
ACOPlan: Planning with Ants

Marco Baioletti, Alfredo Milani, Valentina Poggioni and Fabio Rossi
Dipartimento di Matematica e Informatica

University of Perugia, Italy
baioletti,milani,poggioni,rossi@dipmat.unipg.it

Abstract

In this paper an application of the meta–heuristic Ant Colony

Optimization to optimal planning is presented. It is well
known that finding out optimal solutions to planning problem
is a very hard computational problem. Approximate methods
do not guarantee either optimality or completeness, but it has
been proved that in many applications they are able to find
very good solutions, often close to optimal ones. Since one
of the most performing stochastic method for combinatorial
optimization is ACO, we have decided to use this technique
to design an algorithm which optimizes plan length in propo-
sitional planning. This algorithm has been implemented and
some empirical evaluations have been performed. The results
obtained are encouraging and show the feasibility of this ap-
proach.

Introduction

A planning problem is usually defined as a search prob-
lem: finding a solution plan which satisfies the problem con-
straints. An important improvement of this definition is to
consider planning as an optimization problem, with respect
to a given metric.

Propositional planning are usually optimized with respect
to the plan length or to the number of time steps (if parallel
actions are allowed). For instance, HSP, using an admis-
sible heuristic function, is able to provide the former kind
of optimization, while many algorithms, including Graph-
Plan, BlackBox and others, can optimize in the latter form,
by using an iterative deepening search method. In (Büttner
& Rintanen 2005) a method to find parallel plans with as
few actions as possible is described. This method can be en-
coded as an anytime algorithm.
However the planning framework in which optimization
seems to be more natural is planning with numerical flu-
ents. Actions can handle and modify numerical variables
and an objective function can be easily expressed in terms
of some target variables (for instance fuel as in Logistics do-
main). However, there exist some other planning models in
which an objective function is significative, e.g. the so called
makespan in temporal planning, the probability that a plan
reached the goals in probabilistic planning, the plan quality

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in planning with preferences, etc. Besides the apparent im-
portance of optimization in planning, this topic has not been
so extensively studied. Apart from propositional planning,
there exist only a few optimal planners (often not so effi-
cient) and there are a relatively small number of other plan-
ners which usually produce good solutions, without guaran-
teeing the optimality.
The main idea of this paper is to use the well known Ant
Colony Optimization meta–heuristic (henceforth ACO) to
optimal planning. ACO is a meta–heuristic inspired by the
behaviour of natural ants colony which has been success-
fully applied to many Combinatorial Optimization prob-
lems. Clearly, being ACO a stochastic algorithm, there is
no guarantee that optimal solutions are ever found but we
hope that, as shown in many other applications of ACO, this
method can produce excellent or optimal solutions.
To test if ACO can be effectively used in optimization plan-
ning problem we have implemented, as a first step, an ACO–
based propositional planner which tries to optimize plans in
terms of plan length. Since we will show that this implemen-
tation is able to find very good solutions, it is likely that ACO
can be successfully implemented in other forms of planning,
as we will discuss in the conclusions.
As far as we know, this is the first application of ACO to
optimal automated planning. Evolutionary techniques, like
Genetic programming in (Muslea 1997), have been some-
times used in planning, but without good results.
The paper is structured as follows. A short introduction to
Ant Colony Optimization is provided, then we describe the
details of the application of ACO to AI Planning. We then
discuss about some planning systems which can be directly
related to this work. Some experimental tests are described
and their results are discussed. The paper is concluded by
describing some possible improvements and extensions of
this work.

Ant Colony Optimization

Ant Colony Optimization (ACO) is a meta–heuristic born
to tackle Combinatorial Optimization problems introduced
since early 90s by Dorigo et al. (Dorigo 1992; Dorigo,
Maniezzo, & Colorni 1996; Dorigo & Stuetzle 2004). ACO
is inspired by the foraging behavior of natural ant colonies.
When walking, natural ants leave on the ground a chemi-
cal substance called pheromone that other ants can smell.

