
Assessing the Impact of using Robots in Education, or:

How We Learned to Stop Worrying and Love the Chaos

Douglas Blank and Deepak Kumar

Bryn Mawr College
Computer Science Department

101 North Merion Ave
Bryn Mawr, PA 19010 USA

{dblank, dkumar}@cs.brynmawr.edu

Abstract
For the past several years, we have been using robots in our
introductory computer science course. Although this has
been challenging for many reasons, it has also been very
rewarding on a number of fronts, both for the students and
for us. However, in order for this to occur, we had to adapt
to what we perceived as “chaotic code.” In this paper we
describe lessons learned by watching what the students do,
where they have trouble, and what they enjoy. Further, we
discuss what the implications of focusing on creativity has
had on teaching and assessment.

 Introduction�

In the summer of 2006, we began an experiment to teach
introductory computer science courses using a small,
inexpensive personal robot (Blank, 2006). The project uses
an off-the-shelf robot (the Scribbler from Parallax, Inc.), a
Bluetooth wireless communication and camera add-on
board designed by our colleagues at Georgia Tech, a freely
available textbook, and a Python library called Myro1. All
of these materials have been developed under the auspices
of IPRE (Institute for personal Robots in Education) which
continues to examine the role of personal robots in
education. Since that time, over a thousand students have
used these materials at colleges across the United States,
and beyond (Kumar, et al. 2008).

At Bryn Mawr College, the materials have been
integrated into the course CS110: Introduction to
Computing. This is designed to be the first course on
computing for all students irrespective of whether they
intend to major in computer science. We deliberately do

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1You can find out more about our project at the Institute for
Personal Robots in Education, http://roboteducation.org/

not offer a separate introductory computer science course
for non-majors: all students interested in studying
computing take the same introductory course (Blank and
Kumar, 2002).

The personal robot prototype that we use in this course
can be used to draw pictures with a pen that sits in the
middle of the robot, play music through a small speaker,
take pictures through its camera, and be interactively
controlled over wireless (see Figure 1).

There are many technical hurdles in teaching and
evaluating a course in which every student has their own
robot. For example, we should have invested in stock from
a battery manufacturing company when we first began the
project. Also, we have had to adapt to the limitations of
inexpensive robots that don't drive straight; however, this
particular limitation can be seen as a virtue and embraced
(Martin, 2008). In any event, these technical issues will no
doubt be addressed and surmounted over time. But what

Figure 1: The Person Robot Kit that every student gets in
the Introduction to Computing at Bryn Mawr College.

3

have we learned about the teaching of computer science
more broadly?

In assessing our results so far, we find it useful to reflect
on the changes that we have made in our assignments,
lectures, and, more importantly, in our expectations.
Kumar, et al., 2008 identified the key underlying
motivations for the IPRE project:

1. Let the needs of the curriculum drive the design of the
robot

2. Use tools that are easy to use, scale with experience

3. Treat the robot as a peripheral

4. Create an accessible, engaging environment for a new,
diverse population of students

5. Computer Science is not just Programming

6. Make Computing a Social Activity

7. Make computing a medium for creativity

8. Performances vs. competitions

One of the driving forces underlying the redesign of the
introductory course was to address the enrollment crisis in
computing. It was therefore obvious to us that in order to
attract students from a broader range of interests and
disciplines we had to address the perception of the old-
style introductory course. Traditionally, the introductory
computing courses have been designed to attract students
who desire to major in computer science and will
ultimately go on into careers in some aspect of software
design and engineering. Students who did not meet or test
up to that criteria were “weeded out” of the discipline
(Patterson, 2006). In the IPRE project, we identified the
above motivations as a basis for the redesign so as to
provide a much broader view of computing.

During the development of the IPRE project we have
discovered that many of the motivations that drive our
project have turned out to have unanticipated side-effects
related to teaching, course organization, and assessment. In
this paper, we focus on the issues related to embracing
computing as a medium for creativity.

