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Abstract

This paper analyzes repeated multimarket contact with
observation errors where two players operate in mul-
tiple markets simultaneously. Multimarket contact has
received much attention from the literature of eco-
nomics, management, and information systems. Despite
vast empirical studies that examine whether multimar-
ket contact fosters cooperation/collusion, little is theo-
retically known as to how players behave in an equi-
librium when each player receives a noisy observation
of other firms’ actions. This paper tackles an essentially
realistic situation where the players do not share com-
mon information; each player may observe a different
signal (private monitoring). Thus, players have diffi-
culty in having a common understanding about which
market their opponent should be punished in and when
punishment should be started and ended. We first the-
oretically show that an extension of 1-period mutual
punishment (1MP) for an arbitrary number of markets
can be an equilibrium. Second, by applying a verifica-
tion method, we identify a simple equilibrium strategy
called “locally cautioning (LC)” that restores collusion
after observation error or deviation. We then numeri-
cally reveal that LC significantly outperforms 1MP and
achieves the highest degree of collusion.

Introduction
This paper analyzes repeated multimarket contact with ob-
servation errors where two players operate in multiple mar-
kets simultaneously. A company usually sells a variety of
goods across multiple markets and often supplies an identi-
cal good to areas that are geographically apart, e.g., U.S. and
Japan. In such a multimarket contact situation, it is pointed
out that tacit collusion among companies is likely to oc-
cur (Chellappaw, Sambamurthy, and Saraf 2010). Therefore,
multimarket contact has received much attention from the
literature of economics, management, and information sys-
tems. However, despite vast empirical studies (Yu and Albert
A. Cannella 2013) that have examined whether multimarket
contact fosters cooperation/collusion, little is theoretically
known as to how players behave in an equilibrium when
each player receives a noisy observation of other firms’ ac-
tions.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Without noisy observation, i.e., under perfect monitor-
ing where each player can observe his opponent’s action,
the theoretical results in the single market case can be ap-
plied (Bernheim and Whinston 1990). When a strategy for a
single market is an equilibrium, the joint strategy for multi-
ple markets is an equilibrium. However, there exists no equi-
librium strategy such that players can increase their profit
aggregating the information from the multiple markets. With
noisy observation, one exception is a case where players
do share common information; all players always observe
a noisy, but common signal (public monitoring). A general-
ization of the trigger strategy is an equilibrium and optimal
among the possible strategies (Kobayashi and Ohta 2012).
However, the trigger strategy is no longer an equilibrium in
a case where players do not share common information on
each other’s past history; each player may observe a differ-
ent signal (private monitoring).

Analytical studies on this class of games have not been
very successful. This is because finding (pure) strategy equi-
libria in such games has been considered to be extremely
hard. Indeed, it requires very complicated statistical infer-
ences to estimate the history a player reaches at a period and
to compute the continuation payoff from the period on (Kan-
dori 2010). As a result, such analysis has been possible for
only very restricted distributions of signals such as belief-
free equilibria where an optimal strategy is constructed so
that a player’s belief (about her opponent) does not mat-
ter (Ely, Horner, and Olszewski 2005).

Recently, Kandori and Obara (2010) establish a connec-
tion between the partially observable Markov decision pro-
cess (POMDP) (Kaelbling, Littman, and Cassandra 1998)
and private monitoring, by employing belief-based strategy
representation. Iwasaki et al. (2014) further develop a com-
putationally feasible algorithm to verify whether a strategy
profile can constitute an equilibrium. Accordingly, this en-
ables us to analyze equilibria for arbitrary distributions of
signals.

Building upon those studies, we first examine a finite
state automaton (FSA) that follows a strategy called J-1MP,
which is the joint version of 1MP in Fig. 11 for an arbitrary
number of markets. Each player acts according to 1MP in

1Here, g or b is a private signal, (good or bad), which is a noisy
observation of opponent action C or D (cooperate or defect).
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each market. It is quite natural that if 1MP is an equilib-
rium in a single market, J-1MP is in multiple markets. How-
ever, J-1MP is still a very important benchmark to consider
the multimarket contact situation. In addition, to the best of
our knowledge, we are the first to analytically characterize a
condition where 1MP is an equilibrium under private moni-
toring. By observing this result, even in a single market, we
illustrate the difficulty of analyzing equilibria under private
monitoring.