183

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



Choosing its way one ant tends to probabilistically choose
paths marked with a stronger quantity of pheromone. When
an ant finds some food it comes back to the nest and it re-
leases a higher quantity of pheromone. Next ants leaving
the nest will tend to follow this stronger pheromone trail and
to release themselves further pheromone on. As time goes
by, the number of ants that follow trails marked by a higher
quantity of pheromone increases and favorite trails arise.
The ants’ behaviour has inspired the design of Ant Colony
Optimization (ACO) algorithms. They can be used to solve
combinatorial optimization problems whose solutions are
defined in terms of sequences of components. A component
is an edge in the so called construction graph (Dorigo &
Blum 2005) Cg = (V, E), while a solution is a path connect-
ing the initial node to a final node. A problem can specify
constraint on which components can be chosen according
to the current node and possibly the previous components.
A classical basic framework for ACO works as follows. At
each iteration, each of m ants builds a solution adding n
components one by one. Each solution component is as-
signed a real value, the so called pheromone value. The next
component to add is probabilistically drawn from the set of
the admissible components (i.e. the components that satisfy
the problem constraints). Most ACO algorithms (Dorigo &
Stuetzle 2004) choose the components according the follow-
ing distribution (called transition probabilities):

p(c) =
[τ(c)]α · [η(c)]β∑

c′∈�(sp)

[τ(c′)]α · [η(c′)]β
, ∀c ∈ �(sp) (1)

where sp is the current partial solution, �(sp) the set of
feasible solution components (it is determined at each ad-
dition step according to the problem constraints), τ is the
value of pheromone for the components, η is a heuristic
function that evaluates how promising a component is, and
α and β determine the relative importance of pheromone
value and heuristic estimation. When all the m solutions
have been built, a local search method can be optionally ap-
plied to improve them. Then a pheromone update is per-
formed according to the quality of solutions found, i.e. com-
ponents constituting best solutions receive a higher quantity
of pheromone, changing the probability of each component
to be drawn at next iteration. Many ACO variants differ
just on the pheromone update method adopted: the solu-
tions set involved varies, the rule for updating differs, etc.
Often the best solutions considered for the update are best–
so–far (best solution found so far) or iteration–best (best so-
lution found in the current iteration) or both. In certain vari-
ants limits for maximum and minimum pheromone values
are used. Most ACO algorithms use the following update
rule (Blum 2005): for each component c

τ(c) = (1− ρ) · τ(c) + ρ
∑

s∈Ψupd | c∈s

F (s) (2)

where ρ ∈ (0, 1] is the evaporation rate, Ψupd is the set of so-
lutions involved in the update and F is the so called quality
function which evaluates the goodness of the solution1. The

1
F is cleary related to the function to be optimized

evaporation rate decreases the pheromone values to avoid a
premature convergence towards non optimal solutions. This
process is repeated a predefined number of iterations or until
a good enough solution is found.

ACO and Planning

At a first sight the implementation of an ACO algorithm for
the problem of optimizing propositional planning (in terms
of plan length) seems straightforward because of the appar-
ent similarity between the construction of solutions compo-
nent by component in ACO and the forward search in the
state space in planning.

Therefore we use a colony of m ants, each of them builds
up a plan starting from the initial state s0 = I and executing
actions step by step. Ants draw the next action to execute
in the current state s from the set of executable actions (i.e.
actions having their preconditions satisfied in s). After exe-
cuting a the current state is updated as s′ = Res(s, a), being
Res(s, a) = s∪add(a)\del(a). Each ant adds components
until the maximum allowed plan length is reached, or a so-
lution plan is found or no action can be executed.

Many features must be decided to fully implement an
ACO algorithm, so in this section we describe our proposal
for the most important ones.

Pheromone models

Besides the fact that a solution is composed by actions, this
is a convincing argument that for the pheromone model a
solution component cannot be just an action. In fact, the
same action a could be executable in different states leading
to different successor states, but its usefulness might be dif-
ferent depending on the state in which it is performed. If a
takes part of a solution used for the pheromone updating, the
contribution given by the pheromone to the transition prob-
ability of a is increased, independently on the current state
and therefore even in states in which a is harmful.

A first possibility is to assume the couple state/action
c = (s, a) as a solution component. In this way the
pheromone part takes into account the state in which a
is executed and gives a larger contribution only for those
states in which a is supposed to be useful. This pheromone
model has been called state–action model. A nice feature
of this model is that the construction graph coincides with
the state–space graph, where the set of vertices V is the set
of possible states and the edges E correspond to transitions.
A drawback of this model is that the number of components
can grow very fast. To overcome this problem an efficient
data structure is used to store, update and retrieve the
pheromone values.

