
Hierarchical Factored POMDP
for Joint Tasks: Application to Escort Tasks

Fabio-Valerio Ferrari, Abdel-Illah Mouaddib
GREYC - UMR CNRS 6072 - University of Caen Basse-Normandie

Boulevard Marechal Juin, BP 5186, 14032 Caen Cedex, France
fabio-valerio.ferrari@unicaen.fr, abdel-illah.mouaddib@unicaen.fr

Abstract

The number of applications of service robotics in pub-
lic spaces such as hospitals, museums and malls is a
growing trend. Public spaces, however, provide several
challenges to the robot, and specifically with its plan-
ning capabilities: they need to cope with a dynamic
and uncertain environment and are subject to particu-
lar human-robot interaction constraints. A major chal-
lenge is the Joint Intention problem. When cooperat-
ing with humans, a persistent commitment to achieve a
shared goal cannot be always assumed, since they have
an unpredictable behavior and may be distracted in en-
vironments as dynamic and uncertain as public spaces,
and even more so if the human agents are customers,
visitors or bystanders. In order to address such issues
in a decision-making context, we present a framework
based on Hierarchical Factored POMDPs. We describe
the general method for ensuring the Joint Intention be-
tween human and robot , the hierarchical structure and
the Value Decomposition method adopted to build it.
We also provide an example application scenario: an
Escort Task in a shopping mall for guiding a customer
towards a desired point of interest.

1 Introduction
The deployment of multi-modal robots in public spaces,
such as a mall, for service or human assistance tasks is a
growing application field in Robotics. There are already sev-
eral examples of service robots applied in malls, hospitals,
museums and so on, such as in (Kanda et al. 2009). It is
in the interest of public and private administrations to make
their public spaces easier to use, friendlier to visitors and
safer to an increasing elderly population and to citizens with
disabilities. However, autonomous robots have to face sev-
eral issues in order to perform their task in crowded public
spaces. First, the environment is dynamic and unpredictable,
since it is populated by many individuals, or even a crowd,
whether they are workers, customers or bystanders. In addi-
tion, robots need to interact and usually cooperate with hu-
mans to achieve some kind of task, initiated by the human
itself most of the time. This kind of cooperation, however,
has a weaker level of commitment with respect to other ap-
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plication fields such as, for example, cooperation with pro-
fessional workers in an industrial environment.

The European project COACHES (Cooperative Au-
tonomous Robots in Complex and Humans Environments)1

aims specifically at providing solutions to those issues.
Among the challenges faced are knowledge-based repre-
sentation of the environment, recognition and estimation of
human activities and intentions, distributed decision mak-
ing and planning, and multi-modal human-robot interaction.
Specifically, the project’s application scenario is the deploy-
ment of a team of service robots in a shopping mall which
will welcome, assist and guide customers. A mall in the city
of Caen, France has been chosen as test-bed.

Our work addresses in particular the decision-making and
planning aspects and the theoretic problems associated. We
need to take into account the uncertainty of the environment
in our model, to perform planning under human interaction
constraints, and to adopt a decentralized approach for the co-
operation of the whole team of robots. We plan on using Par-
tially Observable Markov Decision Processes (POMDPs),
which are models capable of efficiently perform decision-
making under uncertainty, with a novel framework for ad-
dressing the particular human-robot interaction problems.

The article is structured in the following way:
In Section 2 we address the Joint Intention problem and re-
view Factored and Hierarchical POMDPs.
In Section 3 we describe the proposed hierarchical frame-
work and the associated value decomposition method.
In Section 4 we present an application scenario: an Escort
Task of customers in a shopping center.
In Section 5 we describe the algorithms and an early imple-
mentation of the model.
In Section 6 we highlight the major points of interest of the
proposed model.

2 Background
2.1 The Joint Intention Problem
In cooperative multiagent settings, it is usually assumed that
all agents sharing a common task have a persistent commit-
ment towards the achievement of their goal. This assump-
tion, however, cannot always hold, especially within Human

1The project is funded by Chist-ERA, 2014 − 2017.
http://www.chistera.eu/projects/coaches
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Robot Interaction (HRI) scenarios. Humans may have un-
predictable behaviors and may drop their commitment to the
shared task, because they have changed their mind or com-
pelled by external factors. This is especially true in service
robotics applications in public spaces, such as a shopping
mall, where human agents are mostly customers passing by
and are more prone to change their behavior with respect to
a professional worker, and where shops make effort to draw
their attention. A behavioral change in the human agent,
however, may be caused by different situations. The human
may be dropping his commitment to the task, or he may be
in need of help, or he may have found an unexpected way
to achieve the shared goal. The cooperative agent should be
able to tell the difference between these situations, try to un-
derstand which is the human’s current mental state and re-
act accordingly. In other words, the agent should understand
whether the human is cooperating or not, and why.

