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Abstract

Food shortages are increasing in many areas of the
world. In this paper, we consider the problem of un-
derstanding the causal relationships between socioe-
conomic factors in a developing-world household and
their risk of experiencing famine. We analyse the ex-
tent to which it is possible to predict famine in a house-
hold based on these factors, looking at a data collected
from 5404 households in Uganda. To do this we use a
set of causal structure learning algorithms, employed as
a committee that votes on the causal relationships be-
tween the variables. We contrast prediction accuracy
of famine based on feature sets suggested by our prior
knowledge and by the models we learn.

Introduction

Many inhabitants of developing countries are at risk of
famine, and quantifying the risk under different circum-
stances is an important problem. One clear indicator of im-
pending famine is the early stage of food shortage at the
household level, known as ‘food insecurity’.

Household food security may be related to several socio-
economic factors such as age, sex, marital status and edu-
cation level of the household head, location, size of land,
size of household, amount of labour available, possession of
livestock, distance from the household to the main road, in-
come and presence of agricultural shock (Okori, Obua, and
Baryamureeba 2009). In this study we analyze an exten-
sive dataset of such variables collected from households in
Uganda, and apply structure learning techniques in order to
understand the causes of famine and predict which house-
holds are at risk. A similar approach based on Bayesian
networks has been employed in the study of the socioeco-
nomic factors affecting technology penetration (Nedevschi
et al. 2006).

To understand the causative relationships in the data, we
employ a set of causal structure learning methods that are
combined in a committee and vote on the causal relation-
ships between the different variables. We present three can-
didate models for the causal relationships between the vari-
ables under study: 1) an a priori model, derived using our
knowledge of the domain without reference to the data, 2)
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a model derived using statistical inference only, and 3) a
model obtained by using both prior domain knowledge and
statistical inference. We note that causal structure learn-
ing on natural datasets often makes most sense as an iter-
ative process, combined with a structure prior from domain
knowledge. Given the three models, we compare prediction
accuracy of famine risk using corresponding feature sets.

Our work has implications for policy and intervention
planning in food security, indicates how predictable food
shortages are at the household level, and provides evidence
that a combination of recently developed structure learning
methods (which have mainly been analysed with synthetic
data) are capable of producing intuitively plausible results
from natural datasets.

We now review first the structure learning algorithms and
then the dataset used in this analysis. In subsequent sections
we present our inferred structures and findings in predicting
famine at the household level.

Causal Structure Discovery

In recent years causal structure discovery has emerged as
a branch of machine learning. The goal is to learn causal
relationships from purely observational data, without being
able to perform manipulations.

The first benefit of such techniques is the ability they pro-
vide to understand causal mechanisms in domains such as
food security, epidemiology or genetics where it is either ex-
pensive, unethical or impossible to carry out certain experi-
ments. Other advantages of causal analysis include predic-
tion under interventions, manipulation and counterfactual.

Causal analysis is of an entirely different nature to
correlation-based analysis (density modelling) of a dataset,
as covered in (Pearl 2000). A causal relationship implies a
change in one variable will have a corresponding change in
any variable that is causally dependent on it, and this must
hold even when the variables are subjected to external inter-
ventions. This is important when predictions are to be made
on data is subject to external interventions.

A probabilistic (Bayesian) network is a graph in which
nodes represent random variables and directed edges be-
tween the nodes encode dependence and independence in-
formation between the different nodes. Causal networks –
which we are interested in learning here – are a subset of
directed Bayesian networks, where we interpret the arcs as
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direct causal relationships. In a directed Bayesian network,
an arc from A to B determines the conditional independence
class and does not necessarily mean that A is a cause of B.
There can be many different causal networks which have the
same conditional independence properties and are therefore
indistinguishable as Bayesian networks.

Most classification and regression algorithms presume
that test data has the same distribution as training data.
When the distribution of test data may be altered due to inter-
ventions, only methods which incorporate an accurate causal
model of the data that are able to make robust inferences.