This paper aims to find an FSA that can form an equi-
librium and that achieves a better payoff than J-1MP. To this
end, we exhaustively search for small-sized FSAs in the case
of two markets and find a novel FSA called “locally caution-
ing (LC)” depicted in Fig. 5a. Furthermore, the exhaustive
search confirms that no other FSA that can be an equilib-
rium is more efficient than LC.

Under this FSA, a player first cooperates in each market.
If her opponent defects in both markets, she also defects only
in either market. However, after one period of mutual co-
operation in the market where she continues to cooperate,
she returns cooperation in both markets. Requiring such a
mutual cooperation is beneficial in establishing a robust co-
ordination among players. Such LC behavior resembles tit-
for-tat (TFT): she returns to cooperation after observing her
opponent’s cooperation, ignoring the outcome in the market
she is punishing (Fig. 2). The surprising feature is that LC
can be an equilibrium across substantially different private
monitoring structures.

Related literature
Let us briefly explore the literature of repeated games in
economics and multi-agent systems. In economics, the main
body of repeated games is understanding how cooperation
among self-interested players is sustained in long-term rela-
tionship (Mailath and Samuelson 2006; Kandori 2010). Per-
fect monitoring has been considerably investigated: folk the-
orems and one-shot deviation principle. Those results can be
extended to imperfect public monitoring. In contrast, imper-
fect private monitoring remains considerably less explored,
though it is closely related to multi-agent systems in an envi-
ronment with uncertainty such that each agent (player) par-
tially observes the state of the environment.

In multi-agent systems, there are many streams associ-
ated with repeated games (Burkov and Chaib-draa 2013):
the complexity of equilibrium computation (Littman and
Stone 2005; Borgs et al. 2008) multi-agent learning (Blum
and Monsour 2007; Shoham and Leyton-Brown 2008),
POMDP (Hansen, Bernstein, and Zilberstein 2004; Doshi
and Gmytrasiewicz 2006; Wu, Zilberstein, and Chen. 2011;
Wunder et al. 2011), and so on.

Traditionally, POMDP imposes partial observability on an

opponent’s strategy (behavior rule) and not for opponent’s
past actions. The main objective is guessing an optimal (best
reply) strategy against an unknown strategy (not always
fixed) from perfectly observable actions (perfect monitor-
ing). On the other hand, our objective is checking whether
a given strategy profile is a mutual best reply after any his-
tory, i.e., finding an equilibrium, with partially observable
actions (private monitoring). Therefore, the private moni-
toring problem is significant and remains difficult to solve,
though it has been missed in the POMDP literature.

POMDP also focuses mainly on “cooperative” environ-
ments where multiple agents share a common goal, i.e., no
conflict of interest such as an ad-hoc team setting (Hansen,
Bernstein, and Zilberstein 2004; Wu, Zilberstein, and Chen.
2011). In contrast, this paper applies the POMDP tech-
nique to “competitive” environments where they have some
conflict of interest such as prisoners’ dilemma and the
lemonade-stand game (Doshi and Gmytrasiewicz 2006;
Wunder et al. 2011).

To the best of our knowledge, very few existing works
have addressed such environments and focused on finding
equilibria under private monitoring. That being said, par-
tially observable stochastic games (POSGs) are a general-
ization of private monitoring if the opponent’s actions are
partially observable (they often are not, though). As one ex-
ception, Hansen, Bernstein, and Zilberstein (2004) develop
an algorithm that iteratively eliminates dominated strate-
gies. However, this algorithm can not identify a coopera-
tive equilibrium in a competitive environment, e.g., in pris-
oners’ dilemma, a cooperative action is dominated. Doshi
and Gmytrasiewicz (2006) propose an algorithm for general
POSGs that converges to an equilibrium, which is different
from ours. However, they do not successfully develop a new
concrete strategy in any game. show only the concept and
the algorithm This paper raises multimarket contact as an
important issue, elaborates a theoretical structure of the pri-
vate monitoring problem as a POMDP, and finds an entirely
novel strategy. Accordingly, we believe that it casts light on
a new research frontier for POMDP.

