
Sensor-to-Symbol Reasoning for Embedded Intelligence

David Kortenkamp and Patrick Beeson
TRACLabs Inc.

korten@traclabs.com

Nick Cassimatis
RPI

cassin@rpi.edu

Abstract

Sensor-to-symbol conversion lies at the heart of all embedded
intelligent systems. The everyday world occupied by human
stakeholders is dominated by objects that have symbolic la-
bels. For an embedded intelligent system to operate in such a
world it must also be able to segment its sensory stream into
objects and label those objects appropriately. It is our posi-
tion that development of a consistent and flexible sensor-to-
symbol reasoning system (or architecture) is a key component
of embedded intelligence.

Introduction
An embedded, intelligent system has sensors that connect it
to the world. These sensors generate low-level data that rep-
resent the physical characteristics of the world. For many
applications, including those involving humans or higher-
level intelligent systems, these low-level data streams must
be converted to objects that represent collections of sensory
data and those objects must be labeled with symbols. It is
our position that a sensor-to-symbol architecture that reg-
ularizes this connection between the sensed physical world
and the symbols that represent that world is a critical compo-
nent of embedded intelligence and one that has been under-
researched.

As an example, supposed an apple is placed in front
of the system’s sensors and the symbol “apple” is gener-
ated or linked to. The sensor-to-symbol architecture main-
tains the coherence of the symbol over time. For exam-
ple, if something temporarily occludes the apple from the
sensors and then the apple re-appears the architecture will
not create a new apple symbol. If another apple appears
in a different place at about the same time then a second
apple symbol needs to be created as the same apple can-
not be in two places at once. This is called the symbol
grounding problem for computer systems (Harnad 1990;
Steels 2002) or the symbol anchoring problem in robotics
(Coradeschi and Saffiotti 2003).

Of course, the examples just given assume that the sensor-
to-symbol architecture has the sensing capability to recog-
nize an apple and also knowledge about how to recognize
an apple. The former can be determined by analyzing the
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sensing characteristics of the system on which the sensor-
to-symbol architecture is running. The latter can be done
by having an ontology that captures the inherent properties
of symbolic objects. The sensor-to-symbol architecture can
then connect sensors to ontological objects. In order to be
general purpose the sensor-to-symbol architecture needs to
allow for different combinations of sensors (both physical
sensors and virtual sensors, which are software algorithms
that run on sensed information) and ontologies without re-
quiring changes to the architecture’s core reasoning mecha-
nisms.

An overarching goal of a sensor-to-symbol architecture
should be to do for sensing what planning representations
and algorithms have done for action selection. That is, al-
low for the creation of dynamic combinations of sensors to
achieve symbolic sensing goals. What has been ad hoc in
the past will become formalized with general purpose rea-
soning mechanisms and descriptive representations. In this
analogy, the object ontology is equivalent to the planning
world model. Formal descriptions of sensors are equiva-
lent to actions descriptions in languages such as STRIPS
(Fikes and Nilsson 1971), PDDL (Fox and Long 2003) and
ANML (Smith and Cushing 2008). And the reasoning sub-
strate is equivalent to general planning search engines such
as Graphplan (Kambhampati, Parker, and Lambrecht 1997)
or O-plan (Currie, Tate, and Bridge 1991) or FF plan (Hoff-
mann and Nebel 2001). Just as planning systems offer flexi-
bility with respect to solving wide ranges of problems the ar-
chitecture described in this report offers a flexible, scalable
and extendable sensor- and ontology-based system for use
by applications such as robotics and intelligence, surveil-
lance and reconnaissance (ISR) tasks.

Characteristics
The characteristics of a general sensor-to-symbol architec-
ture can be grouped into several broad categories. The first
category concerns reasoning about sensors and ontological
symbols. The second category concerns converting sensors
to symbols. The third category involves changing the sys-
tem’s behavior based on its sensors.

Sensor reasoning
Typically sensor-based systems are built around a pre-
specified set of sensors. For example a specific UAV or

67



UGV. Adding (or subtracting) a sensor to these systems re-
quires rewriting software. Similarly, the objects that such
systems are built to recognize are also pre-specified. A char-
acteristic of a general sensor-to-symbol architecture is that
the sensors and the objects can be read in at system run
time. Thus, the same architecture (and reasoning mecha-
nisms) could be used for a robot searching for biological
weapons and for a satellite searching for tanks in the desert.
If a new sensor or sensing algorithm becomes available it
could be immediately connected into the reasoning mech-
anisms. If a sensor is lost (due to damage or environmen-
tal constraints) the system would be able to determine what
objects could still be distinguished. Similarly, if a new on-
tology is given to a robot or system then new objects could
be recognized to the limit of the sensors. Thus, changing
a satellite from searching for tanks to searching for hostiles
planting IEDs would be a matter of changing ontologies, as-
suming the right sensory algorithms existed in both cases.