Joint Intention (JI) Theory (Cohen and Levesque 1991)
(Kumar et al. 2002), is a formalism used to define the mental
states assumed by agents during teamwork. This formalism
has already been used in robotic applications to improve the
cooperation level between heterogenous agents, as in (Alami
et al. 2006).
JI is defined as a joint commitment to perform a collective
action while in a certain shared mental state. In the case of
multi-agent systems with a centralized control, JI is trivially
always ensured. However, in the case of decentralized, het-
erogenous systems with partial or no mutual knowledge, as
in HRI scenarios, it is important to formalise the cooperation
schemes between the agents. JI is what binds the team mem-
bers together and makes the difference between a functional
team and a disfunctional one.

JI Theory is defined formally using a modal language
based on first order logic, with the addition of temporal op-
erators and propositional attitudes. We will now review only
the basics of JI and the notions most pertinent to our work.
For a complete description of all mental state definitions,
please see (Kumar et al. 2002).

Let i be an agent in a team A.
Given a goal proposition p and an irrelevance clause q, we
can define:
Belief: Bi(p) = agent i believes p holds true.
Desire: Di(p) = agent i desires p to hold true.
Mutual Belief: MBA(p) = mutual belief of p by each agent
belonging to A.
Mutual Goal: MGA(p) = Di(p) ∧MBA(Dj(p)) ∀i, j ∈
A.
♦ and � are temporal logic operators. q is an “escape clause”
which allows the agent to relativize its goal and drop the
commitment when it comes to believe it to be true. If this
clause did not exist, the agent would never drop a commit-
ment freely once adopted. We can also define the Termina-
tion Conditions for goal p with respect to q as:
TC(p, q) = p

∨
�¬p

∨
¬q

That is, the conditions are true when goal is either achieved
(p is true), impossible (p will never be true) or irrelevant (q
is false).

We can define the Weak Achievement Goal (WAG) men-
tal state as:

Agent i ∈ A has a WAGi,A(p, q) if

(Bi(¬p) ∧Di(♦p)) ∨ (Bi(TC) ∧Di(MBA(TC(p, q))))

Which means that agent i has a desire to achieve its goal,
and, whenever it believes it to be terminated, it has a desire
to ensure that all team-mates share the same belief that the
task is terminated.

Two agents i and j in A jointly intend to do an action
(or actions) a if they have a joint commitment to doing the
action a mutually believing throughout the action execution
that they are jointly doing that action as a team (Cohen and
Levesque 1991). For a team to have a JI about a, the follow-
ing conditions must hold:
• MGA(♦p)

• WAGi,A(p, q) ∧ MBA(WAGi,A(p, q)) until
(MBA(TC(p, q))

• (MBA(DOINGa) until a is done.
We use JI Theory as key source of inspiration for ensur-

ing that the human is cooperating with the robot through the
whole task execution and mutually believe so.

2.2 Partially Observable Markov Decision
Processes

Partially Observable Markov Decision Processes (POMDPs)
(Sondik 1971) (Kaelbling, Littman, and Cassandra 1998)
are defined as a tuple < S,A, T,O,R, ω >, where:
S is a discrete set of states s.
A is a disrete set of actions a.
T : S ×A 7→ Π(S) is a Transition probability function.
O is a set of observations o.
R : S ×A 7→ < is a Reward function.
ω : S ×A 7→ Π(O) is an Observation probability function.

The Transition function T (s, a, s′) gives the probability to
move to state s′ when action a is performed in state s. The
Reward functionR(s, a) gives a real-valued reward (or cost)
for performing action a in state s. The Observation function
ω(s, a, o) gives the probability of observing o when action a
is performed in state s. Solving a POMDP essentially means
finding a policy π, that is, a list of state-action pairs, which
maximizes the expected total reward

E

[ ∞∑
t=0

γtrt

]
where γ is a discount factor and rt is the reward obtained at
time t.

