellphone and hands-free kit. Heart sound analysis 
software, which can run on a standard cellphone in real 
time, has been developed that detects S1 heart sounds with a 
sensitivity of 92.1% and a positive predictivity of 88.4%. 
Evaluation of data recorded from cellphones demonstrates 
that the low-frequency response (<100 Hz) is key to the 
success of heart sound analysis on cellphones. Noise 
rejection is also shown to be important.  

 Introduction and Background   
There is a wide rural-urban divide in health care delivery, 
especially in developing nations. Medical specialists in 
these countries are scarce and are often only found in the 
cities. For people living in remote or resource-poor 
locations, travel to see these specialists can deprive them of 
a whole day’s income. For many rural clinics, the time it 
takes to send information to the nearest physician and 
receive a diagnosis and advice can take weeks. As a result, 
diagnosis and treatment are often delayed and patient 
follow-up is difficult when a long journey or wait time is 
involved, resulting in higher mortality and costs than are 
necessary. Although training programs exist to increase the 
numbers of community health workers, such programs are 
not scalable and sustainable, requiring constant resources, 
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the effectiveness of which is reduced as the knowledge 
radiates out from the centers of training. 
 Maternal and childhood mortality is a particularly 
pressing issue. Each year, over half a million women die 
from pregnancy or childbirth (Richards 2009). 
Furthermore, women in least developed countries are 300 
times more likely to die in childbirth. With proper prenatal 
care and routine screening, mothers can learn to take 
proper safety measures during pregnancy, including 
preparations for a high-risk delivery if necessary. Through 
simple monitoring of the mother and fetus (i.e. measuring 
fetal heartbeat and respiration), a healthcare worker would 
be able to check on the heart condition and general growth 
of the baby and any infections of the mother. Following 
childbirth, infections in the young children (such as TB) 
require detection. 
 One promising method for such screening is through 
fetal and pediatric heart rate (HR) analysis. Changes in 
heart rate variability (HRV) have been shown to be linked 
to infection (Kovatchev et al 2003, Blad et al 2008, Frasch 
et al 2009). However, to-date all analyses of fetal and 
pediatric heart rate variability has been via ultrasound or 
electrocardiogram (ECG), with the exception of a 
prototype computer-base system in India (Mittra 2009), 
which uses high-end microphones to subtract ambient 
noise and render a heart rate. However, Mittra gives no 
details of the heart rate extraction or its accuracy on the 
small number of mothers tested. Moreover, a large amount 
of equipment is required to perform the screening. 
 In the area of mobile diagnostics using cellular 
technologies there have been several recent developments. 
For example, Jin et al (2009) have developed a system to 
record ECGs via a cellphone. Tan and Masek (2009) have 
developed a system to interface with Doppler devices for 
fetal ultrasound assessment. Black et al (2009) have 
created a low cost pulse oximeter attached to a cellphone to 
try to distinguish pneumonia from other febrile illnesses. 
However, all these systems require a reliable supply chain 
infrastructure to deliver the diagnostic peripherals, 
maintenance and supplies. Furthermore, perhaps with the 
exception of the pulse oximeter, expert knowledge and 
training is usually required to use the equipment. 
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 In this article we present an analysis of heart-rate 
extraction from off-line acoustic data and compare them to 
that extracted from a clean electrocardiogram. We then 
present results from a preliminary cellphone-based system 
which performs the same operation. Finally we describe a 
telemedicine framework for collecting expert-labeled data, 
an essential requirement for training our system. 

Methods 
A database of cardiac acoustic and electrocardiogram 
(ECG) data, and cellphone recordings were analyzed in 
Matlab to determine the accuracy of audio beat detection. 
 
