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Abstract
We propose a declarative framework for representing
and reasoning about truthfulness of agents using answer
set programming. We show how statements by agents
can be evaluated against a set of observations over time
equipped with our knowledge about the actions of the
agents and the normal behavior of agents. We illustrate
the framework using examples and discuss possible ex-
tensions that need to be considered.

Introduction
The recent advancements of AI enable the development of
agents that can replace human in many tasks. Increasingly,
organizations are using web-bots for interacting with clients
in various capacities, e.g., in providing information about
the company or making offers. It is reasonable to believe
that this trend will be continued as long as the Internet exists.
Unfortunately, not every business on the Internet is honest as
one would hope. Stories about businesses that cheat people
of goods or services or wrongly advertise their services are
not uncommon. This leads to the development of businesses
that allow people to rate companies (e.g., expedia.com or
Angie’s List) or defend the reputation of a company or an
entity (e.g., reputation.com).

In this paper we are interested in reasoning about the
truthfulness of agents. We start with an optimistic assump-
tion that agents are truthful unless otherwise proven. We will
judge agents by what they do or what we observe rather than
by what they say. Our observations are made at different
time instances along a linear time line. We assume that what-
ever observed is true at the time it is observed and will stay
true until additional information indicates otherwise. Fur-
thermore, we will need to judge agents even when we do not
have complete information about them. This means that rea-
soning about the truthfulness of agents is a non-monotonic
task that is often done under incomplete information. To il-
lustrate these issues, let us consider the following situations.

1. John said that he does not have money.
We observe that John does not attend college.
Given the above observation, we would likely conclude
that John is being honest in his statement, i.e., we trust
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that John does not have money which does not allow him
to attend a college.

2. We observe that John has a Ferrari.
A common person would normally be unable to afford
a luxury car. At this point, we will likely withdraw our
conclusion about John having no money and classify John
as a liar.

3. We learn that John inherited the Ferrari from his parents.
Inheritance is a possible way to acquire something and
thus we might need to reconsider our position about John
being a liar. Yet, if someone inherits a Ferrari from his
parents then commonsense dictates that the person comes
from an affluent household and thus should have money
(enough to attend a college). All this reasoning implies
that we should not trust John even after this new piece of
information.

4. We learn that John is a gambler.
A gambler is usually penny-less. Luxury items he may
own are likely obtained by gambling rather than pur-
chased. Hence, we might be inclined to trust that John
does indeed have no money.

The above sequence of observations and the associated
reasoning process are rather simple but they illustrate clearly
the way humans reason about the truthfulness of statements
by others and make judgements about each other. The fact
that John does not attend college is observed and is used to
deduce that John does not have (enough) money to attend
college. This makes John’s statement truthful. However, ad-
ditional observations such as John has a Ferrari or inherits
the Ferrari from his family would cause us to withdraw our
conclusion about John being poor, i.e., John’s statement is
untruthful. Yet, an additional observation that John is a gam-
bler will force us to withdraw our latest conclusion about
John and conclude again that his statement is truthful. Un-
derstandably, this process can continue forever and our opin-
ion about John’s statement might or might not change after
each round of new observations.

In this paper, we propose a framework for representing
and reasoning about the truthfulness of agents using Answer
Set Programming, a knowledge representation language use-
ful for commonsense reasoning in presence of incomplete
information (Baral 2003).
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Background: Answer Set Programming
In this section, we will review the basic definitions of An-
swer Set Programming (ASP) (Baral 2003), i.e., the lan-
guage of logic programs under the answer set semantics
(Gelfond and Lifschitz 1990). A logic program Π is a set
of rules of the form

c1 | . . . | ck ← a1, . . . , am, not am+1, . . . , not an (1)

where 0 ≤ m ≤ n, 0 ≤ k, each ai or cj is a literal of
a propositional language1 and not represents negation-as-
failure. A negation as failure literal (or naf-literal) is of the
form not a where a is a literal. For a rule of the form (1),
the left and right hand sides of the rule are called the head
and the body, respectively. Both the head and the body can
be empty. When the head is empty, the rule is called a con-
straint. When the body is empty, the rule is called a fact.

For a rule r of form (1), H(r) and B(r) denote the left
and right hand side of ←, respectively; head(r) denotes
{c1, . . . , ck}; and pos(r) and neg(r) denote {a1, . . . , am}
and {am+1, . . . , an}. For a program Π, lit(Π) denotes the
set of literals occurring in Π.