In a Factored POMDP (FPOMDP), the state space is gen-
erated by the product of discrete state variables.
Let X1, ..., Xn be the state variables of the model. Let
Dom(Xi) denote the domain of the i-th state variable, and
v its values. We denote by xi the current value of Xi at any
given time step, with xi ∈ Dom(Xi). The current state of
the model can be then represented as a vector of instanti-
ates of all state variables: x = (x1, ..., xn). If we denote
by X the set of all possible values of x, that is, all possible
combinations of instantiates of the state variables, then the
state-space of the FPOMDP will be S = Dom(X).
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The advantage of using FPOMDPs is the possibility to
exploit dependencies and independencies of state variables
in the transition probabilities. For example, a state variable
Xi may only depend on its previous value, regardless of the
value of other variables: Pr(x′i|x1, ..., xn) = Pr(x′i|xi).

2.3 Hierarchical POMDPs
Despite being a powerful tool for decision-making and plan-
ning, using POMDPs in real-world applications has a no-
table drawback: the problem quickly becomes intractable as
the size of the state-space grows exponentially. Additional
frameworks and methods must be adopted in order to reduce
the state-space during planning. One efficient solution is to
use a Hierarchical structure for POMDPs.

Among the possible approaches, one method is to exploit
the structure of the domain with a decomposition based on
actions (Pineau, Roy, and Thrun 2001). For instance, the
overall task can be divided into several sub-tasks. Lower
levels of the hierarchical structure implement and solve
each sub-task, while upper levels plan to choose which
sub-task to perform. It is based on the assumption that
not all state information is relevant for the completion
of the current sub-task. Using only the state variables
necessary for the current sub-task results in a reduction of
the state-space during planning. In our work we adopt a
sub-task decomposition to better ensure the JI between the
human and robot agents. We make a distinction between
sub-tasks which proceed into achieve the objective of the
overall task and those with the aim of “repairing” the JI
whenever the cooperation is missing or weak.

3 Proposed Framework
We will now describe our proposed framework: a hierar-
chical factored POMDP for decision-making in cooperative
HRI domains. The hierarchical structure is constructed using
both a sub-tasks decomposition and a Value decomposition,
which is a novel method of abstraction developed specifi-
cally for addressing the JI problem of joint tasks in HRI do-
mains. Using such method, the state abstraction from lower
levels to the uppermost highlights the essential components
of the JI.

3.1 The Joint Intention set
The main idea for dealing with the JI problem is the follow-
ing.

Given the joint state-space S, we define a set of states
JI ⊂ S where the JI is preserved, that is, where all agents
have a commitment to the common task, share a Weak
Achievement Goal mental state, and are actively perform-
ing actions to achieve the task while mutually believing so.
As long as the current state belongs to JI , then all agents are
trying to achieve the common goal: everything is going well
and there is no need to react. Otherwise, the agent needs to
try to bring the system back to a JI state.

We can consider the joint state-space S as the combina-
tion of each agent state-space, namely the human one SH
and the robot one SR. Therefore, when trying to return to

a JI state, we can either attempt to change the robot’s state
or the human’s, or both. Hence, the high-level algorithm
of our model consists in choosing, given the current state,
the general course of action to adopt: either keep staying
inside the JI, change the robot’s state, or change the human’
state. In addition, another course of action is considered: the
task termination. As explained in Section 2.1, if an agent
believes that the task is terminated, if it has a WAG mental
state, then it will try to ensure that the other agents in the
team share the same belief. Therefore, the agent cannot
end the task abruptly, but it will perform a last sequence of
actions to reach an exit state. How the choice of such action
course is performed will be described in Section 3.3.

3.2 Hierarchical structure
The proposed model has a three-level hierarchical structure,
with Bottom, Mid and Top layers. When creating the model,
the Mid level represents the core. We first define the state
variables X1, ..., Xn and the corresponding state-space S =
Dom(X), then the other two layers are generated from it
through decomposition methods.

Bottom layer The Bottom level takes information from
sensors and executes low-level planning, such as robot
navigation. Actions taken at this level are primitive actions.
The Bottom Layer is modeled as a POMDP
< Sbot, Abot, T bot, Obot, Rbot, ωbot >, with Sbot being
the state-space generated through sub-task decomposition.
Given the current sub-task (or macro-action) τ , provided
by upper levels, we only use a subset of state variables
relevant for that sub-task during planning phase, denoted as
Xτ ⊆ X . Therefore, Sbot = Dom(Xτ ).
Obot is a set of primitive observations coming from the robot
sensors and ωbot the consequent observation probability
function. Abot contains primitive actions, and T bot and Rbot
are the associated transition probability function and reward
function over Sbot.