Creativity and Chaos in Computing

Treating computing as a medium for creativity enables
introductory students to write programs and algorithms in
service of visual and aural aesthetics. Students write
programs to perform choreographed dances for the robots,
use the robots to create drawings and sketches, create
programs to perform robot plays, use them as electronic
puppets, write programs to draw graphics on a computer
screen, write programs to compose and play music (Misra,
et al., 2009), develop simple games (Xu, et al., 2007), etc.
Some of these ideas have been adopted from the media
computation approach (Guzdial, 2003). To reduce the
learning curve typically involved in using devices like
robots, joysticks, and even drawing graphics, we took great

care in designing a pedagogically scalable API (Blank,
2006) that enabled a conceptually sound basis for creating
and manipulating different kinds of devices and media.

However, one of the things we did not quite account for
was the methodology or the process of doing creative
work. To us, we were still trying to teach programming as
a way of doing computing. However, independent of the
methodology of designing and creating programs, we
(re-)discovered that in order to do creative work, one needs
to provide an environment that is more akin to an artist’s
studio as opposed to a computer lab. An artist in a studio
tends to dabble in several projects or ideas at the same
time. There are unfinished pieces of work strewn all over
the place. Many of these pieces never reach completion. Of
the many completed pieces, only a very small percentage
are even considered by the artist themselves to be worthy
of “releasing” to the public. More importantly, during the
process of creating a finished piece of work, the techniques
and the process underlying it, is not necessarily well
structured and at times not too disciplined. The finished
piece of work is hardly ever an output of a well-
engineered, well-planned, process. Invariably, there are
blemishes, fixes, paint-overs, on the fly redesigns, etc. That
is, the process of creating a piece of art involves several
trials, errors, fixes, and redesigns. Most of the time, these
become an integral part of the finished work. In other
words, there is plenty of chaos in the creative process.

Most prevailing methodologies for teaching introductory
programming explicitly attempt to prevent any chaos from
the programming process. At the same time, it is
interesting to note that there are several parallels here with
the programming process. Creating programs involves
several trials, errors, bug fixes, and redesigns. In the
teaching of computing it is essential to inculcate the idea of
trying out stuff (“What happens if I do this?”). However,
much of the principles underlying introductory computing
pedagogy have moved to intrinsically enforce the use of
well structured design principles. Most of these are a
trickle-down from software design and engineering
principles. We feel that enforcing strict design discipline in
an introductory computing course is in direct conflict with
some of the motivations we outlined above. In other words,
if we want to be successful at creating the perception that
computing is a medium for creativity, we have to embrace
the chaos that is inherent with doing creative work.

Programming and Chaos?

Enabling creativity as an outcome of a computing activity
has direct ramifications to the process of programming
itself. This can be seen in the manner that students wrestle
with a programming task. At one end of the spectrum one
can give completely open-ended tasks. One such task that
we have typically assigned in the first few weeks is the
goal to make one's robot dance. However, this is not their
first assignment. The first assignments show the students
how to write a simple function without parameters, and
perform a series of discrete actions, such as:

4

�������	
��

��������	�������������������������������	��

�������	����
�������

��	��

�����������
��������

Creating a dancing robot is no more (and no less) than
putting together a sequence of calling these functions. As
this is extremely early in the course, the students have not
seen any type of loop structure. However, students can
bring to bear what they know about textual processing and
can discover on their own a method of looping: cut-and-
paste. In this manner, they can create a robot that can
“square dance” by copy-and-pasting a call to the main
function 4 times. In addition, many students appreciate that
“dancing” is not just any sequence of random movements,
and begin to inquire about techniques to group and repeat
movements.

In this respect we have come to realize that in such
activity we should give the students the freedom to do what
comes natural. This applies especially to the way they
write more structured programs. As an example, consider
the following pseudocode that defines their next
assignment:

1. Have your robot perform a dance
2. Ask the user if they would like to see another

dance
3. If yes, then repeat

This task builds on their completely open-ended task of the
dancing robot, but embeds it in some structure. Most
students, of course, would work their way down through
the pseudocode sequentially and, quite naturally, end up
with something similar to the following in the Python
programming language:

�������	
��

����������	��
�

��������	��� ���!
"#�	����������$��������

�����������������	�������	%&��'"(��&��")�&*�

�����������	��� �"(��&�

���������	
�

Arguably, this is not a “good style” for technical reasons:
Python, like many C-based languages doesn't have a notion
of proper tail-call position, and this will overflow the
program call stack if run for more than 1,000 times.
However, it more closely matches the pseudocode and
their own intuitions. In fact, it embraces the abstractions of
computer science. We find that simple recursion isn't hard
for these novice students, but is rather quite natural. Many
students discover it on their own.