Another possibility, which has a much smaller number
of components, is to assume the couple time step/action
c = (t, a) as a solution component, where t is the time step
at which a is executed. This pheromone has been called
level–action model. Intuitively this model gives a less
useful information if compared to the information provided
by the previous model. In fact, while the pheromone values
of first model can be easily explained (the convenience of

184



executing an action depends on the context), the second
model relates the convenience of an action to the time in
which is executed, no matters in which context is executed.

A third possibility is to evaluate only the states. In this
pheromone model, called state model, a component is just
a state. In this model the information provided by the
pheromone is how convenient is to pass through a given
state.

Referring to the state–action pheromone model the rule
to calculate the transition probabilities in the state s is the
following

p(a|s) =
[τ(s, a)]α · [η(Res(s, a))]β∑

a′∈A(s)

[τ(s, a′)]α · [η(Res(s, a))]β
, ∀a ∈ A(s)

(3)
where τ(s, a) is the pheromone value assigned to com-
ponent (s, a), η(s′) is a heuristic function that evaluates
how promising is to reach the state s′, A(s) the set of
actions executable in s. Finally, α and β are parameters to
determine the relative importance of pheromone value and
heuristic estimation.

Similar formulae are used to compute the transition prob-
abilities for the other two pheromone models.

Heuristic Estimation η

We decided to choose as heuristic function η that one
used in Fast-Forward (FF) (Hoffmann & Nebel 2001).
FF estimates the distance from a state s to the goals,
i.e. the number of actions needed to reach the goals. FF
exploits the basic idea of relaxing the original planning
problem ignoring deleting effects of all actions, introduced
also in other heuristic system (for instance HSP (Bonet &
Geffner 2001)). Initially FF builds a relaxed planning graph
(ignoring delete effects) starting from a given state. The
graph is extended until goals are reached. Then it attempts
to extract a relaxed plan in a GraphPlan style. The number
of actions spent h(s) is the estimated distance. Moreover
FF provides some pruning techniques also, in order to
exclude some space state branches from search. Since FF is
able to compute, with a negligible amount of time, the so
called Helpful Actions (actions that seem more promising
than other ones) we decide to increment the η value for
these actions.

The value η(s) needed to compute the transition proba-
bilites is then obtained by means of the following formula:

η(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

h(s)(1− k)
if s is reached by a Helpful Action

1

h(s)
otherwise

(4)
where k is the reduction rate (usually in our tests we set
0.15 ≤ k ≤ 0.5) to increase the transition probabilities of
Helpful Actions.

Plan Evaluation

At the end of each iteration a quality evaluation of all plans
built by the ants is needed to perform a pheromone update.
An intuitive (trivial) criterion is to consider the number of
goals reached, but this is useless when no plans reach any
goal.
The basic idea to evaluate the quality of a plan is keeping
track of hmin and tmin, where hmin is the minimum heuris-
tic value (i.e. minimum distance from goals) reached dur-
ing plan execution and tmin is the first time step in which
hmin is achieved. Then, a plan π is better than a plan π′

if hmin(π) < hmin(π′) or if hmin(π) = hmin(π′) and
tmin(π) < tmin(π′).
A quantitative measure Q(p) for the quality of plan p can be
easily defined as

Q(p) =

(
1

1 + hmin

)γ (
1

tmin

)δ (
1 +

gfound

gcount

)θ

(5)

where γ, δ and θ are parameters to tune the importance of
three terms, gfound is the number of goals reached at con-
struction step tmin and gcount is the total number of goals.
In the experimental test we used γ = δ = 1 and θ = 0.