Mid layer The Mid level, defined as a POMDP
< S,Amid, Tmid, Omid, Rmid, ωmid > is an intermediate
layer. It constitutes the core of the structure, as it describes
the main state variables and passes information to both up-
per and lower levels. Actions taken at this level will be called
macro-actions.
The Mid level is an abstract layer. It abstracts the state space
of the Bottom layer in order to focus on the variables which
contribute to define the current mental state of human and
robot. It generates plans of macro-actions for both achieving
the task goal and re-establishing cooperation when missing.
In addition, the Mid level can be considered akin to an ob-
server: it acts as an interface between the layers and provides
them the information necessary to generate their plans.
Here, observations in Omid may be either directly primi-
tive observations, or information on the current state coming
from the Bottom layer. Similarly,Amid may consist of either
macro-actions or primitive actions with a direct effect on the
Bottom state. Transition, Reward and Observation functions
Tmid, Rmid, ωmid are computed accordingly.

23



Top layer The Top level implements the general al-
gorithm for solving the JI problem presented in Sec-
tion 2.1. The model consists of a factored POMDP
< Stop, Atop, T top, Otop, Rtop, ωtop >, with binary vari-
ables Z1, ..., Zn such that Stop = Dom(Z).
The purpose of the Top layer is two-fold. First, the output
actions taken at this level are the sub-tasks previously men-
tioned, which define the general action courses to be taken
and reduce the planning load of lower levels (Figure 1). As
the mental state of agents may be caused by a variety of fac-
tors, the Mid layer may present several state variables and
consequently an obstacle for the analysis of the current level
of cooperation. Therefore the Top level provides a great help
for the diagnostic of the current state: the binary variables
represent in a very concise way the factors which define the
JI and human-robot cooperation. It is possible to assess im-
mediately whether the agents are in a JI state and, if not,
know the reason why.
The state-space of the Top layer is generated using the Value
decomposition method, which is described in the next Sec-
tion.
At Top level, observations in Otop come from the Mid level.
In such way, uncertainty and state belief are propagated from
the lower layers to the uppermost. Atop consists of a set of
sub-tasks. Given the high degree of abstraction, functions
T top, Rtop and ωtop should be straightforward.

3.3 Value decomposition
In addition to sub-task decomposition, another method is
used to generate the state-space of the Top layer. We will
describe the method for an MDP, describing the effects
on states, but we believe that the same reasoning may be
applied on observations in the case of a POMDP.
We perform a value decomposition of variables at Mid
level: for each variable, we divide its domain in two sets,
those values which may admit a JI state and those who
don’t. Remark that as the definition of which states belong
to the JI set is application-dependent, so is the possibility
to make such kind of decomposition, but we expect that its
existence can be assumed in most HRI applications.
Specifically, we assume that, for at least one state variable
Xi, ∃ a value v ∈ Dom(Xi) s.t. {x|xi = v, x ∈ JI} = ∅.
Then, for such variables we partition its domain
Dom(Xi) = (DT

i ∪ DF
i ), with DF

i being the set of
values that never appear in a JI state, and DT

i the set of
values that appear in at least one JI state. Remark that values
in DT

i may admit JI, but do not necessarily imply it.

DF
i = {v|{x|xi = v, x ∈ JI} = ∅}

DT
i = {v|{x|xi = v, x ∈ JI} 6= ∅}

Then, we can define boolean variables which simply de-
scribe in which domain set the current variable belongs to.
Let Z1, ..., Zn be the state variables of Top level, and z =
(z1, ..., zn) the vector of their current values, with zi ∈
Dom(Zi) = {>,⊥} ∀i.
Each variable is defined as:

zi =

{
>, if xi ∈ DT

i

⊥, otherwise

Look at current state:
s = (z

1
, z

2
, … , z

n 
)

   JI  JI

Check if 
s = (T, T, … , T)

Subtask 0 
(continue)

Check which 
variable is False

Subtask 1 
( change S

R
' )

Subtask 2 
( change S

H
' ) Subtask 3

Cancel

s s

Figure 1: General Top layer algorithm

Therefore, if z = {>,>, ...,>}, then the state z ∈ JI .
Otherwise, the JI is not ensured and the agent needs to
choose an appropriate sub-task to change its state.

