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Abstract

This work describes an approach to time-series modeling of
social interactions between human and robot, which is moti-
vated by the social psychology concept of social grounding.
In this model, the goal of the agents is to establish and use pat-
terns of communication, rather than rely on existing patterns.
Our goal is to allow an artificial agent to construct a pattern of
shared meaning with a human or other agent through shared
experience rather than relying a model provided a priori. We
describe a preliminary human robot interaction study which
illustrates the proposed approach.

The flow of time is a situated, context-dependent experi-
ence. Face-to-face with a snarling dog, you may feel time
slow down to a trickle, seemingly giving you a chance to re-
act. Spending time with friends, it may surprise you to find
that the hours have flown by “in no time.” Technological ar-
tifacts, such as clocks and electricity, have had a rationaliz-
ing effect on our representation of the passage of time, turn-
ing our situated reactions and diurnal rhythms into mechan-
ically standardized minutes, hours, and days. These tech-
nologies have also allowed for the construction of analytical
concepts with which to objectively describe and measure the
passage of time, such as speed, acceleration, tempo, and de-
lay. In the moment of action, however, our experience of
time emerges through our interactions with the environment
and the common understanding that we develop with other
actors, rather than being perceived as a quantity denoting a
particular speed or rate of acceleration.

In the case of social interaction, the fundamental signif-
icance of the temporal dimension is evidenced by research
showing that rhythmic synchrony is essential to the estab-
lishment and success of short- as well as long-term interac-
tions (Condon 1986, Kendon 1990, Trevarthen 2000). Most
people masterfully establish temporal entrainment in their
encounters with other social actors; their abilities, however,
do not rely on a high-level representation of the passage of
time within the interaction. In fact, the perception-action
times of humans are so short–a few hundred milliseconds–
that people do not have the time to consciously consider
what they will do next or how and when to do it. We can
therefore think of interaction partners as subconsciously em-
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bodying the temporal aspects of interaction, which emerge
out of their mutually constrained actions and reactions. En-
trainment could in some sense even be seen as allowing in-
teraction participants to be one step ahead in time, as the
rhythmic flow of their movements anticipates the next beat
in the interaction. Through the combination of entrainment
and contextual situatedness, a blink of an eye can become a
meaningful wink.

Social interaction is composed of “countless patterns and
natural sequences of behavior occurring whenever persons
come into one another’s presence” (Goffman 1967). Learn-
ing to perceive, predict, and evoke particular patterns and
responses from others is an important part of social learn-
ing. If our experience of time is emergent and situated,
rather than objectively predefined, how then can robots and
other machines driven by a more discrete representation of
time participate in the adaptive dance of social interaction?
If we approach social intelligence as situated action, we
shift the focus of our analysis and modeling from knowl-
edge stored within the artifact to knowledge as constructed
capability-in-action, emerging through physical and social
performances(Clancey 1997). Social engagement triggers
an embodied, situated system that is sensitive to recogniz-
ing socially relevant patterns in our everyday behavior, such
as interaction rhythms, imitation, and joint attention. This
allows us to predict what others will do and coordinate our
behaviors. As individuals respond dynamically to the ac-
tions of others, behavior is used to regulate one’s own state
and the behavior of other individuals and enables the attune-
ment of intentions (or what we are calling here a common
understanding) among interaction partners (Barrett 2007).

Common ground in humans is based on certain shared
characteristics–the sharing of physical space, of a certain
type of embodiment and its constraints, and the assumption
that the other is a thinking, social being. Even in cases where
language and other cultural forms of establishing common
ground (such as particular symbols, gestures, or combina-
tions thereof) are not previously shared by interaction part-
ners, two people can come to some agreement through mu-
tual trial and error and develop their own communicative
shorthand. Two people who do not speak the same language
are capable of creating a mutual understanding, and to then
use this understanding as a channel of communication.

When trying to computationally describe what is going on
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in human-human interaction and design robots that can par-
ticipate in it, the natural approach therefore seems to be a
decision-theoretic one that models a dynamical system that
is not completely observable, such as a partially observ-
able Markov decision process (POMDPs) or other types of
dynamic Bayes networks. The descriptive power of these
frameworks is attractive for real-world robot tasks because
it enables agents to reason about the result of future actions
by interacting with the world and receiving feedback using
imperfect perception. Typically, POMDPs have proved use-
ful in cases where the state and observation spaces of a sys-
tem can be described in very few terms (Hsiao, Kaelbling,
& Lozano-Perez 2007).

POMDPs, along with much of the computational machin-
ery used in modeling time-series decision and estimation
problems, closely resemble the ‘sense-think-act’ model of
cognitive architectures. Conversely, Semin (Semin 2007)
suggests that language and other high level aspects of com-
munication are based on synchronization or parity of behav-
iors. The processes that generate these behaviors are non-
cognitive and more strongly connected to physical experi-
ence than to high-level reasoning. This is incompatible with
sense-think-act learning models, and suggests that we need
to use models that more immediately couple actions and ob-
servations.

A different approach to enabling human-robot interac-
tion is suggested by “emergent” theories of social cognition,
which say that understanding, meaning, and rules of social
interaction are not a predefined property of the world, but
rather something that is agreed upon in interaction. For the
specific problem of social interaction, the structure and pat-
terns are developed through parity and closed loop feedback.
This is a process that requires both (or all) agents to adjust
their behavior and understanding based on the behavior of
other agents. The result and structure of this process is not
well defined and this is what seriously limits the utility of us-
ing sequential decision/control problem formulations in this
domain. In order to make social agents, our aim should be to
instrument them with the ability to form patterns of interac-
tion with other agents, rather than simply adjust a predefined
model of communication.