Data Sources. ECG and heart sounds were previously 
recorded with a Master Elite Plus Welch Allyn Meditron 
electronic stethoscope for approximately 30 seconds for 
each subject (Syed, 2003). The stethoscope had a 
frequency response of 20 Hz to 20 kHz, and files were 
stored as WAV files without compression. Recordings 
were performed with the Bell setting, which applied a 
bandpass filter from 20 Hz to 420 Hz. 
 Out of 123 recordings, 27 clean ECG (with associated 
audio recordings of undetermined quality) of healthy adults 
with no noted heart abnormalities were chosen for analysis. 
Data was collected from subjects in a supine position from 
the left lower sternal border (tricuspid area), as shown in 
Figure 1. Recording examples are given in Figure 2. 
 

 
Figure 1: Auscultation sites 

Figure 2: ECG and associated heart sounds 

 
Figure 3: Sound card frequency response (dB/Hz) 
comparison between HTC G1 (black line) and iPhone 
(magenta line). Adapted from GSMArena 2009. 
 
 Recordings were also performed using an Apple iPhone 
3GS and a HTC G1 phone with a hands-free kit from a 
young, healthy female subject at rest from the pulmonic 
area. Data was recorded in m4a format and converted to 
WAV for processing. All data was sampled at 44.1 kHz 
with 16-bit quantization. The frequency response of the 
two test phones is given in Figure 3. The rationale for 
choosing these two phones is that they provide a high 
quality starting point to being a feasibility study.   
 
Preprocessing. ECG and acoustic data were downsampled 
to 500 Hz and passed through 100-point FIR bandpass 
filters. The low and high cutoff frequencies for the ECG 
filter were 2 Hz and 30 Hz, respectively, to reduce high 
frequency noise and baseline wander. For data collecting 
from the electronic stethoscope, acoustic recordings were 
filtered to preserve the frequency range from 5 Hz to 70 
Hz, which was determined empirically.  
 
Event Detection and HR Estimation. HR estimation was 
performed by detection the onset of S1 and S2 sounds and, 
for data recorded using the electronic stethoscope, 
comparing them to QRS detection in ECG. The peak 
detection algorithm was based on an ECG QRS detection 
method (Pan and Tompkins 1985, Hamilton and Tompkins 
1986). The energy of the heart sound signal was quantified 
by differentiating, squaring, and integrating over a fixed-
length window, which was empirically determined to be 26 
milliseconds for QRS detection. The resulting integrated 
quantity peaked during high energy areas, specifically 
during the QRS complex, shown in Figure 4. The R peaks 
were identified by thresholding the integrated quantity and 
searching for the location of the peaks above the threshold.  
 Event detection for heart sounds was performed using 
the same procedure to derive the integrated quantity, with 
an integration window of 58 milliseconds. Local maxima 
of the integrated value were identified to demarcate S1 and 
S2 sounds. 
 To distinguish S1 from S2 sounds, the time interval (SS 
interval) between detected local maxima were computed. A 
distribution of these SS intervals was created for each 
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record, as shown in Figure 5, resulting in two Gaussian-
like clusters of S1-S2 and S2-S1 intervals. Each SS interval 
was then classified as either S1-S2 or S2-S1 by its 
proximity to the cluster centers. Since S1-S2 intervals are 
typically shorter than S2-S1 intervals, the cluster of shorter 
SS intervals was designated as S1-S2, and the longer SS 
intervals as S2-S1. The start and end points of each S1-S2 
interval was identified as S1 and S2 sounds, as in Figure 6. 
 

Figure 4: ECG R peak detection using integrated signal 

Figure 5: Empirical distribution of SS intervals for 
entire record of patient depicted in Figure 4  

Figure 6: S1 and S2 detection using integrated signal 
derived from an electronic stethoscope 

 Instantaneous heart rate was estimated using the median 
of S1-S1 intervals over 9 beats. The instantaneous heart 
rate HRi in beats per minute at the ith beat is  
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where Ti is the S1-S1 interval between beat i and i+1 and f 
is the median operation. 

For heart sounds recorded from the iPhone, in noisy 
segments where only either S1 or S2 was clearly visible, 
heart rate was calculated from whichever one was the most 
prominent heart sound in the record. 