Consider a set of ground literals X . X is consistent if
there exists no atom a such that both a and ¬a belong to
X . The body of a rule r of the form (1) is satisfied by X if
neg(r) ∩ X = ∅ and pos(r) ⊆ X . A rule of form (1) with
nonempty head is satisfied by X if either its body is not sat-
isfied by X or head(r)∩X 6= ∅. A constraint is satisfied by
X if its body is not satisfied by X .

For a consistent set of ground literals S and a program
Π, the reduct of Π w.r.t. S, denoted by ΠS , is the program
obtained from the set of all ground instances of Π by delet-
ing (i) each rule that has a naf-literal not a in its body with
a ∈ S, and (ii) all naf-literals in the bodies of the remaining
rules.
S is an answer set (or a stable model) of Π (Gelfond and

Lifschitz 1990) if it satisfies the following conditions: (i) If
Π does not contain any naf-literal (i.e. m = n in every rule
of Π) then S is a minimal consistent set of literals that sat-
isfies all the rules in Π; and (ii) If Π does contain some naf-
literal (m < n in some rules of Π), then S is an answer set of
Π if S is the answer set of ΠS . Note that ΠS does not contain
naf-literals; hence its answer set is defined in the first item.
A program Π is said to be consistent if it has a consistent
answer set. Otherwise, it is inconsistent.

An Illustration
In this section, we encode the reasoning process that is used
in the introduction to evaluate John’s statements. We assume
a propositional language that encodes properties of interest
such as has money (John has money), in college (John is
in college), etc. with obvious meaning2. In addition, we will
use special predicates of the form statement(x, t) to denote
that “the statement x is made at time step t,” observed(x, t)

1Rules with variables are viewed as a shorthand for the set of
their ground instances.

2For simplicity, we will not attach the subject (John) to the liter-
als as our discussion focuses on him. The programs and discussions
can easily be extended to consider several subjects simultaneously.

to denote that “we observe x is true at the time step t,” and
h(x, t) to indicate that “x is (believed to be) true at the time
step t.” For simplicity, the representation of time is based on
discrete steps with negligible duration.

John’s statement that he does not have money can be en-
coded by the following formula3.

statement(¬has money, 0). (2)

Our observation that John does not attend colleges is en-
coded as follows.

observed(¬in college, 0). (3)

The common knowledge that attending college normally re-
quires money (i.e., normally, a person does not attend col-
lege then he/she does not have money) can be encoded as
follows.

h(¬has money, T )← h(¬in college, T ), not ab1(T ). (4)

In the above rule, ab1(T ) is used to characterize possible
exceptions to the rule. For example, unqualified individuals
or people who are not interested in a college degree are ex-
ceptions to this rule.

Let π1 be a program consisting of the commonsense rule
(4), the observation (3), and the rules

h(l, N)← observed(l, T ), N ≥ T, not abob(l, T,N). (5)
¬abob(l, T, T )← observed(l, T ) (6)

abob(l, T,N)← h(l, N) (7)

that we will refer to as rules for reasoning about observa-
tions. l denotes the complement of l, i.e., a = ¬a and
¬a = a for an atom a. Rule (5) says that an observation
about l (a literal) is true from the time it is observed unless
otherwise stated. Rule (6) indicates that an observation must
be true at the time it is made. Finally, (7) says that newer
information will override older one. It is easy to see that the
program π1 has a unique answer set S1 consisting of (3) and{

h(¬in college, 0), h(¬has money, 0),
¬abob(has money, 0, 0)

}
Furthermore, h(¬has money, 0) indicates that John does
not have money (at step 0), which means that the literal oc-
curs in the statement (2) is “satisfied” by S1.

Let us consider the second observation. We observe that
John has a Ferrari. This is expressed as follows.

observed(has ferrari , 1). (8)

A person with a Ferrari usually has money. This is encoded
as follows4.

h(has money, T )← h(has ferrari , T ), not ab2(T ). (9)

3We abuse notation slightly and use ¬ in conjunction with rei-
fied properties.