Two broad categories of methods have been employed to
date in structure discovery: search-and-score based methods
which use probabilistic methods to score a causal directed
acyclic graph (DAG) based on the data, and constraint-based
methods that use the conditional independence properties
between the variables in the data to ascertain the causal re-
lationships. There are several variations on these themes,
for example methods that focus on discovering latent vari-
ables (Spirtes, Glymour, and Scheines 2000; Elidan et al.
2000) and on learning linear non-Gaussian models (Hoyer,
Shimizu, and Kerminen 2006b). These methods have been
tried extensively on synthetic datasets, but less is known
about their performance on real-world data.

Learning causal relationships in a network of variables
is not trivial: a naı̈ve search for all possible DAGs in a
dataset with n random variables results in a hyperexpo-
nential number of possible graphs r (n) where for example
r (2) = 3, r (3) = 25, r (5) = 29281, r (10) ≈ 42 × 1018

(Robinson 1977). In the case of constraint-based testing for
conditional independence relationships, the problem is that
to establish an independence relationship between any two
variables we would in principle need to test this for all pos-
sible conditioning sets.

In this paper we apply a committee of causal structure
learning methods. We simplify the task of searching through
the large number of possible models by first finding an undi-
rected graph between the variables (the skeleton), and then
orientating the edges using the structure learning committee.

The Causal Committee

The committee method used (Mwebaze and Quinn 2009) at-
tempts to harness the combined power of differently moti-
vated structure discovery algorithms. In order to optimize
the economics of execution time and accuracy, the commit-
tee method is initialized by skeleton discovery with feature
reduction. We do this by first discovering the sets of parents
and children for each variable in order to break the problem
up into sets of tractable local neighbourhoods (skeleton dis-
covery). We then apply a structure learning committee for
orientating edges between the variables.

Skeleton Discovery

We obtain the local neighborhoods of the variables by use
of a pseudo-committee of extensions of HITON-PC(max-k
= 3, alpha = 0.01); (i) HITON applied to the full dataset,
(ii) HITON initialized by sets of relevant features for the
different variables.

Algorithm 1 Localized causal discovery committee.

1: input: c1 . . . cN , data vectors for variables C1, . . . , CN

PC (i), set of parents and children for each variable Ci.
2: for each variable Ci, i = 1 . . . N do
3: for each algorithm Algoj do
4: causes(Ci, j), effects(Ci, j) ← Algoj (Ci, PC (i))
5: Ci ← majorityVote(causes(Ci, :))
6: Ei ← majorityVote(effects(Ci, :))
7: return: {C,E}, causes and effects of C1, . . . , CN .

Relevant features for the variables are obtained using Rel-
evance Learning Vector Quantization (RLVQ) (Bojer et al.
2001), an extension of Kohonens LVQ. LVQ and all meth-
ods based on it are essentially prototype-based classification
methods applied in supervised machine learning. They em-
ploy a distance measure (typically Manhattan distance or
quadratic Euclidean distance) that quantifies the similarity
of a given feature vector with a prototype (representative) of
any particular class. RLVQ employs adaptive scaling factors
that scale the features based on their relevance for classifica-
tion.

HITON is a standard algorithm for feature selection. It
has been shown to have two main advantages over other fea-
ture selection algorithms. Firstly, it reduces the number of
variables in the prediction models roughly by three orders of
magnitude relative to the original variable set while improv-
ing or maintaining accuracy. Secondly, it outperforms the
baseline algorithms by selecting smaller variable sets than
the baselines (Aliferis, Tsamardinos, and Statnikov 2003).

For each variable the union of the results of each of the
members of this pseudo-committee forms its skeleton of di-
rectly connected variables. Individual feature/variable skele-
tons combined form the skeleton graph of our famine net-
work.