Unfortunately, the examples that we originally provided
the students did not match their intuitions, nor the
pseudocode. For example, consider this example using an
alternative while-loop and exit flag:

��	�� �+����

�$����	�����	��

����������	��
�

��������	��� ���!
"#�	����������$�������

�����������������	�������	%&��'"(��&��")�&*�

�����������	��� �")�&�

��������	�� �,���

Our “more proper” example is not as natural as the
recursive counterpart, nor does it match the pseudocode.
As a result, we have begun to teach the natural use of
recursion as the preferred method as it makes more sense
to them.

Therefore, we fully support the use of copy-and-paste,
possibly dangerous uses of recursion, and generally
whatever spaghetti code that they can cook up. Have we
eschewed elegance in programming in service of the
creative process? Perhaps. When the end result is a
program’s creative output is it important that the
underlying program be elegant and certifiably well-
structured? Visualize a masterpiece painting in a painter’s
studio soon after putting the final stroke. Would the
painting be evaluated for its aesthetics in the context of the
entire painting process and the chaos of the studio? Or
would it be simply admired as is when hung on a wall in a
museum? There are obviously very different criteria at
work here. Many might argue that the successful artists
have a structure and a discipline to their creative output.
We agree. However, we will argue that the so called
structure and discipline is different for every artist. It is a
very personal thing. Those who copy another artist's
structure are not necessarily as successful. This is
contradictory to the process of programming in software
engineering. By inviting more students into computing and
making it a creative process we are trying to make

Figure 2: A student's robot dance assignment on
YouTube.com.

5

computing a personal activity. And that invited every
student’s personal chaos into the process.

The role of Fun in Educational Robotics
Our overall methodology could perhaps be put into the
category of approaches that value “fun” over substance.
Fun approaches are often criticized on a number of points.
For example, Fisher (2008) considers that students could
experience the feeling of “bait-and-switch” if the
introductory courses are based on “fun” but upper-level
courses are completely different.

However, even if “fun” is accepted as a valid topic to
explore in the classroom, how can one assess it? This is a
question with which we all are apparently wrestling,
sometimes evaluating it very differently. Recently, a
reviewer of one of our papers and video submission had
this to say: “The attached video shows only students
having fun (which is nice) but does not provide any
relevant information.” Although there has been some
research on the effects of learning and fun in computer
science (e.g., (Curzon, 2007) and (MacFarlane, Sim, and
Horton, 2005)) we believe that this has yet to be taken
seriously as relevant information in education. Learning
and play has a long history in learning (including Plato and
Freud).

There are some well-known projects in computing that
embrace fun out-right. For example, Paul Curzon and Peter
McOwan's Computer Science For Fun. They have
developed, and edit, the website cs4fn.org and the
associated magazine (Curzon, 2007). But these programs
are rare.

We must also note that even though we may promote
creativity over some perceived notion of proper
programming style, this does not necessarily come at the
expense of computer science knowledge. For example,
Georgia Tech has found no significant difference between
sections of an introductory computing course taught with
robots and those without (Kumar, et al. 2008).

We believe that “fun” is really a side-effect: students
having fun is caused by focusing on their creativity rather
than on other aspects of computing or robotics. By fully
embracing creativity as the driving motivation, we must
relax our constraints on what we think we are teaching.

Assessing: Welcome to the Jungle

There is much emphasis placed these days on assessment
of pedagogical initiatives. Without a concrete assessment
plan one is unlikely to be successful in obtaining financial
support for funding for new curricular initiatives. In our
IPRE project, we have performed before and after
evaluations for all offerings of our introductory courses.
We have shown that using our approach over ¾ of the
students are in full agreement about our assessment goals:
that they were motivated; they learned computing; and can
see that there is an integral role for computing in their
future studies. In the past three years, at Bryn Mawr

College, we have gone from enrolling less than 5% of our
student body (of ~ 1300 students) in the introductory
course each year to enrolling over 10% in the same course
at the end of three years. Enrollment in our CS2 course and
other upper-level computer science courses has more than
doubled. We would be hard pressed to find 140 women
studying introductory computing each year at even the
largest universities in this country. Most funding agencies
(and the education community) would be more than
satisfied with such an outcome from assessment.