Results 
The accuracy of heart rate extracted from audio data taken 
with the electronic stethoscope was compared to that from 
ECG by comparing QRS detection with S1 detection. All 
records examined had 100% R peak detection, totaling 997 
beats. S1 detection was considered accurate if it was within 
0.1 seconds of the corresponding R peak. Results are given 
in Table 1. 

For audio data recorded with the iPhone, beat detection 
was verified by a human expert. Segments of audio data 
are shown in Figures 7 and 8 for clean and noisy signals 
respectively, which illustrate the feasibility of heart rate 
extraction from data recording using cellphones. However, 
the algorithm is robust to noise only when the inter-beat 
energy is smaller than that of S1 and/or S2 sounds. An 
example of this problem of dealing with ambient noise can 
be seen in the 4-5 second segment of Figure 9. Note also 
the respiratory amplitude modulation of the S1 peaks.  
 
 

Positive predictivity 88.4% 
Sensitivity 92.1% 
Table 1: S1 detection results 

 

 
Figure 7: Heart sound detection from clean segment 
recorded from iPhone. HR=88 BPM 
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Figure 8: Heart rate detection from noisy segment 
recorded from iPhone with low ambient noise. 

 
Figure 9: Heart rate detection from noisy segment 
recorded from iPhone with little high ambient noise. 

 
Figure 10: Heart rate detection using HTC G1 with ad 
hoc stethoscope. Heart sounds are indicated by ▼ 
 
Figure 10 illustrates the performance of our detection 
algorithm on heart sound data recorded from the HTC G1. 
The first two heart sounds are labeled. Each following pair 
of peaks (▼) corresponds to pairs of S1 and S2 for each 
beat. Note that an ad hoc stethoscope was required to 
record these sounds, since the frequency response of the 
G1 HTC sound card below 100 Hz is so poor (see Figure 
3). This stethoscope was constructed using a funnel with a 
plastic covering to mimic a conventional stethoscope. 

A Telemedicine Infrastructure 
Following rigorous validation of the technology on test 
patients, these methods will be integrated into Moca 
(mocamobile.org), a remote medical diagnostics platform 
aimed for use by rural healthcare workers in developing 
countries. The Moca framework currently consists of an 
Android client application that enables healthcare workers 
to upload rich media content of patient data from mobile 
phone devices to an OpenMRS electronic medical record 
backend system for review and diagnosis by an expert 
physician. By adding auscultation capabilities to the phone 
application, physicians will able to remotely listen to heart 
and lung sounds of the patients and more accurately 
diagnose patients with the appropriate heart and lung 
conditions. Over time, as more data is transmitted using 
Moca and stored in OpenMRS, a large collection of heart 
and lung sounds will accumulate and serve as a strong data 
set for the development of more sophisticated algorithms 
for automated detection of cardiac and pulmonary diseases 
on mobile phones in resource-poor regions. 

Furthermore, by using the camera on the cellphone, it is 
possible to extend this infrastructure to create field 
databases to analyze, for example, skin lesions, eye 
diseases and wound infection (Celi et al. 2009). 