Model
Let us consider N = {1, 2} to be the set of two players
(firms) competing in two markets Z = {A,B} simultane-
ously. Each player repeatedly plays the same stage games
over infinite horizon t = 0, 1, . . .. In each period, player i
in market z takes some action azi from a finite set Azi =
{C,D}. We denote actions for player i in both markets by
ai = (aAi , a

B
i ) ∈ Ai = Πz∈ZA

z
i and an action profile by

a = (a1, a2) ∈ Πi∈NAi. Player i’s expected payoff in mar-
ket z in a period is given by a stage game payoff function
gzi (az) for z, where az = (az1, a

z
2) ∈ Πi∈NA

z
i is the ac-

tion profile in that period. A stage game payoff gi(a) is de-
fined as the sum of the stage game payoffs for each market:
gi(a) =

∑
z∈Z g

z
i (az).

Within each period, each player’s private signal for mar-
ket z is ωzi ∈ Ωzi , which is a noisy observation of the
opponent’s action for that market. Let us introduce the
joint distribution of private signals oz(ωz | az) for z. Let
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ωi = (ωAi , ω
B
i ) ∈ Ωi = Πz∈ZΩzi denote an observa-

tion for player i. We assume that the private signals of each
market are independently distributed and are unaffected by
the actions taken in the other market. Formally, o(ω|a) =
Πz∈Zo

z(ωz | az) where ω = (ω1, ω2). We also assume that
no player can infer which action was taken (or not taken)
by another player for sure; to this end, we assume that each
signal profile ω occurs with a positive probability for any a
(full support assumption).

Player i’s expected discounted payoff Vi from a sequence
of action profiles a(0), . . . ,a(t), . . . is

∑∞
t=0 δ

tgi(a(t)),
with discount factor δ ∈ (0, 1). The discounted average
payoff (payoff per period and market) is defined as (1 −
δ)Vi/|Z|.

Strategy representation and equilibrium concept
A private history for player i at the end of time t is the record
of her past actions and signals,

hti = (ai(0), ωi(0), . . . , ai(t), ωi(t)) ∈ Ht
i := (Ai × Ωi)

t+1.

To determine the initial action of each player, we introduce
a dummy initial history (a null history) h0

i and let H0
i be a

singleton set {h0
i }. A pure strategy si for i is a function spec-

ifying an action after any history, or, formally, si : Hi → Ai,
where Hi =

⋃
t≥0H

t
i .

A finite state automaton is a popular approach for com-
pactly representing the behavior of a player. An FSA M is
defined by 〈Θ, θ̂, f, T 〉, where Θ is a set of states, θ̂ ∈ Θ is
an initial state, f : Θ → Ai determines the action choice
for each state, and T : Θ × Ωi → Θ specifies a determinis-
tic state transition. T (θ(t), ωi(t)) returns next state θ(t+ 1)
when the current state is θ(t) and the private signal is ωi(t).
We call an FSA without the specification of the initial state,
i.e., m = 〈Θ, f, T 〉, as a finite state preautomaton (pre-
FSA).m denotes a profile of pre-FSAs,

Assume that player j(6= i) acts based on mj . A belief
of i is a probability distribution over the current state of j,
which is represented as bi ∈ ∆(Θj), where Θj = Θ due to
symmetry and ∆(Θ) represents the probability distribution
on Θ. Let θ denote the state profile (θi, θj). bi(θj) denotes
the probability that the states of j are θj . For example, if
two players act based on 1MP in Fig. 1, bi is represented
as a vector of two elements: (bi(R), bi(P )). However, since
bi(R) + bi(P ) = 1, we have only one degree of freedom.
Thus, we represent bi by the value of bi(R).

We adopt a belief-based strategy representation (Bhaskar
and Obara 2002), and represent player i’s strategy as tuple
(mi, Di, θ̂i). Game theory requires that a strategy be a com-
plete contingent action plan. In other words, a strategy of a
player not only specifies her equilibrium behavior (i.e., on-
path plan), but it must also describe what she should do after
deviating from it. Mathematically, a strategy in game the-
ory is represented by a mapping from a private history to a
current action.

Now, we formally define a belief division. as well as sev-
eral related conditions. Belief division Di of player i is an
array (D1

i , . . . , D
ki
i ), such that ∀Dl

i ∈ Di, D
l
i ⊆ ∆(Θ).