This approach allows us to implement the general algo-
rithm described in Section 3.1. The definition of binary vari-
ables resulting from the value decomposition enables an effi-
cient and compact planning on a Factored POMDP. In addi-
tion, this decomposition has the additional benefit of giving
more information on which state variable is preventing the
JI. By looking at the current state at Top level, if variable
zi is false, we know why the state is not in the JI, and where
we should act: on variableXi. Such reasoning is adopted for
determining the next sub-task ( See Figure 1).

Remark, however, that information of current state is in-
complete at Top level. For instance, at Top level, state vari-
able Zi only tells if xi belongs to DT

i or not, but doesn’t
know the exact value of xi. We need to look into the Mid
level to have a more accurate representation of the state. On
the other hand, the state-space of Bottom level is only a sub-
set of S in Mid level. The state variables used depend on the
current sub-task or macro-action. Also, the goal state and
transition probabilities depend on the current state at Mid
level, and transition probabilities of Top layer depend on the
current state at lower levels. For all these reasons the Mid
layer has an important role in providing the necessary infor-
mations to the other levels.

Depending on the application domain, a single decompo-
sition is not sufficient to check the presence of JI. There may
be some states which should not belong to the JI but are seen
to do so anyway at the Top level. This is due to the fact that
values in DT

i do not necessarily imply the JI: some values
may negate the JI only when coupled with particular values
of other variables. In such case, a second step is required to
generate other binary variables. To do so, we only consider
values in DT

i and check if they may be “dangerous”.
A value v ∈ Dom(Xi) is critical iff ∃v′ ∈ DT

i s.t.
{x|xi = v, xj = v′, x ∈ JI} = ∅, with i 6= j, v 6= v′.
We can then define other variables at top level Z ′i, which
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hold true iff xi is not critical and false otherwise.
Another interesting knowledge provided by Value decom-

position is Variable Relevance. As stated in Section 3.2,
only a subset of the state variables are relevant during the
planning phase, which allows for a reduction of the state-
space and thus more efficient planning. While designing the
model, we check the values which allow the JI and those
who don’t. If a variable Xi always allows JI, that is, if
DF
i = ∅, then that variable is irrelevant for the planing

phase: regardless of its value, zi will always be True, so it
won’t provide any meaningful information for choosing the
appropriate sub-task to execute. On the opposite, ifDT

i = ∅,
the variable will never allow JI, meaning that the problem,
as currently modeled, does not admit a solution.

4 Escort Task
We will now describe an application scenario of the pro-
posed framework. This application is part of the COACHES
project. The project aims at deploying a team of mobile as-
sistance robots in a shopping mall, for helping customers
find a navigate to points of interests.

The robots will be built on a Segway mobile base and
equipped with several sensors, including laser range finders,
RGBD cameras and microphone as well as a touchscreen in-
terface, audio speakers and speech recognition and synthesis
for multi-modal interaction with the human. In the shopping
mall, the robots will have several tasks to perform:
• Assistance: provide information and instructions to visi-

tors, display the path towards a chosen point of interest.
• Escort: physically lead the visitor to a desired location.

The visitor and the robot must perform a joint task.
• Security: detect landmarks (eg. wet floor signs) and se-

cure the area.
• Advertisement: “smart”and context-based, depending to

the nearest shop and the customer it is interacting to.
Among these, however, we will focus on the Escort Task.
When a customer asks assistance for reaching a point of
interest, the robot offers to physically guide and escort him
along the way. In such task, the robot does not only have
to lead the human towards a goal position, but also adapt
to its behavior and ensure that the commitment to the joint
task (that is, reaching the location) is preserved, or at least
understand when it is dropped. For example, while moving,
the human may take a different path than the one chosen
by the robot. The human may also temporarily stop, or
change direction, or turn around etc. It may be because he
has changed his mind and does not want to reach the goal
anymore, or because he is lost, or just slightly distracted, or
because he knows an alternative way to reach the location.
A strict leader-follower paradigm is not sufficient, since we
want the robot to adapt to the human behavior and decide
whether “meet him halfway” or not.