4For simplicity of the presentation, we use a fairly simple rep-
resentation. A more realistic formalization would need to include
the fact that to has a Ferrari one needs to buy it and the action of
buying a Ferrari requires a lot of money. This will ultimately allow
us to conclude that John has money.
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It is easy to see that rules (5)–(6) will allow us to conclude
that h(has money, 1) is true in every answer set of the pro-
gram π2 that consists of π1 and (8)-(9). In fact, it can be
shown that the unique answer set S2 of π2 is the union of
S1, (8), and the two literals{

h(has money, 1), h(has ferrari , 1),
¬abob(¬has money, 0, 1)

}
which indicates that, at step 1, we believe that John does
have money, i.e., John’s statement is not truthful.

Let us consider the next observation that John inherited
the Ferrari.

observed(has ferrari from parent, 2). (10)

Our commonsense knowledge stating that if a person inher-
its a Ferrari then that person would come from an affluent
family and thus would have money is encoded—in a simpli-
fied manner—as follows.

h(has money, T )← h(has ferrari from parent, T ), (11)
not ab3(T ).

Let π3 be the program that consists of π2 and (10)–(11).
Again, we can easily check that this program has a unique
answer set S3 that consists of S2, (10), and the two literals{

h(has money, 2), h(has ferrari from parent, 2)
¬abob(¬has money, 0, 2)

}
which indicates that John has money and thus is not truthful.

Let us now consider the last observation that John is a
gambler. This is expressed by the fact

observed(is gambler, 3). (12)

and our knowledge about gamblers is expressed by

h(¬has money, T )← h(is gambler, T ), not ab4(T ). (13)

A gambler would constitute an exception to the rule (9) as
well as to the rule (11). This means that we also need the
following rules

ab2(T )← h(is gambler, T ). (14)
ab3(T )← h(is gambler, T ). (15)

Let π4 be the program consisting of π3 and the rules (12)—
(15). We can easily check that it has one answer set S4 that
consists of S3, (12), and the literals{

ab2(3), ab3(3), h(is gambler, 3), h(¬has money, 3)
abob(has money, 1, 3), abob(has money, 2, 3)

}
This answer set allows us to conclude that, at step 3, we

believe that John’s initial statement is indeed true.

Our Framework
The previous section provides a glimpse on how answer set
programming can be used in reasoning about the truthful-
ness of agents. We will now present a framework for repre-
senting and reasoning about the truthfulness of (statements
made by) agents. We assume that

• agents’ actions and their effects are fully observable, and
actions have preconditions (e.g., the action of buying a
car requires that the agent has money and its execution
will result in the agent owning a car);

• we can observe over time the occurrence of the agents’
actions and the properties of the world (e.g., observe that
John buys a car; John is a gambler);

• we have a repertoire of commonsense knowledge about
normal behaviors (e.g., a person buying a luxury car nor-
mally has money; a gambler usually has no money).

This leads us to define a knowledge base about an agent as
follows.

Definition 1 A knowledge base (about an agent) over a
propositional language L is a triple 〈ΠA,ΠK ,ΠO〉 where

• ΠA is a program encoding the agents’ actions and their
effects by defining the truth value of literals of the form
h(l, t) where l is a (reified) literal of the language L and
t denotes a time step. That is, ΠA defines the set of agent
actions, specifies their direct effects and their executabil-
ity conditions, and includes rules for reasoning about the
indirect effects;

• ΠK is a program encoding commonsense knowledge that
contains rules defining h(l, t); and

• ΠO is a collection of atoms of the form observed(l, t) or
occurred(a, t) where l is a literal of L, a is action defined
in ΠA, and t is a time step.

Observe that there is extensive literature on reasoning about
actions and change and commonsense reasoning using logic
programming (e.g., (Baral and Gelfond 1994; Gelfond and
Lifschitz 1992; Son et al. 2006)). As such, the two compo-
nents ΠA and ΠK can be adapted from previous research
for the purpose of this paper in a straightforward manner.
For instance, ΠA can follow the proposal given in the semi-
nal paper (Gelfond and Lifschitz 1992); ΠK can contain the
rules (9), (11), (13), and (14)–(15), etc. discussed in the pre-
vious section.