Conclusions and Future Work

We have always found that open-ended robot assignments,
such as making a robot dance, have been engaging
assignments for the students (if not perplexing to grade for
the instructor). However, we have just recently found that
taking a relaxed perspective on what kind of code students
are writing in the introductory course has allowed the
students to focus completely on the creative act. Without
proscribing proper ways that they should be writing their
code, we often times find that they solve their self-driven
problems in a creative way (such as cutting and pasting) or
re-inventing great ideas (such as recursion). Furthermore,
students are often motivated about wanting to know more
about computing as they discover (on their own) the
problems of their own design. For example, attempting to
debug their own spaghetti-code can be frustrating for them.
Allowing students to “babble” in code may be a necessary
allowance so that they can still be creative at this early
stage. Otherwise, we may end up short-circuiting the
pedagogical process, and may lose potential computer
scientists.

No doubt, such chaos is not for everyone, student and
instructor alike (Dalke, et al., 2007). In fact, we have
begun to ask meta-assessment questions such as: how does
the instructor's comfort level play a role in the success in a
course? We have just begun longitudinal studies of the
impact of the instructor's views in the robotics curriculum.
However, there is much work to be done in exploring, and
exploiting, a student's creativity with educational robotics.

Acknowledgments

This work was funded in part by NSF-0920539, Personal
Robots for CS1: Next Steps for an Engaging Pedagogical
Framework.

References

Blank, D. 2006. Robots make computer science personal.
In Communications of the ACM, vol. 49, pp. 25-27.

Blank, D. and Kumar, D. 2002. Patterns of curriculum
design. In Informatics curricula and teaching methods:
IFIP TC3/WG3.2 Conference on Informatics Curricula,
Teaching Methods, and Best Practice (ICTEM 2002), July

6

10-12, 2002, Florianópolis, SC, Brazil.

Curzon, P. 2007. Serious fun in computer science. In
ITiCSE '07: Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer
science education. ISBN 978-1-59593-610-3. Dundee,
Scotland. ACM, New York, NY, USA.

Dalke, A.F. Cassidy, K., Grobstein, P. and Blank, D. 2007.
Emergent pedagogy: learning to enjoy the uncontrollable—
and make it productive. In Journal of Educational Change,
Volume 8, Number 2 / June, 2007.

Fisher, D. H. 2008. Can AI help develop socially-engaged
computational thinkers? In AAAI Spring Symposium Using
AI to Motivate Greater Participation in Computer Science.

Guzdial, M. 2003. A Media Computation Course for Non-
Majors. In Proceedings of the ITiCSE 2003 Conference,
Thessaloniki, Greece. ACM Press, 2003.

Kumar, D., Blank, D., Balch, T., O’Hara, K., Guzdial M.,
and Tansley, S. 2008. Engaging Computing Students with
AI and Robotics. In AAAI Spring Symposium, Using AI to
Motivate Greater Participation in Computer Science.

MacFarlane, S. and Sim, G. and Horton, M. 2005.
Assessing usability and fun in educational software. In
IDC '05: Proceedings of the 2005 conference on
Interaction design and children. ISBN 1-59593-096-5,
pages 103-109. Boulder, Colorado. ACM, New York, NY,
USA.

Martin, F. 2007. Real Robots Don't Drive Straight. In
AAAI Spring Symposium, Robots and Robot Venues:
Resources for AI Education. American Association for
Artificial Intelligence.

Misra, A. Blank, D. and Kumar, D. 2009. A Music Context
for Teaching Introductory Computing. In ITiCSE '09:
Proceedings of the 14th annual ACM SIGCSE conference
on Innovation and technology in computer science
education. pp. 248—252. Paris, France. ACM, New York,
NY, USA.

Patterson, D. A. 2006. Computer Science Education in the
21st Century. In Communications of the ACM, vol. 49(3),
pp 27-30.

Xu, D., Blank, D., Kumar, D. (2008) Games, Robots, and
Robot Games: Complementary Contexts for Introductory
Computing Education. In GDCSE '08: Proceedings of the
3rd international conference on Game development in
computer science education. Miami, Florida, ACM, New
York, NY, USA.

7