4.1 State variables
In order to estimate the current behavior of the human and
try to understand its intentions, we use the robot’s sensors

(mainly a rear camera) to observe two features: the interac-
tion distance and the attention level of the human.
Interaction Distance is the relative distance of the human
with respect to the robot. We use the studies on Proxemics to
define a set of interaction distances. Proxemics (Hall 1966)
have already been applied in robotics to provide more socia-
ble and human-friendly navigations and interactions in pub-
lic spaces (Pandey and Alami 2009). In our work, their main
use is to help in better understanding the human’s behavior:
if the human stays too far from the robot, it may mean that
he needs help or that he is going away, while if he wanted to
follow the robot he would probably stay within the Personal
space distance. The four distances defined by Proxemics are
the following:
• Intimate I : between 0 and 46 cm.
• Personal P : between 46 and 122 cm.
• Social S : between 1.2 and 3.7 m.
• Public U : between 3.7 and 7.6 m. (and beyond)
In addition to the distance, also the Relative Position of the
human with respect to the robot is taken into account: the
human may be situated on the Front, Rear, Left or Right side
of the robot.

The Attention Level, instead, can be estimated by per-
forming some gaze detection and activity recognition pro-
cesses on the rear camera data and trying to determine how
much the human is concentrated on following the robot.
The Attention level consists of the following values:
• F Focused: the human’s attention is focused on the robot.
• D Distracted: the human is slightly distracted. He may be

looking at the shops nearby, or at his phone, or similar
cases.

• L Lost: the human is completely neglecting the robot. He
may be turning back, or concentrated on some activity
other than the joint task.
Following the concepts described in Section 2.1, the Task

status captures the knowledge of the agent about whether the
Termination Conditions hold true or not, and more in general
about the status of the task. The task may be:
• On Ongoing: the goal location has not been reached yet,

but still can be.
• Arr Arrived: the goal location has been reached.
• Imp Impossible: the goal can never be achieved. The no-

tion of irrelevance clause is also included in this state.
Both human and robot have their own Task Status vari-

able. The status as seen by the robot is supposed to corre-
spond to the actual state of the task. The necessity of en-
suring a mutual belief of the task status, however, requires a
separate variable for the human.

The overall Escort Task is to be considered suc-
cessfully achieved when both human and robot have
TaskStatus = Arr, and, of course, they are actually both
at the desired location.

Therefore, the main state variables in our model are the
following:
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• Interaction distance Dist

• Attention level Att

• Relative position Side

• Robot task status Rtask
• Human task status Htask

Now that the state variables are defined and able to gen-
erate the whole state-space, we can define the JI set. Obvi-
ously, a Lost Attention level means that the human is not
cooperating with the robot, and thus negates the JI. Values
Intimate and Public of the Interaction Distance indicate
a distance which is respectively too near and too far for a
good cooperation. The Distract and Social values are con-
sidered “critical”. If the human is slightly distracted while
following the robot, the state is considered acceptable and
belongs to the JI set, since we cannot pretend to have con-
stant attention, but only as long as he is not too far from
the robot (that is, at Personal distance). If the human is
both Distract and at Social distance, then cooperation is
not ensured.

Some examples of situations belonging or not to the JI are
shown in Figure 2. The examples shown correspond to the
following states:
a) x = (P, F,Rear,On,On) ∈ JI
b) x = (P,D,Rear,On,On) ∈ JI
c) x = (S,L,Rear,On,On) 6∈ JI
c) x = (U,F,Rear,On,On) 6∈ JI

Then, for each variable we define which values may or
not admit the JI. Specifically:
DF
Dist = {I, U}; DT

Dist = {P, S}
DF
Att = {L}; DT

Att = {F,D,A}
DF
Side = {Front}; DT

Side = {Rear, Left, Right}
DF
Rtask

= {Arr, Imp}; DT
Rtask

= {On}
DF
Htask

= {Arr, Imp}; DT
Htask

= {On}
Hence, we can build the binary variables of Top layer:

Z = (ZDist, ZAtt, ZSide, ZRtask
, ZHtask

)

4.2 Actions, Observations and Rewards
Primitive actions are divided in two main groups: naviga-
tion and dialogue actions. Navigation include Move actions
(North, East, South, West), Turn actions (TurnLeft
and TurnRight) and the Pause action, which does noth-
ing. Dialogue actions include DrawAttention, where the
robot tries to revert the human to a Focus state, and
CheckStatus, for obtaining a more confident observation
about the HumanTaskStatus. When in doubt, the robot
can ask the human if he still desires going to the specified
location. The answer will provide a great level of certitude
about the joint commitment.

