
Embedded Rule-based Reasoning for Digital Product Memories

Christian Seitz, Steffen Lamparter, Thorsten Schöler, and Michael Pirker

Siemens AG, Corporate Technology
Autonomous Systems

81739 Munich, Germany
[ch.seitz|steffen.lamparter|thorsten.schoeler|michael.pirker]@siemens.com

Abstract

A Digital Product Memory provides a digital diary of
the complete product life cycle that is embedded in the
product itself using smart wireless sensor technology.
The data is hereby gathered by recording relevant ambi-
ent parameters in digital form. In this paper, we present
the architecture and cost-efficient implementation of an
autonomous digital product memory that generates and
interprets its diary using rule-based reasoning methods.
As we assume an open, heterogeneous sensor infras-
tructure, we rely on standard syntax and semantics pro-
vided by the Web Ontology Language OWL. The digi-
tal product memory collects and provides data using the
OWL fragment OWL 2 RL which can be processed with
standard rule engines. As rule engine we use CLIPS on
embedded hardware and exemplify the application of
the digital product memory e. g. for predictive mainte-
nance.

Introduction

Today, RFID (Radio Frequency Identification) is used to
identify a wide range of work pieces or individual products
for tracking their movements through the logistics chain. For
future purposes the idea of storing only a single ID must be
extended to a Digital Product Memory. This memory stores
information of the complete product life cycle and is embed-
ded in the product itself. But the product memory is not only
a passive data storage, it is also able to monitor and control
its environment e. g. by communicating with other products
or sending commands to manufacturing devices. Integrat-
ing digital memories to products results in shorter product
and innovation cycles, more complex logistics chains, and a
product-driven production process. Finally, the digital prod-
uct memory opens up new dimensions for protection from
product piracy, consumer protection and product liability.

A key problem of digital product memories is their cross-
domain nature, i. e. new relevant data must be added to the
memory from various stake holders during the complete
product life cycle and the memory has to be interpretable by
the product memory in an integrated way. Integrating data
from heterogeneous sources requires a data exchange format
with standard syntax and semantics. In order to enable the

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

product memory to analyze the data and trigger appropriate
events, the memory has to be machine-interpretable.

This paper introduces a flexible approach for accumulat-
ing and analyzing digital product memories. We use the
Web Ontology Language (OWL) (Motik, Patel-Schneider,
and Parsia 2009) for providing a standard syntax/semantics
that can be interpreted automatically by the product mem-
ory. Since data is successively added to the product memory
an event-driven interpretation method is appropriate and we
therefore use production rules for the reasoning task. Our
contribution is based on embedded hardware (sensor mote),
encompasses software modules for integrating data into a
product memory and contains components to reason about
this product memory data.

The paper is organized as follows. The next section
presents the requirements which are necessary for product
memory applications. This is followed by a detailed expla-
nation of already existing approaches. After this, the archi-
tecture is presented and all components are explained in de-
tail. The next section explains our implementation. This
section is followed by example applications. The paper con-
cludes with a summary and an outlook.

Requirements

This section describes general and implementation specific
requirements for our embedded reasoning system.

General Requirements

The goal of our research is to develop a comprehensive
cross-domain approach for creating digital product memo-
ries. We assume a distributed, heterogeneous sensor infras-
tructure or other relevant information sources that can be ac-
cessed by a product memory which is based on embedded
hardware.

We aim to store all relevant data on the product. It is not
appropriate to swap relevant data to external data bases. The
product memory data must be accessed at any time, which
cannot be guaranteed if the data is swapped out, because
of non-permanent communication possibilities. However,
historical data, which is not necessary for future purposes,
e. g. interpretation processes, can be transferred to data bases
and may still be accessible via links to external resources.

98

Implementation Requirements

R1 The solution should not depend on a specific application
domain, because the product memory must be accessed
during the complete product life cycle. Our main applica-
tion field is the factory automation domain. We focus on
integrating sensor values into the product memory, which
result during the production process. For this purposes the
product memory needs to be autonomous, i. e. the product
memory is not filled by other entities, e. g. programmable
logic controller. Therefore, the product memory consists
of an own controller that requests the relevant data from
the environment.