Committee Members

Once the skeleton is obtained, we take each variable Ci indi-
vidually with its direct neighbours (the set PC(i) of parents
and children) and try to orientate the edges to find which are
the parents and which are the children. Rather than use a
single method to orientate the edges, we use a committee of
causal discovery algorithms, some standard and some rela-
tively novel. Each method is applied to the skeleton to ori-
ent the edges and then voting amongst the individual meth-
ods about the causal relationships between the variables is
done. This is advantageous in two ways (i) because some
of these algorithms have mainly been analysed on synthetic
data in the literature, it is difficult to predict how they will
perform on real data, hence averaging the performance over
several of these methods results in better accuracy, and (ii)
we use methods that have varied strengths and different as-
sumptions based on the data they are applied to, hence appli-
cation of a committee of these methods on a real dataset and
voting is likely to give a more robust result than using any
one of these methods individually. The committee algorithm
is described in Algorithm 1.
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Standard algorithms were used to form the structure learn-
ing committee. They were selected to include methods
based on different principles. We use PC (Spirtes, Glymour,
and Scheines 1993), MWST (Chow and Liu 1968), GES
(Munteanu and Bendou 2002), K2 (Cooper and Herskovits
1992), LiNGAM (Shimizu et al. 2006) and EPC (Mwebaze
and Quinn 2009).

Famine Data

The dataset used in this paper comprised of information col-
lected by the Uganda Bureau of Statistics from 5404 house-
holds in four regions of Uganda (Central, Eastern, Northern
and Western), spanning 57 districts of the approximately 80
districts of Uganda. The data collected was aimed at de-
termining the degree to which households are susceptible to
famine or food insecurity. The original dataset has 24 fea-
tures. For this study several of the features were removed
including household size, region, district, and income. In-
come was removed because it had several missing values. In
all for this study a total of 13 features were used, listed in
Table 1. Preprocessing reduced the data to 3094 households
after deleting all the households with missing values in any
of the 13 features. The preprocessed data was used in its en-
tirety to discover the underlying causal structure around the
target variable and later split into training and test data to
test the prediction accuracy based on the whole dataset, and
contrasted with prediction accuracy based on the derivative
datasets from the derived causal graphs.

For individuals who are faced with food shortages, the
caloric intake in their diet is reduced and this measure can
be used as a proxy for food insecurity (Salih 1994). The net
caloric intake is calculated from the difference between the
energy content (calories) of each agricultural food crop that
is produced by a household and that utilized for different
purposes like animal feeds and wastage within an agricul-
tural year. For each household this net value is divided by
the number of people in a household and number of days in
a year to derive the dietary energy intake per person per day.
Those households that fall short of a value of 1800 kilocalo-
ries per person per day in this study are considered as being
food insecure.

Experiments and Results

Experiments were carried out on three different configura-
tions of the famine network.

A Priori Graph

A graph was first constructed based on the authors’ knowl-
edge of the domain, without reference to the data. The struc-
ture is shown in Figure 1.

The intuition behind the causal relationships in Figure 1
is as follows:

TP → Fa : The more food that a family produces, the more
is available for direct consumption.

Li → Fa : Owning livestock is a direct mitigation of famine
risk, e.g. consumption of milk and eggs increases calorie
intake.

Sex of the household head male/female

Age of the household head years

Marital status of the household head married/
divorced/
single/
widowed

Size of household number of
people

Size of land available to the household
for farming

acres

Amount of labour available for cultiva-
tion per year

person-
years

Distance from household residence to
the nearest main road

km

Distance from household residence to
farm land

km

Total annual production of crops avail-
able for consumption by the household
(excluding crops which are sold)

kg

Agricultural shock (e.g. presence of
flooding, drought, market fluctuation)

true/false

Crops attacked by pests true/false

Ownership of livestock true/false

Household famine status (whether
daily calorie intake per person in the
household is above 1800 kCal)

famine/
not famine

Table 1: Variables in the famine dataset describing each
household surveyed.

HS → Fa : The greater the size of the household, the
smaller the share of consumable produce per person.

La → TP : The greater the size of the household, the more
manpower is available for raising crops.

LS → TP : The more land available to a family for farming,
the more potential they have for growing crops.

DR → TP : Households closer to the road are more likely
to sell produce rather than keep it for consumption.

DR → LS : Land closer to the roads is more expensive,
making typical plots of land smaller.

DG → TP : More time required to travel and transporting
goods to and from the farm means that less time is avail-
able for work on cultivation.

AS → TP : Agricultural shock (e.g. flooding, drought,
market fluctuation) directly affects production.