We assume each Dl
i is associated with each state θli ∈ Θi

of player i’s pre-FSA mi. Di is covering if
⋃
Dl

i∈Di
Dl
i =

∆(Θ). We also describe the profile of belief divisions asD.
Let χi[(ai, ωi), bi] denote the posterior belief for i where

the current belief is bi, the current action is ai, and the ob-
tained observation is ωi, assuming other players act based
on mj . For history hti, χi[h

t
i, bi] denotes a posterior belief

after observing hti starting from bi. These beliefs can be cal-
culated by Bayes’ rule for any hti and bi because of the full
support assumption.

We analyze a (symmetric) pure-strategy equilibrium,
where both players have an incentive to start at the common
stateR assuming that the opponent starts the same state. Ini-
tial joint state θ̂ = (θ̂1, θ̂2) is (R,R) and thus the initial
belief bi is one.

Definition 1 (Resilient finite state equilibrium) A tuple
(m,D, θ̂) forms a pure resilient finite state equilibrium
(RFSE) if the following conditions hold:

(i) D accommodates θ̂, i.e., for any history starting at θ̂ no
posterior is outside belief divisionD.

(ii) for any i ∈ N , for any belief bi after any history starting
at θ̂, and for all l with bi ∈ Dl

i, an FSAMi = (mi, θ
l
i) is a

plan or behavior that maximizes her expected discounted
payoff given i’s belief bi.

This definition implies that RFSE is a sequential equilib-
rium with initial joint state θ̂. Iwasaki et al. (2014) call the
equilibrium resilient, because a player always goes back to a
particular state of pre-FSAmi after any deviation. It must be
emphasized here that we are not restricting the possible strat-
egy spaces of players (i.e., we are not assuming that players
can only use FSAs).

Verification method
Assuming player j acts based on mj , player i confronts
POMDP, where the state of the world is represented by the
state of j’s pre-FSA. An optimal policy in this POMDP cor-
responds to an optimal belief-based strategy. Let vθi , where
θ = (θi, θj), be player i’s expected discounted payoff asso-
ciated with (mi, θi). Based on the joint pre-FSA, we obtain
vθi by solving a system of linear equations defined as fol-
lows, where θ′ = T (θ,ω), i.e., θ′ is the next joint state:

vθi = gi(f(θ)) + δ
∑

ω∈Πi∈NΩi

vθ
′
i · o(ω | f(θ)). (1)

VMi
i (bi) denotes the expected discounted payoff (or the

continuation payoff) of player i, when her belief of j’s state
is bi, where i acts based on an FSA Mi and j acts based
on mj . In particular, V (mi,θi)

i (bi) is
∑
θj∈Θj

v(θi,θj)bi(θj).

Note that V (mi,θi)
i (bi) is linear in belief bi. The upper en-

velop of these expected discounted payoffs is called mi’s
value function in the POMDP literature.

The concept of a one-shot extension (Kandori and Obara
2010) (also known as a backup operator) is convenient to
prove the optimality of an FSA.
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Figure 3: Expected discounted payoffs where Eqs. 2 and 3
hold.

Definition 2 (One-shot extension) For pre-FSA mi, its
one-shot extension, denoted as (ai, ((ω1, θω1), . . .)), is a
new FSA created as follows: (1) it has new initial state θ′i,
where ai ∈ Ai, is played, (2) after ωi is observed, FSA
(mi, θωi) is played, where θωi ∈ Θ.

Next we describe the set of all one-shot extensions of mi

as Ex(mi). Note that Ex(mi) has a finite number of ele-
ments (= |Ai| · k|Ωi|

i , where ki is the number of states in
mi). We define a belief division such that no profitable one-
shot extension exists, which we call a target belief division.

Definition 3 (Target belief division) Target belief division
D̂i for player i is a belief division, where each D̂l

i is chosen
so that the following condition holds: ∀bi ∈ D̂l

i

V
(mi,θ

l
i)

i (bi) ≥ VMi
i (bi),∀Mi ∈ Ex(mi).

Figure 3 illustrates an example when two players act ac-
cording to 1MP. The x-axis shows the belief of player i, and
the y-axis shows the expected discounted payoffs of 1MP
and its one-shot extension. For instance, V (mi,R)

i is the pay-
off when player i starts at R at a period and follows 1MP.
Given current belief bi, V DPi (bi) is the payoff of a one-
shot extension where i plays D at a period and, regardless
of the current observation, follows 1MP from state P from
the next period on. The target belief division D̂i consists of
D̂P
i = [0, b∗] and D̂R

i = [b∗, 1]. Because D̂i is covering, the
optimal continuation plan given bi is always included in mi.
If the current belief is b, starting at R is the optimal plan and
the continuation payoff is V (mi,R)

i (b). However, as we show
in Fig. 4, it may be a case that the optimal continuation plan
is not included in a pre-FSA.