R2 To specify which product memory data is relevant, an
expressive formalism is needed. But the syntax needs to
be very compact, because a fast processing with restricted
resources is necessary. Therefore an XML representation
for the specification is not appropriate whereas XML for
representing product data is possible.

R3 Additionally, the collected product memory data must
be interpreted. Therefore, an event-based approach is use-
ful. Entering new data in the product memory may cause
new actions. These actions must be executes at once,
without initiating additional queries.

R4 The controller of the product memory should also be
able to analyze the product memory data. Since the prod-
uct memory contains a huge amount of data and the prod-
uct memory is attached to the product it is not appropriate
that basic data interpretation is done by external services.

R5 The controller of the product memory should be imple-
mented as efficient as possible. Therefore, the usage of in-
terpreted programming languages with high memory con-
sumption shall not be used without intense performance
evaluation.

R6 The hardware for the product memory must be afford-
able or in reasonable relation to the price of the prod-
uct. For extremely cheap products, a product memory
is beyond reality. But we believe in product memories
for valuable goods (price > 1000 $) in about five years.
For that reason the price of the product memory hardware
must drop to a few dollars.

R7 The product memory hardware must contain communi-
cation interfaces, because a product memory must be able
to interact with its environment.

The single requirements are picked up in the rest of the paper
to check if they are met.

Related Work

Generally, there are two major streams of work related to our
approach. On the one hand, there is work on methods and
implementations for OWL reasoning and rule-based sys-
tems. In this area substantial work has been done in recent
years – also particularly for bridging the gap between rule-
based and description logic-based system. In this context, a
lot of proposals (Cadoli et al. 1996; Levy and Rousset 1996;
Motik, Sattler, and Studer 2005; Franconi and Tessaris 2004;
Rosati 2005) have been put forward, how description logics

can be expressed with rule-based systems in order to provide
more efficient reasoning algorithms. Together with stan-
dard OWL reasoners such as Pellet (Sirin et al. 2007) these
stream of approaches provides an important starting point
for our work. However, the implementation of these reason-
ing systems target personal computers rather than embed-
ded devices and thus cannot be easily migrated to resource-
constrained devices as typically huge amounts of memory
and additional software is required.

On the other hand, there is a stream of work with the
goal of implementing reasoners for embedded devices. Saf-
dar and Ali present with μOR (Ali and Kiefer 2009) a
lightweight micro OWL description logic reasoning sys-
tem for resource-constrained devices. While the system
is lightweight and very suitable for embedded devices, it
supports only a very restricted fragment of OWL-Lite. As
OWL-Lite itself is already rather inexpressive, the approach
is not sufficient for our product memory scenario. The au-
thors of (Meditskos and Bassiliades 2008) use the object-
oriented extension of a production system for reasoning
and querying OWL ontologies. Their approach is based
on a transformation procedure of OWL ontologies into an
Object-Oriented schema and the application of inference
production rules over the generated objects in order to im-
plement the various semantics of OWL. While the approach
uses also the CLIPS rules engine for reasoning with OWL,
the used OWL-to-Objects-mapping leads to an unnecessary
high overhead that restricts its application. The rule engine
Bossam (Jang and Sohn 2004) is especially developed for
OWL reasoning. Semantic web features like URI referenc-
ing are supported and cooperation among multiple Bossam
instances is also possible. While an expressive logical frag-
ment is supported, the Java-based implementation restricts
the migration of the tool to an embedded device.

Architecture
Based on the existing work discussed in the previous sec-
tion, we address our requirements by means of the following
architecture.

Figure 1 shows the generic architecture of a single product
memory. It consists of four major components: (i) a Com-
munication Interface to send and receive information; (ii) a
Product Memory Agent which coordinates the communica-
tion activities; (iii) a Knowledge Base containing all infor-
mation stored on the memory; (iv) and finally a Rule Engine
for evaluating the stored information and inferring required
actions. In the following we discuss each of the components
in more detail.