Observations are drawn from the sensors of the robot, usu-
ally after an elaboration process to semantically interpret the
data. For instance, scene recognition, gaze detection and hu-
man behavior estimation techniques may be applied on the
cameras to try to classify the attention level of the human.
Observations may also come from the multi-modal interac-
tion capabilities. This is the case of the observation for the

Human Task status resulting from the CheckStatus action.
In our model, we consider all variables to be observable.

Rewards are of three types. A standard unitary cost of -1
is given for most actions, except for Pause. A huge cost (-
50) is given to states with an Intimate distance to prevent
collision with the human. Lastly, a reward (+100) is given to
the goal state, depending on the current sub-task.

The sub-tasks themselves are mainly four:
• Continue: the robot focuses on moving towards the de-

sired point of interest.
• Navigate: the robot moves in order to re-establish the JI

whenever the human is too far or too close.
• Dialogue: the robot interacts with the human to change

its level of attention or the mutual knowledge of the task
status.

• Cancel: before aborting the task, the robot must attempt
to ensure the mutual knowledge that the task will be ter-
minated.

5 Algorithms
The implementation of the proposed model is still a work in
progress. Here we describe a preliminary version, in which
the state of the system is assumed to be fully observable. We
will also focus on the Navigation subtask for keeping the
Distance and Position of the human within the JI.

5.1 Bottom layer
The bottom layer is implemented as a simple grid world do-
main with discrete coordinates. Coordinates are centered on
the robot, so that only the position of the human and the goal
location are variable. The main purpose of the bottom layer
is to provide observations and contribute in generating the
transition probabilities of the mid level.

The domain of the bottom layer is divided in zones Z,
which correspond to the proxemic distances (Intimate, Per-
sonal, Social and Public). By checking the distance between
the human’s and robot’s position in each state of the bot-
tom level, we define NZ as the number of states belonging
to each Zone. In addition, each zone is divided in three re-
gions: a border region F+(Z) with the successive zone, one
F−(Z) with the previous zone, and a middle region F0(Z).
Each border is defined as the region of a zone where a single
discrete step is sufficient to transitate into another adjacent
zone. Trivially, the Intimate zone does not have a border with
a successive zone, while the Public one does not have a bor-
der with a previous zone. By counting the number of states
NF (Z) belonging to a particular zone region, we can com-
pute the conditioned probability of the human position x to
be in said region as

P (x ∈ F (Z)|x ∈ Z) =
NF (Z)

NZ

with F (Z) ∈ {F+(Z), F0(Z), F−(Z)}.
These probabilities will be used to compute the probabil-

ity of transition from one zone to the other at the intermedi-
ary level. In such way, the exact position of the human is not
known, and the transition probabilities will be less precise,
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Figure 2: Examples of Interaction distance and attention level. a) This case represents the ideal situation for cooperation in the Escort task. b)
As long as the distance is not too far, a slightly distracted behavior is acceptable. c) The human probably is either dropping the commitment
or requires assistance. d) The human is very far, but focused on the robot, meaning probably that he is still cooperating, but needs to catch up
with the robot.

but the abstract mid layer will be completely independent
from the bottom layer during the planning phase. Once the
probabilities are computed, no other information from the
bottom layer is required to generate the policy.

5.2 Mid layer
The intermediate level is divided into several sub-tasks, each
implemented as an independent MDP, capable of generating
a policy within a reduced set of state variables, actions and
with rewards specific for the sub-task.

The transition probabilities for the Interaction Distance
between human and robot are computed by taking into
account both the human and robot movement. The hu-
man movement is given by three possible behaviors:
MoveToRobot, where the human moves one step in the di-
rection of the robot, Deviate, where the human moves one
step in a random direction, and Stay, which is no motion
at all. The probability of each behavior depends on both the
current Attention Level and Interaction Distance, as well as
the robot’s action. These three behaviors are exclusive. The
probability of transition from one zone to the successive,
considering the contribute of the human movement only, is

P (Hsucc|Z) =

P (F+|Z)(P (MoveToRobot|Z) + ϕP (Deviate|Z))

With the notation simplification
P (F+|Z) = P (x ∈ F+(Z)|x ∈ Z) etc.
ϕ ∈ [0, 1] is a constant factor indicating the probability,
among the possible casual directions of Deviate, that the
chosen direction is heading towards the robot. It is also used
for opposite directions for specularity. In a grid world do-

main, there are 8 possible directions, and ϕ is set to
3

8
. Sim-

ilarly, the probability of transition to the previous by the hu-
man is

P (Hprev|Z) = P (F−|Z)ϕP (Deviate|Z))

and the probability to stay in the same zone is simply the
remaining probability since the three possible motions are
exclusive.