The target belief division is useful in verifying RFSE be-
cause the following theorem holds.

Proposition 1 (Theorem 1 (Iwasaki et al. 2014)) A profile
of pre-FSAs m and θ̂ form a pure RFSE iff D̂ accommo-
dates θ̂.

This proposition assures that unless for any player i and
for any history hti starting from θ̂i, her belief bi (updated by
Bayes’ rule) goes outside the target belief division D̂i, pre-
FSA mi gives an optimal continuation plan, i.e., the best
reply for all i. Thus, (m, D̂, θ̂) is an equilibrium.

az2 = C az2 = D
az1 = C 1, 1 −y, 1 + x
az1 = D 1 + x,−y 0, 0

Table 1: Prisoners’ dilemma in market z.

ωz2 = g ωz2 = b
ωz1 = g p q
ωz1 = b q s

(a) (az1, a
z
2) = (C,C)

ωz2 = g ωz2 = b
ωz1 = g q s
ωz1 = b p q

(b) (az1, a
z
2) = (C,D)

Table 2: Joint signal distributions under nearly-perfect mon-
itoring.

Stage game and monitoring structures

The stage game payoff is the sum of gzi (az) for each mar-
ket. Given x > 0 and y > 0, the payoff for each market
z is defined in Tab. 1. We consider this prisoners’ dilemma
(PD) throughout this paper. Each player’s private signal ωi ∈
{(g, g), (g, b), (b, g), (b, b)}. For example, when the oppo-
nent chooses C in each market, player i is more likely to
receive correct signal ωi = (g, g) in both markets, but some-
times observation error provides a wrong signal: ωi = (g, b),
(b, g), or (b, b).

In what follows, we describe some monitoring structures
concentrating on a single market case without loss of gener-
ality. There are two representative classes of private monitor-
ing: nearly-perfect and almost-public. Monitoring is nearly-
perfect if each player can identify the action taken by her
opponent with errors, and it is almost-public if all players
receives the same public signal with errors. Due to the space
limitation, let us focus on nearly-perfect monitoring

Table 2 shows the joint distribution of private signals
oz(ωz | az) for PD under nearly-perfect monitoring. When
the action profile is (C,C), the joint distribution is given in
Tab. 2a (when the action profile is (D,D), p and s are ex-
changed). Notice that the probability that players 1 and 2 ob-
serve (g, g) is p, and the probability that they observe (g, b)
is q. Similarly, when the action profile is (C,D), the joint
distribution of the private signals is given in Tab. 2b When
the action profile is (D,C), p and s are exchanged. These
joint distributions of private signals require the constraints
of p + 2q + s = 1. In addition, p is required to be much
larger than q or s. Private monitoring is a generalization of
perfect monitoring. In fact, if q = 0 and s = 0, Table 2 is
equivalent to perfect monitoring.

In the theory and simulation of repeated games, TFT is
much more popular than 1MP. However, since it does not
prescribe mutual best replies after a deviation, it is not a sub-
game perfect Nash equilibrium (SPNE), but 1MP is under
perfect monitoring. Under imperfect monitoring, whether an
FSA can be a sequential equilibrium depends on the mon-
itoring structure. Important lessons are that under almost-
public monitoring, TFT can be an equilibrium, but not 1MP
and that under nearly-perfect monitoring, 1MP can be an
equilibrium, but not TFT (Iwasaki et al. 2014).
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1-period mutual punishment under
nearly-perfect monitoring

This section considers the 1-period mutual punishment
(1MP) shown in Fig. 1. This FSA is also known as “win-
stay, lose-shift (Nowak and Sigmund 1993).” According to
this FSA, a player first cooperates. If her opponent defects,
she also defects, but after one period of mutual defection,
she returns to cooperation. We extend 1MP and consider a
pre-FSA where each player behaves according to the 1MP
for each market and let the FSA be the joint 1MP (J-1MP).
This FSA is an important benchmark to consider multimar-
ket contact.
Theorem 1 Under nearly-perfect monitoring where p, q,
s = 1 − p − 2q, and p > s > q, J-1MP forms a pure
RFSE starting from (R,R) for each market if and only if

δ ≥ (p− s+X)x+ (p− s−X)y

2(p− s)X and (2)

δ ≥
Y +

√
Y 2 + 4(p− s)(s− q)x
2(p− s)(s− q) (3)

both hold where X = p + q −
√

(q − s)2 + 4pq and Y =
−p+ qy + (1 + x)s.