Communication Interface

The Communication Interface is responsible for receiving
data (e. g. from manufacturing machines) as well as for send-
ing data to outside components (e. g. in order to adjust a ma-
chine or to report to the manufacturing execution system).
The Communication Interface has to be adapted to the con-
crete applications area. For instance, in industry automation
or logistics scenarios, RFID-based communication might be
most promising since the corresponding infrastructure is of-
ten already in place. In general, a wide range of different

99

Figure 1: Generic Product Memory Architecture

technologies and protocols can be supported. Since accord-
ing to Requirement R2 the representation has to be compact,
an efficient encoding of e. g. XML documents has to be ap-
plied (Schneider and Kamiya 2008). Sending and receiving
activities are controlled by the Product Memory Agent.

Product Memory Agent

The Product Memory Agent is responsible for forwarding
information to the knowledge base once it is received by the
Communication Interface. Currently, we assume that the in-
put data is already semantically annotated in a standardized
way.1 As a language with standardized syntax and semantics
we rely on a restricted fragment of the W3C Web Ontology
Language OWL 2 (Motik, Patel-Schneider, and Parsia 2009)
called OWL 2 RL profile.

This profile is based on Description Logic Programs
(Grosof et al. 2003) and pD* (ter Horst 2005). The ma-
jor difference of the profile in terms of expressiveness com-
pared to OWL 2 DL are a limited set of supported axioms
(no disjoint unions of classes, no reflexive object property
axioms, no negative property assertions) as well as restric-
tions on the use of certain constructs (e. g. no existential
quantification on the right side of an axiom allowed). Al-
though not fully expressive, the fragment has two major ad-
vantages with respect to embedded applications: First, all
standard reasoning tasks (such as checking for ontology con-
sistency, class expression satisfiability, class expression sub-
sumption, and instance checking) are tractable, i. e. they can
be solved by a deterministic algorithm in polynomial time
which is absolutely crucial for the real world embedded sys-
tems. Second, OWL 2 RL can be implemented using tra-
ditional (forward-chaining) rule-based systems (Meditskos

1Note that direct sensor connections to the product memory re-
quires to add functionality for handling raw sensor data to the Prod-
uct Memory Agent.

constructor DL CLIPS rules
class instance a : C C(a)
role instance (a, b) : R R(a, b)
class inclusion C � D ∀x.C(x) → D(x)
role inclusion R+ � R ∀x.y.z(R(x, y)∧

R(y, z) → R(x, z))
complement ¬C ¬C(x)
conjunction C1 � . . . � Cn C1 ∧ . . . ∧ Cn

disjunction C1 � . . . � Cn C1 ∨ . . . ∨ Cn

existential
quantification ∃R.C ∃y.(R(x, y) ∧ C(y))
universal
quantification ∀R.C ∀y.(R(x, y) → C(y))
...

Table 1: Translation from description logics to CLIPS rules.
For a full list refer to (Motik et al. 2009).

and Bassiliades 2008; Motik et al. 2009) and we can thus
easily realize a reactive behavior, i. e. knowledge base up-
dates may directly trigger new actions (meets requirement
R3).

The Product Memory Agent therefore has to translate the
received data into rules and facts before storing them in the
Knowledge Base. The translation is exemplified in Table
1. The translation can be done axiom by axiom and thus
exhibits a polynomial complexity. In addition to this trans-
formation, the agent is able to initialize the Knowledge Base
and to remove a set of facts from the Knowledge Base.