Discussion & Conclusions 
We have developed a heart rate estimator (and heart sound 
locator) with a sensitivity of 92.1% and a positive 
predictivity of 88.4% for detecting each first heart sound 
using a gold standard database of ECG and heart sounds. 
Although this is well below the 99.9% levels reported for 
ECG beat detectors (Hamilton and Tompkins 1986), our 
algorithm is sufficient to detect the majority of the beats. If 
features of each heart sound need to be analyzed, then 
further signal quality checks on the morphologies and 
exact location (in time) of each heart sound will be 
required. Moreover, for heart rate estimation, the median 
approach means that the actual estimation is far more 
accurate than these figures represent. 
  When using cellphones to record heart sounds we found 
a high variance in quality between hardware, with some 
units being completely unable to record useful data 
because of the low frequency response characteristics of 
the sound card. Publicly available tests concerning sound 
card profiles indicated that the iPhone provides the best 
low frequency (<100 Hz) performance (which is key to 
cardiac auscultation), and our preliminary tests agreed with 
these conclusions. Preliminary tests on respiratory 
auscultation indicate that poorer performing sound cards 
are acceptable because information below 100 Hz is not 
essential.  
 Another important issue connected with cellphone 
auscultation is the problem of ambient noise and 
movement artifact. Figure 3 clearly illustrates this issue. 
Being able to identify artifacts and remove the affected 
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segments from physiological parameter estimation will be 
an essential part of any automated or semi-automated 
system such as described in Bhatikar et al. (2005). In Li et 
al. (2008), Li et al. (2009), and Nemati et al. (2009) we 
described a signal quality assessment approach for ECG, 
blood pressure and respiration respectively. In theory, it 
would be possible that this framework could be extended 
to incorporate audio auscultation signals and pulmonary 
signals. Future applications of the technique described in 
this paper could include detection of infections in fetuses 
(using HRV derived from recordings on the mother’s 
abdomen), children and adults (using lung sound analysis). 
The key to success of these techniques is being able to 
inform the user when the recording location is providing 
sufficient signal quality to perform an accurate analysis of 
the data. 
 If the signal quality is too low, it may be possible to 
identify the underlying noise sources and remove them 
from the signal – i.e. filter the data, rather than remove 
noisy sections. However, since the noise overlaps in the 
time and frequency domain, filtering is extremely difficult. 
Mittra et al. (2009) used a second off-body microphone to 
record ambient noise to provide information for an 
adaptive filter. However, no comparable performance 
results are given for their work.  
 Another possibility for identifying and separating out the 
noise sources using a stereo microphone input, is to 
leverage independent component analysis (ICA). ICA 
removes statistically independent signal sources from the 
cardiac source if certain assumptions hold (Comon 1994). 
The effectiveness of ICA technique will depend on the 
accuracy of the assumption of linear, stationary mixing of 
the sources. We can see from Figures 6, 7, 8 and 10 that 
the S1 and S2 complexes exhibit slow changes in average 
energy over a period of several seconds. This observation 
is commensurate with the fact that as we breath, the 
location of the heart changes, possibly moving away and 
towards away from the microphone as we breath in an out 
(depending on microphone location). In these instances, 
the mixing matrix may no longer be stationary, and more 
complex de-mixing may be required, particularly for fetal 
heart sounds (Sameni et al. 2008).  
 The full value of capturing and analyzing cardiac and 
respiratory sounds is realized when it is integrated within a 
clinical information system. Probabilistic modeling to 
predict patient diagnosis and prognosis using physical (and 
even laboratory) findings almost always requires 
accompanying clinical history to optimize discrimination 
and calibration.  To this end we have implemented a 
telemedicine framework (mocamobile.org) through which 
audio data can be uploaded and annotated, and expert 
evaluations and clinical treatment/follow-up 
recommendations can be rapidly sent to community health 
workers. Our next steps are to assemble such a database 
and make it publicly available. 
 In conclusion, we find that it is possible to re-task 
existing technology and hardware in resource poor 
environments to provide low-cost reliable diagnostic 

screening. We note that if a large medical device 
infrastructure and training system does become available in 
such locations, then other peripheral-based systems would 
form a complimentary diagnostic base to our proposed 
system. We also note that the diagnostic capability of the 
stand-alone cellphone is not confined to heart rate analysis, 
but can be extended to HRV, heart valve issues, lung 
function, infection, sleep structure and even depression 
(Sung et al. 2005) using acoustic and accelerometer inputs, 
for example. Moreover, fusing multiple independent 
signals to evaluate a given physiological function (such as 
cardiac activity), a more robust analysis of noisy field data 
can be made possible (Li et al. 2008).  
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