Sensor to symbol conversion
In many domains, especially surveillance, a human is tasked
with watching a video feed or other sensory stream and de-
tecting useful objects that are of interest to either that per-
son or someone else. This is time-consuming and costly.
A sensor-to-symbol architecture can watch various sensory
streams and match the outputs of simple or complex sensory
algorithms onto ontological classes. Thus, given sufficient
sensory coverage and a sufficiently complete ontology the
sensor-to-symbol problem can be solved. This is compara-
ble to how a planner takes a complete set of actions, an initial
condition and a goal conditions and maps actions to progres-
sive world state changes. Thus freeing the human resources
to operate at a higher level of abstraction.

Changing system behavior
The sensor descriptions required by the architecture describe
the environmental conditions necessary for the sensor to
work (e.g., light) and characteristics of the sensor such as
range and line of sight. These descriptions can be used to tai-
lor a system’s behavior to match the sensors. For example, a
radiation sensor that detects the level of radiation allows for
a gradient search for the source of the radiation. A thermal
sensor can see through some occlusions. A texture sensor
needs to touch the object. Given the sensors and the objects
the system’s information gathering behaviors can radically
change. This has the characteristic of automatically opti-
mizing system behavior based on its sensors and its sensory
goals.

Related work
The sensor-to-symbol problem has also been called the sym-
bol grounding or symbol anchoring problem. A special issue
of the Robotics and Automation Journal stated that “Anchor-
ing is the problem of how to create, and to maintain in time,
the connection between symbol- and signal-level representa-
tions of the same physical object” (Coradeschi and Saffiotti
2003). There have been several different approaches to this

problem, although only a few general solutions have been
proposed and implemented.

Saffiotti and his colleagues have developed an anchoring
module capable of maintaining the correspondence between
sensor data and symbolic descriptions referring to objects.
It is also capable of tracking and acquiring information from
observations derived from sensor-data as well as information
from a priori symbolic concepts (Coradeschi and Saffiotti
2000). Their module is able to determine whether objects
have been previously perceived to avoid creating duplicate
symbols. They do not have the ability to easily change out
sensors and ontologies, not do they deal with adding new ob-
jects or classes of objects to an ontology. More recently they
have looked at diverse sensors, even olfactory sensors, and
human interaction (Loutfi, Coradeschi, and Saffiotti 2005).

Another approach is to use perceptual markers to connect
symbols to sensors. This came out of human visual research
(Ullman 1984) and has mostly been associated with combin-
ing both the position of objects and their task function in the
environment (Agre and Chapman 1987). This early work
was extended for behavioral robots by Horswill (Horswill
1993). Markers were brought into the 3T robot control archi-
tecture (Bonasso et al. 1997) where they were used to con-
nect information coming from the robot perception system
to task symbols at the execution level (Kortenkamp, Huber,
and Wasson 1999; Wasson, Kortenkamp, and Huber 1998).
This research did not focus on avoiding duplicate symbols
nor on extending an ontology. It did allow for maintaining a
connection between symbols in the task (e.g., “track Bob”)
and perceptual information (“Bob is wearing a red shirt”).
Shapiro and his colleagues also integrated anchoring mech-
anisms into their layered architecture called GLAIR and
focus on aligning physical-level representations with those
used for reasoning (Shapiro and Ismai 2003). Santos and
Shanahan focus on abstracting stereo information into sym-
bols and develop a theory of discourse for these symbols
(Santos and Shanahan 2001).

Researchers at Vanderbilt and at NASA Johnson Space
Center have developed an ego-sphere representation of ob-
jects around a robot that are relevant to its tasks (III et al.
2001; Johnson et al. 2002). The ego-sphere stores an ob-
ject’s location relative to the robot and updates that location
based on the robot’s motion as well as the last perceived mo-
tion of the object. This allows a robot, for example, to reach
out and grab an object that it is not looking at using the last
known information.

Ben Kuipers’ group at the University of Texas has been
exploring the interplay of sensor information and symbolic
information in a number of ways. Their early work was fo-
cused on navigation and the process by which sensory in-
formation becomes symbols on both a topological and met-
ric map (Kuipers and Byun 1991). This was pushed even
further with work in which the robot was given almost no
information about its sensors and needed to perform a com-
plete mapping between sensors and symbolic places in the
world (Pierce and Kuipers 1994). The most recent research
has focused more on discovering objects using basic sensory
information (Modayil and Kuipers 2004). Kuipers’ student
Joseph Modayil took this a step further in his PhD thesis and

68



endeavored to learn an object ontology directly from sensory
input (Modayil 2007).

Conclusion
A proper sensor-to-symbol architecture will require signifi-
cant progress along several research fronts. In particular, the
following research questions all stem from the core ques-
tion: How does the incoming, continuous sensor stream
get turned into objects (symbols)?:

1. Which of these objects/symbols is stored for later re-
trieval?
• How does this depend on on-going tasks?

2. What properties of the objects/symbols get stored?
• For recognition
• For tasks (functions)
• How are these properties determined?
• How are they stored?

3. How are objects/symbols related to each other?
• Spatially
• Functionally
• Task
• Ontology

4. Can this process be jump-started?
5. What if it is not jump-started (tabula rosa)?
6. How can objects/symbols be maintained?

• E.g., not having two instances of the same object in
memory

• Modeling dynamic objects
• Persisting objects that are no longer seen

7. How can objects be deleted (forgotten)? Should they be?
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