Knowledge Base

The Knowledge Base contains two sets of data: The Work-
ing Memory contains the facts about the current state of
the world. A fact over a n-ary predicate Q is an expres-
sion Q(a1, . . . , an) where ai is a constant. The Rule Base
stores a finite set of rules that determine the behavior of the
Product Memory Agent and thus also that of the product
memory itself. A rule is simply an expression of the form
B1, . . . , Bn → A1, . . . Ak with k ≥ 1, n ≥ 0, which can be
expressed more informally IFB1, . . . , BnTHENA1, . . . Ak.
Aj and Bi represent literals of the form (¬)Q(x1, . . . , xm)
with m ≥ 0. Actions that are executed by the Product Mem-
ory Agent can be attached to the literals Aj in the rule head
(consequent). These actions could be communication activ-
ities or changes in the knowledge base.

Rule Engine

Each time a change in the Knowledge Base occurs, the Pat-
tern Matcher within the Rule Engine verifies whether the
current facts in the Working Memory fulfill the conditions
listed in the body of a rule (antecedent). This is repeated for
all rules until no rule fires anymore. In case actions are at-
tached to the consequences of a fired rule, they are collected
in an Agenda. This Agenda then triggers the corresponding
methods of the agent implementation. Note that an obvious
limitation of the current OWL 2 RL translation to a forward
chaining rule language is the possible loss of the declarative
model since the sequence of rule processing might change

100

the results. In real applications declarative models could be
important – particularly if different not coordinated sets of
rules are added to the product memory by different parties.

In the next section we show how the presented architec-
ture of a product memory can be realized using existing
hardware and software modules.

Implementation

This section describes briefly the implementation of our first
prototype of a digital product memory.

The hardware basis of the prototype is a Crossbow Imote2
module as shown in figure 2. The Imote2.NET is an ad-
vanced wireless sensor node platform. It is built around
the low-power PXA271 XScale CPU and also integrates an
802.15.4 compliant radio (Crossbow 2009). It is endowed
with 32MB SDRAM and 32MB of FLASH memory, which
is sufficient for our first version of a digital product memory.
The currently used hardware is still too expensive to realize
a product memory today. But we think that in a few years the
price of such sensor modules is appropriate, see requirement
R6.

Figure 2: Crossbow Imote2 sensor node with RFID module
- hardware prototype for a digital product memory

The programming environment for the xBow Imote2 is
Microsoft’s .NET Micro Framework with C# as supported
programming language. This may at first be a contradic-
tion to requirement R5, because C# is an interpreted pro-
gramming language. The .NET Micro Framework benefits
from it’s tailoring to small embedded devices with lower re-
source and memory requirements. Furthermore it does not
require a dedicated operating system (like Windows CE).
Therefore, the absence of the operating system and the opti-
mized .NET Tiny Common Language Runtime (TinyCLR)
provides a good compromise for resource-efficiency whilst
offering a modern programming environment.

A small number rule engines (nxBRE, Drools.net) is
available for C#, but the Micro Framework provides in con-
trast to the .NET Framework a limited API, e. g. no generic
data types are available. Thus, some additional effort is nec-
essary to deploy a rule engine to the xBow sensor mote. We
were faced with the decision, whether we port a C# rule en-
gine to the Micro Framework or whether we integrate a rule
engine in native code. We analyzed the effort and decided to
integrate the rule engine CLIPS (CLIPS 2009; Riley 1991)
in the .NET Micro Framework TinyCLR. CLIPS is a pro-
duction rule engine written in C, based on the Rete algo-
rithm (Forgy 1982). Today, it is one of the most widely used

expert system tools because it is fast, efficient and its source
code and binaries are available in the public domain. Ad-
ditionally, the CLIPS rule language is very compact, which
saves memory (see requirement R2).

Our solution integrates CLIPS as a native (C language)
library into the .NET Micro Framework TinyCLR, similar to
native device drivers. CLIPS itself is wrapped via the Façade
pattern (Gamma et al. 1995) to provide a consistent and
easy-to-use object-oriented STL2 C++ API. The STL C++
API provides all necessary CLIPS function calls for rule-
based reasoning and rule engine management. On top of
the STL C++ API, the .NET Micro Framework Interopation
mechanism is used to provide access from C# to the C++
CLIPS API.
In order to improve the user-interaction with the Imote2,
it was upgraded with an additional Skyetek RFID (Radio
Frequency Identification) module (SkyeTek 2009). It pro-
vides a low-power, high performance, and cost effective
platform and is a self-contained multi-protocol 13.56 MHz
module. The Imote2 in combination with the Skyetek mod-
ule is called in the following siTag (smart industrial tag).