We propose an approach that allows an agent to construct
shared understanding with another agent by processing per-
ception and action information, rather than using an exist-
ing model to assign specific meaning to actions and percep-
tions. In our proposed approach, an agent uses a predictive
state representation (PSRs, (Littman, Sutton, & Singh 2002;
McCracken & Bowling 2005)) to identify important se-
quences in the exchange of behaviors with a human. Ihe
agent seeks to identify patterns in the stream of information
that help predict future actions and observations. Determin-
ing these patterns can be thought of as learning the modes
of interaction. These patterns can be of arbitrary length.
The actions of the agent are driven by the classic trial and
error approach of reinforcement learning, however the re-
ward for the agent comes in the form of correctly predicting
the responses of other agents to its actions. The notion of a
context or mode is represented only as a joint sequence of
agent actions that have no explicit meaning other than the

resulting sequence itself. This is in contrast to the dynamic
Bayes approach, which starts with defined causal, temporal
relationships between modes and uses these relationships to
learn and adapt.

A PSR can be described briefly as the following:

• A partitioning of actions and observations into sets a ∈ A
and o ∈ O.

• A set of test sequences q ∈ Q composed of alternating
action-observation pairs.

• A system dynamics matrix, Pr(Q|H), in which each col-
umn represents a test sequence q ∈ Q and each row
h ∈ H represents an instant of time. Each entry in this
matrix Pr(q|h) represents the probability that q will oc-
cur starting at time h.

The goal of this representation is the following. First, us-
ing frequency probability, correctly model P (q|h) for all q.
Second, determine a minimal set of test sequences Q̄ that
are needed to predict all other q. This means that for any
q there exists fq(Pr(Q̄|h)) == Pr(q). The second prob-
lem is addressed by analysis of the system dynamics matrix
Pr(Q|H), in particular by finding the linearly independent
columns of Pr(Q|H). One may think of this as a process in
which the agent allows itself to be imprinted by experience,
and then constructs meaning by examining and analyzing its
own experience.
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Figure 1: A 2-state POMDP describing the pattern of inter-
action with parameters 0 < α, β, δ, ε � 1. The agent can
remain in either of the two states [1,1] and [0,0], with high
probability, by selecting 1 or 0 respectively. It can cause
a transition out of [1,1] or [0,0], with high probability, by
selecting 0 or 1 respectively.

In the context of reinforcement learning, the difference
between this and classic approaches is subtle. This method
does not promise any more mathematically efficient or effec-
tive approach to classical reinforcement learning problems.
However, in the context of social dynamics, where rules are
established in process rather than ahead of time, this method
provides a way for the agent to create its own useful abstrac-
tions rather than have them pre-specified by an expert. This
is an important step towards the type of flexibility required
for social intelligence.

We present a proof of concept system, in which a human
is asked to evoke a particular response from a robot that has
no prior understanding of context, task or the meaning of
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Algorithm 1 Exploration Schedule PSR Learning Algo-
rithm(set <core tests> CT)

1: Initialize exploration schedule α = 1.0
2: while Change in One-step Prediction error is large do
3: If( RAND(0:1) ≤ α ) EXPLORATION move
4: Else EXPLOITATION move
5: decay(α)
6: end while
1: DISCOVERY
2: Re-select core tests
1: loop
2: If( RAND(0:1) ≤ α ) EXPLORATION move
3: Else EXPLOITATION move
4: decay(α)
5: end loop

actions. To start with, neither the human nor the robot have
any notion of how the other will behave. The robot is driven
by novelty of actions and responses as well as the the desire
to correctly predict the results of its actions. We base our
approach on the notion that in learning communication from
the ground up, it makes sense for an agent to 1) predict how
other agents will respond to its actions, and 2) show its un-
derstanding by taking actions that will result in predictable
responses. This thinking leads to the reinforcement learning
algorithm in 1.

We design our experiment by first analyzing a specific
and important part of interaction: imitation. We construct a
POMDP representation of the observed pattern of imitation
between two people engaging in open-ended play (figure 1).
We start with the notion that a robot would not have access
to such a model and ask the question “Can an agent, using
the controller learning algorithm, build a PSR that encodes
the same understanding about the interaction as its human
interaction partner?”

In the experiment, the human participant is given the in-
structions to “Get the robot to imitate/not imitate you”, but
no instruction as to how. The robot is provided with the abil-
ity to differentiate between the human’s actions and the abil-
ity to perform the same actions. The robot observes when it
is doing the same thing as the human and when it is not.
We show that over time, the robot acts in accordance with
the human’s desire. To confirm this, we examine the en-
coded representations (the contents of Pr(Q|H) and Q̄) of
the robot and show that it matches the goal of the human,
thus resulting in a shared representation. In doing so, we
have demonstrated the potential for artificial agents to learn
and use interaction patterns with other agents, without being
provided with a predefined time-series model. There are two
possible directions for further work in this area. The first is
to make the system deal more directly with raw data, rather
than being provided with gestural primitives. The second, is
to build towards more complex interactions.
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