Pheromone Updating

We have decided to perform a pheromone update consider-
ing best–so–far and iteration–best solutions. Referring to
the state–action pheromone model the rule is the classical
one used in the HyperCube Framework for ACO (Blum,
Roli, & Dorigo 2001):

τ(s, a) ← (1− ρ)τ(s, a) + ρ
∑

π∈Pupd | (s,a)∈π

Q(π)∑
π′∈Pupd

Q(π′)

(6)
where ρ the pheromone evaporation rate, Pupd is the set of
solutions (plans) involved in the update and Q is the quality
plan evaluation function.
Note that in this formula we have decided, after some pre-
liminary evaluation, to update, for each π ∈ Pupd, the
pheromone values relative only to the first tmin actions. In
this way the part of a plan after having reached the best
state (in terms of heuristic function) is considered useless
(it reaches only worst or equivalent states) and then is ne-
glected.
The pseudo code of the resulting algorithm is shown in fig-
ure 1.

Related Works

There are several relevant planners which can be directly re-
lated to this work. First of all we have to cite LPG (Gerevini
& Serina 2002) because it is based on a stochastic algorithm.
It is important to note that stochastic approaches to planning
begins to receive the right attention by the planning commu-
nity (with respect to the standard deterministic approaches)
because it has been proved they can yield excellent results
also in the case of optimality problems. Moreover, we have
to cite heuristic planners like HSP (Bonet & Geffner 2001)
and FF (Hoffmann & Nebel 2001) for two different reasons:

185



Algorithm 1 The algorithm ACOPlan

1: sbest ← ∅
2: InitPheromone(T , c)
3: for g ← 1 to number of generations do
4: siter ← ∅
5: for m ← 1 to number of ants do
6: sp ← ∅
7: state ←initial state of the problem
8: for i ← 1 to max length do
9: Ai ← feasible actions on state

10: Hi ← ∅
11: HAi ← GetHelpfulActions(state, Ai)

12: for all a
j
i in Ai do

13: h
j
i ← heuristic value of al

i

14: Hi ← Hi ∪ h
j
i

15: end for
16: ak ← ChooseAnAction(T , Hi, Ai, HAi)
17: extend sp adding ak

18: update state
19: end for
20: if f(sp) > f(siter) then
21: siter ← sp

22: end if
23: end for
24: if f(siter) > f(sbest) then
25: sbest ← siter

26: end if
27: UpdatePheromone(T , sbest, siter , ρ)
28: end for

(i) the heuristic of our planner is directly inspired from the
FF’s one, (ii) the HSP planner can run in an optimal version
and its results can be used also to compare the solution plans
given by the planners. Finally, some words have to be spent
about the optimality concept in planning. The notion of opti-
mal plan is first introduced as makespan (both as number of
actions and number of steps) and then it has been refined to
consider any metric which can also include resources, time
and particular preferences or time trajectory constraints. To
the best of our knowledge the optimal version of HSP is the
best optimal planner with respect the number of actions, so
we have included it in our experimental tests. It is impor-
tant to note that we have not included optimal planners like
SATPLAN (Kautz & Selman 1999) because, in this case, the
optimality is expressed in terms of number of planning level
and the results are not comparable.

Experimental results

ACOplan has been tested over some domains taken from the
International Planning Competitions (IPC). In general these
domains are used as standard benchmarks to compare plan-
ner performances. We run a set of systematics tests over the
domains Rovers and Depots, Blocksworld, Driverlog. They
have been chosen among the set of benchmark domains be-
cause they offer a good variety and the corresponding results
allow us interesting comments. For lack of space only re-
sults for Rovers and Driverlog are reported. The results for