P (Hsame|Z) = 1− P (Hsucc|Z)− P (Hprev|Z)

Regarding the contribute of the robot’s movement, the
probabilities are computed simply by checking if the current
action of the robot is heading towards or away from the cur-
rent position of the human, which is independent from the
current zone, and conditioned on the probability of being in
border regions:

P (Raway|Z) = P (Away)P (F−)

P (Rtowards|Z) = P (Towards)P (F+)
P (Rstay|Z) = 1− P (Rtowards|Z)− P (Raway|Z)

The complete probabilities are then computed:
P (x′ ∈ Z + 1|x ∈ Z) =

P (HsuccRtowards ∪HsuccRstay ∪HsameRtowards)

P (x′ ∈ Z − 1|x ∈ Z) =

P (HprevRaway ∪HprevRstay ∪HsameRaway)

P (x′ ∈ Z − |x ∈ Z) =

P (HsameRstay ∪HprevRtowards ∪HsuccRaway)

Other transition probabilities are set with much less
amount of computations.

As already mentioned, each sub-task is implemented as an
independent MDP. For instance, the Navigation sub-task is
described in Algorithm 1. computeT (Sbot, s, a) is the pro-
cedure computing the transition probabilities as explained
in this section. In the current implementation, actions at the
Mid layer have a direct correspondence with primitive ac-
tions, so that the resulting policy π directly translates to a
policy of primitive actions.
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Data: Bottom statespace Sbot
Result: policy π
S ← BuildStates(XDist, XAtt, XSide) ;
forall the action a ∈ Amid do

forall the input state s ∈ S do
forall the output state s′ ∈ S do

Tmid(s, a, s′)← computeT (Sbot, s, a) ;
end

end
end
goalState← (P, F,Rear) ;
π ← V alueIteration(S,Amid, Tmid, Rmid) ;
return π

Algorithm 1: Navigation sub-task algorithm

5.3 Top Layer
The top layer implements the value decomposition method
described in Section 3.3. First, it takes the current state at
Mid level and checks for the values which negate the JI and
also those labeled as critical (defined in Section 4.1). It then
chooses whether to start a Navigate or Dialogue sub-task
to re-establish the JI, based on which variable negates it: in
case of the Dist variable, the Navigate sub-task will try to
move towards or away from the human, while if the human’s
Attention level is Lost, the Dialogue sub-task will try to draw
his attention and change it to Focus.

Data: Mid state-space X
Result: policy π
Z← V alueDecomposition(X) ;
forall the z ∈ Z do

if z = {>,>, ...,>} then
π ← Continue subtask;

else if zDist = ⊥ then
π ← Navigation subtask;

else if zAtt = ⊥ then
π ← Dialogue subtask;

else
Abort task;

end
end
return π

Algorithm 2: Top level algorithm

6 Conclusion and Future Work
We have presented a novel approach to address the prob-
lem of ensuring cooperation between an human and a robot
agent within a collaborative task. We have described the hi-
erarchical structure, based on Factored Partially Observable
Markov Decision Processes, focusing on the Value Decom-
position method developed for building the variables of the
Top layer. We have also described an example application
of human-robot cooperation, an Escort Task for a service
robot in a shopping mall. This example shows how the JI
can be seen as result of several state variables and how act-

ing on the corresponding values contributes to keeping or
re-establishing the cooperation between the agents.

While both JI Theory and POMDPs have been already
applied in Literature for human-robot cooperation scenarios,
we believe that few work has been performed in trying to
integrate the two. The presented framework would therefore
provide a contribute in that sense.

In addition, we believe that an interesting point of our
framework is the diagnostic potential of Value Decompo-
sition: the method presented allows to extract and express
in a concise way all the relevant information about the JI
and the cooperation level of the agents, allowing not only
to establish whether the JI is preserved, but also understand
the reason why it is not.

We plan on developing the implementation of the model,
which is currently at a preliminary stage. We then plan to
test the model at the test-bed shopping center, and to extend
the framework to a multi-agent setting with a decentralized
approach.
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