This siTag contains the software modules which are in-
troduced in the architecture section and is supposed to be
attached to valuable products. However, the product mem-
ory must be configured with rules and initial facts. Since
many participants interact with the product memory during
the product life cycle it is not possible to store all relevant
rules initially. Some participants are not willing to hand their
rules to other partner. Not to mention, an increasing amount
of rules influences the execution time as well as the memory
consumption in a negative way.
Interaction takes place via wireless radio technologies. In
order to add new rules or facts to the knowledge base the
RFID subsystem is used, because RFID systems are widely
used in the supply chain. Rules and facts can be stored on
multiple RFID transponders. But there is the constraint, that
a rule must fit on a single transponder. The maximum mem-
ory capacity of supported transponders is 112 bytes. Due
to the slim rule syntax of CLIPS, most rules fit on a single
transponder. To increase the maximum rule size, a binary
compression is also possible but not necessary for our pur-
poses.
In order to add new rules or facts, one or more transpon-
ders must be moved into communication range of the RFID
reader. The Product Memory Agent on the siTag can check
whether new data is available on the transponder and can
shift the new data to the knowledge base of the siTag . Addi-
tionally, a special Command Transponder exists. With such
a transponder, rule engine management commands can be is-
sued to CLIPS. This is necessary to e. g. clear the rule mem-
ory, delete certain facts or perform a complete re-initialize.
These special transponders contain a special header in order
to recognize the data as management commands.

In addition the RFID-based data exchange it is also pos-
sible to use the 802.15.4 radio interface. This enables that
two siTags can exchange rules, facts or also product mem-
ory data, see requirement R7.

2Standard Template Library

101

Applications

In the following, two example applications for our rule-
based reasoning approach in the context of digital product
memories are presented.

Aggregation of Product Memory Data

In order to get a digital product memory filled with relevant
data, it must be a priori specified, which data will become
part of the memory. The product memory is active, i. e. the
product memory agent makes requests to the environment
for certain data (see requirement R1). We use a rule-based
approach to specify the content of the product memory, e. g.:

(Temperature(Product) > 25.0 ◦C) →
enter Humidity_value(Environment) in product
memory

This rule simply specifies that the product memory agent
has to provide the memory with an additional humidity
value. The product memory agent needs to communicate
with an infrastructure, which is explained in detail in (Seitz,
Schöler, and Neidig 2009).

With such rules the product memory will be successively
filled. Additionally, there are rules to analyze the product
memory, e. g.:

(Temperature(Product) > 25.0 ◦C ∧
Humidity(Environment) > 90 % →
send ALARM Message

By means of such rules, complex situations can be recog-
nized and necessary actions can be executed by the product
memory agent.

Predictive Maintenance

The benefit of a digital product memory is, that the data can
be used for the detection of technical issues when the prod-
uct is already deployed in the field. Since the digital memory
contains a lot of sensor data, an analysis is useful for diag-
nostics and condition-based or predictive maintenance, see
requirement R4. The second application of the digital prod-
uct memory is about detection of anomalies in acceleration
data.

An anomaly detector should report if newly measured
data of certain sensors have a different pattern or are beyond
the normal sensor values. The basis for an abnormality de-
tector are time series of sensor values or other data sources
(e. g. from databases), which are elements of the product
memory. A given time series which describes the normal
behavior is the basis for creating a model. In our case this
model is specified with rules. In a detection phase of an
anomaly detector it is checked whether the rules for normal
behavior are fulfilled or an exception has occurred. This de-
tection step should be as fast as possible – in many cases
even real-time processing is necessary.

The algorithm we use is based on the work of (Salvador
and Chan 2005).