PA → AS : Pest attack is part of agricultural shock by defi-
nition.

HS → La : The more people in the household, the more
manpower is available for food cultivation.
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(a) Graph learnt with uninformative prior
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Figure 2: Inferred and a posteriori causal graphs depicting causal relationships in the famine data set. The highlighted nodes
signify nodes directly connected to the target variable famine/food insecurity. Features are represented as HS-Household Size,
LS-Land Size, La-Labour, DR-Distance to main Road, DG-Distance to Garden, TP-Total Production, AS-Agricultural Shock,
PA-Pest Attack, Li-Livestock, and Fa-Famine.
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Figure 1: Intuitive a priori graph of causal relationships
in the famine dataset. Features are represented as HS-
Household Size, LS-Land Size, La-Labour, DR-Distance to
main Road, DG-Distance to Garden, TP-Total Production,
AS-Agricultural Shock, PA-Pest Attack, Li-Livestock, and
Fa-Famine. The rest were assumed to be independent.

Graph Learnt with Uninformative Prior

The discovered graph was learned from the data using the
committee method of causal discovery, without incorporat-

Edge PC EPC MWST GES LiNG K2

LS→Fa 1 0 0 1 0 0
Fa→LS 0 1 0 1 0 1
Fa→DG 0 1 1 0 0 1
Fa→TP 0 1 0 1 0 1
Li→Fa 1 0 1 0 0 0
Fa→Li 0 1 0 0 0 1

Table 2: Table showing relative voting strengths of the dif-
ferent committee algorithms for causative edges related to
famine. The numbers represent whether a particular algo-
rithm voted for or against.

ing any prior domain knowledge. It is shown in Figure 2(a).
The nodes {LS, DG, TP,Li} represent the direct causes
and effects of our target variable famine{Fa}. It is interest-
ing to note that the discovered graph has as its direct causes
landsize and livestock as the major determinants of whether
a household is likely to face famine in a given year or not,
which are quite intuitively plausible causes.

Table 2 shows how each algorithm voted. It represents
how confident the committee was about each of the edges
related to famine/food security. It is interesting to note that
two algorithms EPC and K2 agree exactly on the same set
of causes while LiNGAM that assumes non-Gaussian distri-
butions does not find any causes. A voting threshold of 2
was used to obtain the uninformed graph depicted in Figure
2 (a).
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A Posteriori Graph

The a posteriori graph was obtained by including the a priori
graph in to the committee and doing the voting again. The
effect of this inclusion is to strengthen the vote on the prior
causative links in the graph. A voting threshold of 3 was
used for the a posteriori graph, and we double the weight of
votes from the prior knowledge model (the weight of votes
determines our confidence in the structure learning as op-
posed to our assessment of causes from prior knowledge).
The graph is depicted in Figure 2 (b). Intuitive explanations
for some of these causal relationships is as follows:

Li → LS : The more livestock a household has the more
likely they are to look for a larger piece of land, or con-
versely, the more land a household has, the more likely
they are to have livestock.

Fa → TP : This is somewhat counterintuitive, as we expect
the reverse that low total production of crops leads to a
state of famine. However this causal relationship does
have a plausible interpretation. Total production is the
amount of crops produced excluding those which are sold.
During a shortage, families often cut down to one meal a
day in order to conserve their resources. If they produce
perishable crops then they are likely to sell the rest in or-
der to build up a financial buffer.

Fa → LS,DG : In these cases we would also expect the
most probable relationships would be the reverse. It is
plausible however that some members of the committee
may lay greater emphasis on the effects of famine than
the causes for instance K2 is a causal structure algorithm
that theoretically will orient edges differently based on the
ordering of the features. It is hence likely that if the target
{Fa} is analysed first, the algorithm will give a stronger
weight to the effectual relationship of consecutive features
with the target.