ACOplan FF LPG

Problem length time length time length time

1 10 0.04 10 0 10 0.04

2 8 0.03 8 0 8 0.01

3 11 0.44 13 0 11 0.71

4 8 0.06 8 0 8 0.02

5 22 0.4 22 0 22 0.04

6 36 43.71 38 0 36 2.32

7 18 0.47 18 0 18 10.86

8 26 1.8 28 0 26.1 158.48

9 31 173.67 33 0 31 0.09

10 35 85.37 37 0 35 133.03

11 30.54 2926.36 37 0 30 13.41

12 19 1.14 19 0 19 0.17

13 44 294.19 46 0.02 43.65 190.79

14 28 74.94 28 0 28 0.94

15 41 7459.52 42 0.01 42.25 474.17

16 41 1155.04 46 0.02 41 116.97

17 47.13 3463.33 49 0.02 47 10.33

18 41 5518.31 42 0.04 41.85 434.882

19 66.25 6017.49 74 0.21 68.7 519.622

20 97.5 5189.75 96 0.54 92 480.209

Table 2: Results for Rovers domain collecting solution
lengths and CPU time

Driverlog domain

5

15

25

35

45

55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem

A
ve

ra
g

e 
M

in
. L

en
g

th

ACOPlan
FF
HSP
LPG

Rovers domain

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

A
ve

ra
g

e 
M

in
. L

en
g

th

ACOPlan
FF
LPG

Figure 1: Average Minimum Length found for – Driverlog
and – Rovers domains

186



ACOplan HSP FF HSP -opt LPG

Problem length time length time length time length time length time

1 7 0.02 7 0.01 8 0.01 7 0.01 7 0.03

2 19.07 11.18 24 0.01 22 0.01 19 3905.92 19 0.53

3 12 0.09 14 0.01 12 0.01 12 0.14 12 0.08

4 16.07 57.79 21 0.01 16 0.01 16 5854.79 16 0.08

5 18.77 62.37 22 0.01 22 0.01 – – 18 2.28

6 11.67 71.93 13 0.01 13 0.01 11 0.72 11 0.85

7 13 1.64 15 0.01 17 0.01 13 5796.76 13 0.08

8 22.3 312.94 26 0.01 23 0.01 – – 22 9.25

9 22 17.96 28 0.03 31 0.01 – – 22 0.54

10 17.03 116.44 24 0.03 20 0.01 – – 17 0.54

11 19.43 193.46 24 0.07 25 0.01 – – 19 23.06

12 37.4 2080.89 44 0.07 52 0.22 – – 35.25 237.28

13 26.1 750.67 33 0.16 36 0.09 – – 26 4.55

14 34.8 3301.83 44 1.66 38 0.12 – – 28 12.54

15 41.17 3454.29 48 1.65 48 0.03 – – 32.8 499.78

Table 1: Results for Driverlog domain collecting solution lengths and CPU time

the other domains are similar.
We chose to compare ACOplan with LPG, HSP and FF.
LPG is very performant and, when run with the best quality
(option -n), it gives solution plans with, in general, a num-
ber of actions very close to the optimum (sometimes it can
find solutions with the optimum number of actions). It is a
non deterministic planner, so the results collected here are
the mean values obtained over 100 runs.
HSP can run with several options. In particular using an A∗–
like algorithm and a admissible heuristic (options -d back-
ward, -h h2max and -w 1) it produces optimal plan in the
number of actions. Nevertheless, in this setting, it often fails
to find a solution because it runs out of memory; for this
reason we have chosen to run it also with default options in
order to solve a larger set of problems and collect more re-
sults.
FF has no option to choose and it runs in default version.
ACOplan has many parameters that have to be chosen. We
have preliminarly performed a first set of experiments in
which we have looked for the best values of α, β and ρ.
The experiments were run on five problems of Rovers do-
main and five problems of ZenoTravel domain. The chosen
values for α and β have been {1, 2, 5, 7}, which are the most
used values in ACO literature, while ρ have been varied in
{0.1, 0.15, 0.2}. Table 3 and Table 4 show how many times
each value of the parameters appears in the best or in the
second best combination. According to these results, we de-
cided to use this setting: 10 ants, 5000 iterations, α = 1,
β = 7, ρ = 0.15, c = 1, k = 0.5, pheromone model
state–action. Being a non deterministic system, like LPG,
the results collected here are the mean values obtained over
100 runs.
In Table 1 and Table 2 results of tests over Driverlog and
Rovers domains are shown. In the first column problem
numbers are listed; in the next columns the length of solution
plans and execution times are reported for each planner; the
column entitled HSP -opt contains the results for HSP called
with options guaranteeing the optimality. The symbol – in
table entries means that the corresponding problem has not

Rovers

Alpha Beta Rho

1 2 5 7 1 2 5 7 0.1 0.15 0.2

Best 1 3 4 2 2

Second 4 4 1 1 2

Table 3: Tuning Rovers: best performing parameters

be solved in 2 hours of CPU times or because of memory
fault.
Results in Table 1 for the Driverlog domain show how the
quality of solutions synthesized by ACOplan is practically
always better than the ones extracted by FF and HSP and is
very close to the ones extracted by LPG. For instance, with
respect to FF, on the average, the percentage improvement
is 15%, with a top 31%. Moreover, the available data for the
optimal version of HSP show how the length of the solution
extracted by ACOplan is actually the optimum length.