The algorithm transforms the data of the digital product
memory into a multi-dimensional feature space, which re-
sults in a trajectory, see figure 3 on the left side. This tra-
jectory is covered with shapes. We use a three-dimensional

Figure 3: Transformation of a time series in a feature space

feature space and boxes as shapes, see figure 3 on the right
side. When we assume that a box is not rotated in the fea-
ture space, a box is determined by two points in a three-
dimensional space. Each box in the transformed feature
space is represented by one rule. The following gives an
example in a pseudo rule language:

(data.x < boxi.xmin ∨ data.x > boxi.xmax ∨
data.x < boxi+1.xmin ∨ data.x > boxi+1.xmax) →
exception = TRUE

An anomaly is detected if new data is not within these
shapes. The size and the location of the shapes are trans-
formed into rules. Thus, an anomaly test can be achieved by
using the rule engine as described in the architecture section.
To use the rule engine as an anomaly detector, the rules need
to be added to the rule base and new data needs to be com-
mitted to the working memory. Afterwards the rule engine
checks if any rule is violated, which will trigger an excep-
tion.

To differ outliers from abnormal behavior other rules are
activated and this results in positive output, e. g.

(exception = TRUE) → exceptionCounter++
(exceptionCounter > threshold) →
anormalityDetection = TRUE

The algorithm is highly sensitive and a small rule set is
sufficient to detect abnormal behavior. Therefore, it is per-
fectly suited to be implemented on resource-constraint de-
vices like our sensor nodes.

Conclusion and Future Work

In this paper we presented an embedded reasoning approach
for digital product memories. A product memory provides
a digital diary of the complete product life cycle. We pre-
sented an architecture which enables autonomous product
memories, i. e. the product memory determines which data
becomes part of the memory. In order to realize reactive
behavior, we use a rule-based reasoning approach based on
the CLIPS rule engine. The communication with the prod-
uct digital memory is encoded with OWL 2 RL. We imple-
mented applications on a Crossbow Imote2 sensor node.

We are currently analyzing the performance of our ap-
proach in combination with the used hardware. Addition-
ally, we are testing alternative hardware to find the opti-
mum, regarding price and performance. For the future we

102

plan to extend the expressiveness of our approach beyond
OWL 2 RL and extend the supported logical fragment to
ELP (Kroetzsch, Rudolph, and Hitzler 2008). ELP provides
additional modeling constructs, it can be mapped to a rule
language, and it keeps reasoning still tractable. The rule-
based approach can be enhanced with temporal reasoning,
allowing declarative event correlation, e. g. in causality or in
time. This will enable the product memory to detect certain
situations more easily and helps to implement event-driven
business activity monitoring with digital product memories.
We also plan to apply our embedded reasoning architecture
to other scenarios such as Ambient Assisted Living (AAL)
applications. The basic idea is to support elderly people in
their homes with small intelligent devices.

Acknowledgment

This research was funded in part by the German Federal
Ministry of Education and Research under grant number
01 IA 08002 G. The responsibility for this publication lies
with the authors.