Next, we define the semantics of knowledge bases. For
this purpose, we introduce rules that allow for the reasoning
about observations. Rules (5)–(7) allow for reasoning about
observations of the form observed(l, t). The following rules
are for observations of the form occurred(a, t). For each
action a with executability condition h(p1, t), . . . , h(pn, t),
we include the set of rules

h(pi, t)← occurred(a, t), not aba(t). (i = 1, . . . , n) (16)

This rule says that, if the action a was observed to occur,
then its preconditions must have been satisfied, unless it is
an exception. We will denote the set of rules (5)—(7) and
(16) as ΠR(KB). We define

Definition 2 Given a knowledge base KB =
〈ΠA,ΠK ,ΠO〉, we say that S is an answer set of
KB if and only if it is an answer set of the program
ΠA ∪ ΠK ∪ ΠO ∪ ΠR(KB) under the semantics given in
the background section.

Next, we define the notion of a statement.
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Definition 3 A statement about l of a languageL at the time
step t is an expression of the form statement(l, t).
Intuitively, the expression represents a statement by an exter-
nal source that l holds at the time step t. The next definition
allows for the evaluation of the truthfulness of a statement
against a knowledge base.
Definition 4 Let KB = 〈ΠA,ΠK ,ΠO〉 be a knowledge
base over L. We say that
• statement(l, t) is true w.r.t. KB, denoted KB |=

+statement(l, t), if for every answer set S of KB,
h(l, t) ∈ S.

• statement(l, t) is false w.r.t. KB, denoted KB |=
−statement(l, t), if for every answer set S of KB,
h(l, t) ∈ S.
• statement(l, t) is unknown w.r.t. KB, denoted by
KB 6|= ±statement(l, t), if KB 6|= +statement(l, t)
and KB 6|= −statement(l, t).

The above definition allows for reasoning about statements
against a knowledge base. We consider statements that are
true, false, and unknown as truthful, dishonest, and unde-
cided respectively.
Example 1 Let KB1

John = 〈Π1
A,Π

1
K ,Π

1
O〉 where

• Π1
A = ∅

• Π1
K is the set of rules (4), (9), (11), (13), (14)–(15)

• Π1
O is the set of facts (3), (8), (10), and (12).

We can easily check that
• KB1

John |= statement(¬has money, 0)

• KB1
John |= −statement(¬has money, 1)

• KB1
John |= −statement(¬has money, 2)

• KB1
John |= statement(¬has money, 3)

This reflects correctly our sentiment regarding John’s state-
ment about him not having money given the sequence of ob-
servations about John.

Next, we change the example slightly to account for ob-
servations about action occurrences.
Example 2 Consider the action of buying an expensive car
like a Ferrari (buy car). We know that a pre-condition of
this action is money, i.e., an agent executing this action
must have money. Let us know consider the KB2

John =
〈Π2

A,Π
2
K ,Π

2
O〉 where

• Π2
A consists of the encoding of the action buy car (e.g.,

following the representation described in (Gelfond and
Lifschitz 1992)).

• Π2
K is the collection of rules (4), (9), (11), (13), and (14)–

(15)
• Π2

O is the set of facts (3), (10), and (12), and the new
observation, shown below, instead of (8).

occurred(buy car, 1)

Notice that ΠR for KB2
John contains the following rule

h(has money, T )← occured(buy car, T ), (17)
not abbuy car(T ).

that is an instance of (16). It is easy to see that

• KB2
John |= statement(¬has money, 0)

• KB2
John |= −statement(¬has money, 1)

• KB2
John |= −statement(¬has money, 2)

• KB2
John |= statement(¬has money, 3)

i.e., our conclusions on the statement do not change.

Conclusions and Discussion
We describe a framework based on answer set programming
for reasoning about the truthfulness of agents. We show that
the task can be achieved by combining the three compo-
nents, our knowledge about the agent’s actions, our com-
monsense knowledge about the world, and our observations
about the agents. To the best of our knowledge, no such for-
malization exists.

In the literature, dishonesty and lying have been inves-
tigated from different perspective. The focus has been on
defining what is a lie (Mahon 2008) or a bullshit (Frankfurt
2005) in a static environment. Our framework takes into con-
sideration changes in the environment that can be the result
of the agents’ own actions and/or our knowledge about nor-
mal behaviors. So far, we only attempted to evaluate simple
statements, i.e., statements about literals. One of our imme-
diate desires is to extend the framework to allow the rea-
soning about the truthfulness of statements about rules, e.g.,
“John said that he does not attend college because he does
not have money.”
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