Results in Table 2 for the Rovers domain show similar re-
sults where the percentage improvement is 8% with respect
to FF. In one case ACOPlan has found in average better solu-
tions than LPG, while in the other cases the average lengths
found by the two planners are again very close.

Nevertheless we have obtained good results from an
optimality point of view, the same cannot be said about effi-
ciency. Anyway this is not surprising because we have still
a quite simple implementation; on the contrary the number
of solved problems with respect to the optimal HSP is
encouraging and a dramatic improvement of performances
is predictable.

Conclusions and Future Works

In this paper we have described a first application of
the Ant Colony Optimization meta–heuristic to Optimal
Propositional Planning. The preliminary empirical tests
have shown encouraging results and that this approach is a

187



Zenotravel

Alpha Beta Rho

1 2 5 7 1 2 5 7 0.1 0.15 0.2

Best 3 1 4 3 1

Second 3 1 4 1 2 1

Table 4: Tuning Zenotravel: best performing parameters

viable method for optimization in classical planning. For
these reasons we are thinking to improve and extend this
work in several directions.
First of all, we have planned to modify the implementation
of the ACO system, in particular the use of heuristic
functions which require a smaller computation time. Hence
it is possible that a less informative and less expensive
heuristic function can be used without having a sensitive
loss of performance.
Then, another idea is to change the direction of the search
in the state space: using “regressing” ants, which start from
the goal and try to reach the initial state. Backward search
methods has been successfully used in planning.
Finally we are considering to apply ACO techniques also to
other types of planning. The extension of classical planning
which appears to be appealing for ACO is planning with
numerical fluents: in this framework an objective function
can be easily defined. It is almost straightforward to extend
our ACO system (with “forward” ants) in order to handle
the numerical part of a planning problem, even if it could
be problematic to use the complete state in the solution
components. In this case a suitable pheromone model could
be the “level–action” model. Also the extension to handle
preferences seems to be straightforward, being necessary
only a modification in the computation of Q(p).

Acknowledgements

We acknowledge the usage of computers at IRIDIA
(http://code.ulb.ac.be/iridia.home.php) Institute at Univer-
sité Libre de Bruxelles, which Fabio Rossi was visiting from
June to August 2008, for some of the computations done
here. Moreover, a special thank to Dr. Thomas Stützle for
his useful suggestions.

References

Blum, C.; Roli, A.; and Dorigo, M. 2001. The hyper-cube
framework for ant colony optimization. In IEEE Transac-
tions on Systems, Man, and CyberneticsPart B, 399–403.

Blum, C. 2005. Ant colony optimization: Introduction and
recent trends. Physics of Life Reviews 2(4):353–373.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129((1-2)).

Büttner, M., and Rintanen, J. 2005. Satisfiability planning
with constraints on the number of actions. In ICAPS 2005,
292–299.

Dorigo, M., and Blum, C. 2005. Ant colony optimization
theory: a survey. Theor. Comput. Sci. 344(2-3):243–278.

Dorigo, M., and Stuetzle, T. 2004. Ant Colony Optimiza-
tion. Cambridge, MA, USA: MIT Press,.

Dorigo, M.; Maniezzo, V.; and Colorni, A. 1996. The Ant
System: Optimization by a colony of cooperating agents.
IEEE Transactions on Systems, Man, and Cybernetics Part
B: Cybernetics 26(1):29–41.

Dorigo, M. 1992. Optimization, learning and natural al-
gorithms. Ph.D. Dissertation, Politecnico di Milano.

Gerevini, A., and Serina, I. 2002. LPG: a planner based
on local search for planning graphs. In Proceedings of
the Sixth International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS’02), AAAI Press,
Toulouse, France.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253 – 302.

Kautz, H., and Selman, B. 1999. Unifying sat–based and
graph-based planning. In Proceedings of IJCAI-99, Stock-
holm.

Muslea, I. 1997. Sinergy: A linear planner based on ge-
netic programming. In ECP 97, 312–324.

188