References

Ali, S., and Kiefer, S. 2009. μor — a micro owl dl reasoner
for ambient intelligent devices. In GPC ’09: Proceedings
of the 4th International Conference on Advances in Grid
and Pervasive Computing, 305–316. Berlin, Heidelberg:
Springer-Verlag.
Cadoli, M.; Donini, F. M.; Liberatore, P.; and Schaerf, M.
1996. Comparing space efficiency of propositional knowl-
edge representation formalisms. In In Proceedings of the
Fifth International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR’96, 364–373.
CLIPS. 2009. Rule Engine. http://clipsrules.-
sourceforge.net/, Accessed 5.10.2009.
Crossbow. 2009. Crossbow Imote2 Datasheet.
http://www.xbow.com/Products/Pro-
duct_pdf_files/Wire% -less_pdf/Imo-
te2.NET_ED_Datasheet.pdf, Accessed 5.10.2009.
Forgy, C. L. 1982. Rete: a fast algorithm for the many
pattern/many object pattern match problem. Artificial In-
telligence 19:17–37.
Franconi, E., and Tessaris, S. 2004. Rules and queries
with ontologies: Unified logical framework. In In Work-
shop on Principles and Practice of Semantic Web Reason-
ing (PPSWR-04), 50–60. Springer.
Gamma, E.; Helm, R.; Johnson, R. E.; and Vlissides,
J. 1995. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley.
Grosof, B. N.; Horrocks, I.; Volz, R.; and Decker, S.
2003. Description logic programs: combining logic pro-
grams with description logic. In WWW ’03: Proceedings
of the 12th international conference on World Wide Web,
48–57. New York, NY, USA: ACM Press.
Jang, M., and Sohn, J.-C. 2004. Bossam: An extended rule
engine for owl inferencing. volume 3323/2004, 128–138.
Hiroshima: Springer Berlin / Heidelberg.

Kroetzsch, M.; Rudolph, S.; and Hitzler, P. 2008. ELP:
Tractable Rules for OWL 2. In Sheth, A.; Staab, S.;
Dean, M.; Paolucci, M.; Maynard, D.; Finin, T.; and
Thirunarayan, K., eds., Proceedings of the 7th Interna-
tional Semantic Web Conference (ISWC 2008), volume
5318 of LNCS, 649–664. Springer.
Levy, A. Y., and Rousset, M.-C. 1996. Carin: A representa-
tion language combining horn rules and description logics.
323–327.
Meditskos, G., and Bassiliades, N. 2008. A rule-based
object-oriented owl reasoner. IEEE Trans. on Knowl. and
Data Eng. 20(3):397–410.
Motik, B.; Grau, B. C.; Horrocks, I.; Zhe Wu, A. F.;
and Lutz, C. 2009. Owl 2 web ontology language pro-
files. http://www.w3.org/TR/owl2-profiles/
#OWL_2_RL. W3C Proposed Recommendation.
Motik, B.; Patel-Schneider, P. F.; and Parsia, B. 2009.
OWL 2 Web Ontology Language: Structural Specification
and Functional-Style Syntax. http://www.w3.org/
TR/2009/PR-owl2-syntax-20090922/. W3C
Proposed Recommendation.
Motik, B.; Sattler, U.; and Studer, R. 2005. Query answer-
ing for owl-dl with rules. Journal of Web Semantics: Sci-
ence, Services and Agents on the World Wide Web 3(1):41–
60.
Riley, G. 1991. Clips: An expert system building tool. In
In Proceedings of the Technology 2001 Conference.
Rosati, R. 2005. On the decidability and complexity of
integrating ontologies and rules. Journal of Web Semantics
3(1):41–60.
Salvador, S., and Chan, P. 2005. Learning states and rules
for detecting anomalies in time series. Applied Intelligence
23(3):241–255.
Schneider, J., and Kamiya, T. 2008. Efficient XML Inter-
change (EXI) Format 1.0. http://www.w3.org/TR/
2008/WD-exi-20080919/. Working Draft.
Seitz, C.; Schöler, T.; and Neidig, J. 2009. An agent-based
sensor middleware for generating and interpreting digital
product memories. In AAMAS ’09: Proceedings of the
Eighth International Conference on Autonomous Agents
and Multiagent Systems.
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,
Y. 2007. Pellet: A practical owl-dl reasoner. Web Seman-
tics: Science, Services and Agents on the World Wide Web
5(2):51–53.
SkyeTek. 2009. Web site. http://www.skye-
tek.com/ProductsServices/EmbeddedRFID-
Readers/SkyeModuleM1mini/tabid/338/De-
fault.aspx, Accessed 12.10.2009.
ter Horst, H. J. 2005. Completeness, decidability and com-
plexity of entailment for rdf schema and a semantic exten-
sion involving the owl vocabulary. Journal of Web Seman-
tics 3(2-3):79–115.

103