Another interesting result is that we obtain several intu-
itive causes of variable {TP}, the total production. The fact
that the two derived graphs depict some intuitive causative
characteristics is interesting because it provides some sup-
port that the methods used are able to derive plausible causes
from observational data. The bidirectional nature of some
relationships arises because for a natural dataset like the
one we used, the features intrinsically and intuitively tend
to have bidirectional causal influence depending on which
one manifests first. A bidirectional link can also indicate
the presence of a hidden cause, which influences both of the
observed variables.

Note that it is difficult to find relationships such as PA →
AS statistically. As there is only one cause it is difficult to
test with conditional independence.

The methods we used other than EPC were based on
implementations from four packages ; BNT-SLT1, BNT2,

1http://bnt.insa-rouen.fr/
2http://www.ai.mit.edu/˜murphyk/Software/

BNT/bnt.html

LiNGAM3 and Causal Explorer4. All these experiments
were implemented using Matlab on an Intel Core 2 Duo
CPU 1.79 GHz laptop.

Classification of famine risk

We further tested the accuracy of our true graph and derived
graphs by splitting the data into training and testing data,
training several models on a training set and measuring their
prediction accuracy on the test set. Four datasets were used;
the full dataset and three datasets derived from the direct
causes and effects of the target based on the a priori graph,
the inferred graph and the a posteriori graph.
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Figure 3: AUC of various standard classifiers with; a
complete featureset (Full Data graph) and reduced sets of
causally related features with the target (true graph, discov-
ered graph and blended graph). Algorithms used include
NB:Naive Bayes, NN:Neural Network, SVC:Support Vec-
tor Classifier with a linear kernel, LSSVM:Least Squares
Support Vector Classifier, KNN:K-Nearest Neighbour and
KR:Kernel Ridge regression classifier

Results from the AUC curve show that a reduced set of
parents and causes provides comparable accuracy on predic-
tion. Not only is this advantageous in the predictive sense,
but it also has advantages in reducing amount of data col-
lected due to a reduced feature set. A reduced set of features,
which we believe are direct causes and effects of the target
variable, also make a more robust basis for prediction when
there may be interventions on some of the variables (e.g due
to humanitarian relief or implementation of new agricultural
policies).

Conclusion

This paper presents preliminary results in the causal analy-
sis of famine in Uganda. The causal models we derive can
be used to inform policy making with regards to household
food security in a country like Uganda where food security
or famine is a threat to many households, and indicate the
extent to which housefold food shortages can be predicted
based on socioeconomic factors.

3http://www.cs.helsinki.fi/group/neuroinf/
lingam/

4http://discover.mc.vanderbilt.edu/
discover/public/causal_explorer/
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Discovering causal relationships from natural datasets is
quite a challenging task with current techniques. We use a
committee of differently motivated structure learning algo-
rithms, in order that spurious results from an individual algo-
rithm may be balanced by rival algorithms. However, there
are a limited number of underlying concepts (e.g. measures
of conditional independence and model fitness). As is often
the case in similar causal studies with observational data,
the results are only strong enough to form a basis for further
investigation. That is, our results are not enough to make
strong conclusions about causal relationships in this domain
but do provide confirmation or disconfirmation for particular
cause/effect hypotheses.

We have also shown that prediction accuracy is main-
tained using the variables that we find to be direct causes
or effects. This has implications for the number of variables
which may need to be collected in future studies. Where
we find bidirectional causes we postulate that there may be
confounding variables and more data needs to be collected.

Concerning prediction performance we reason that infer-
ences based on variables which have a direct causal link with
the target variables are more robust under manipulations of
the variables. A density modelling approach to prediction
using the entire dataset may not be reliable if the data dis-
tribution is shifted due to some external intervention, for ex-
ample due to a relief effort. Predictions based on true direct
causes of a target variable can be expected to have the same
reliability whether or not those causes have been manipu-
lated.

Future work will include comparing local causal graphs
from the various regions and also between famine prone dis-
tricts and relatively non-famine prone districts. This paper
presents a global view of 57 districts, but some districts may
have peculiar behavior given other uncollected data, teasing
out these districts and their peculiarities will be the focus of
this extension.

It would also be useful to formulate likelihood terms for
the members in the causal committee, and produce a more
sophisticated structure prior so that we can use Bayesian
methods to infer the posterior model.
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