Theorem 1 is straightforwardly derived from the follow-
ing lemma.

Lemma 1 Under the same setting as Theorem 1, 1MP forms
a pure RFSE starting from (R,R) if and only if Equations 2
and 3 hold.

To the best of our knowledge, the necessary and suffi-
cient condition under which 1MP is an equilibrium under
private monitoring has not been identified, even in the case
of a single market. Equations 2 and 3 are both related to a
one-shot extension (deviation), which plays D in the current
period and follows 1MP from state P from the next period
on. Equation 2 requires that this deviation does not improve
the payoff at a history where a player has observed a very
long string of (D, b), and Equation 3 requires that it does
not improve the payoff at the initial history. It is possible
that one of the RHSs of Equations 2 and 3 is greater than or
equal to one. If so, 1MP never forms an equilibrium.

Proof 1 If part: Suppose Equations 2 and 3 hold. First, de-
rive the expected discounted payoffs (we use continuation
payoffs interchangeably) for each joint state of 1MP, which
is either RR, RP , PR, or PP . Each is a solution of Eq. 1:
vRRi , vRPi , vPRi , and vPPi .

For given belief bi, the continuation payoffs of the follow-
ing 1MP starting at R and P are given by

V
(mi,R)
i (bi) = biv

RR
i + (1− bi)vRPi and

V
(mi,P )
i (bi) = biv

PR
i + (1− bi)vPPi

which are illustrated in Fig. 3. Next, let b∗ be a belief such
that V (mi,R)

i (b∗) = V
(mi,P )
i (b∗): a player is indifferent as

to which state to start, as long as she conforms to 1MP. For-
mally, b∗ is uniquely derived so that

b∗ =
vPPi − vRPi

vRRi − vRPi − vPRi + vPPi
=

y + δ(p− s)
y − x+ 2δ(p− s) .

Clearly, 1/2 < b∗ holds from x > 0 and y > 0. By trans-
forming Eq. 2, we obtain

δ(p− s)− x ≥
{√

(q − s)2 + 4pq − q − s
}

(x+ y)

2
{
p+ q −

√
(q − s)2 + 4pq

} .

Since the denominator and the numerator are positive,
δ(p − s) > x holds and thus b∗ < 1 holds. Therefore,
b∗ ∈ (1/2, 1).

Now we show that under any belief bi and each of eight
possible one-shot extensions Mi ∈ Ex(mi),

max
{
V

(mi,R)
i (bi), V

(mi,P )
i (bi)

}
≥ VMi

i (bi). (4)

This is sufficient to prove the “if” part, because
V

(mi,R)
i (bi) ≥ V

(mi,P )
i (bi) holds if and only if bi ≥ b∗.

Hence, the belief divisions such that D̂P
i = [0, b∗] and

D̂R
i = [b∗, 1] for each i = 1, 2 are target belief divi-

sions, and they are covering and therefore accommodate
θ = (R,R). Accordingly, the 1MP profile forms an RFSE.

Note first that Equation 4 clearly holds ifMi is equivalent
to (mi, R) or (mi, P ):Mi playsC and shifts to stateR after
observing g and shifts to P after b, or Mi plays D and shifts
to R after b and P after g.

Next, note that for any bi, Bayes’ rule implies

χi
[
(C, b), bi

]
=

q

bi(s+ q) + (1− bi)(p+ q)
<

1

2
,

where the inequality follows from p > s > q. Similarly, we
have χi

[
(D, g), bi

]
< 1/2. Since 1/2 < b∗, this implies

that any one-shot extension which shifts to state R when the
current outcome is either (C, b) or (D, g) is dominated by
one that instead shifts to state P after (C, b) or (D, g).

Consequently, it suffices to prove Eq. 4 for the follow-
ing two one-shot extensions; playing D and always mov-
ing to state P (DP), and playing C and always moving to
state P (CP).

If the continuation payoff of DP given belief bi, V DPi (bi),
satisfies V (mi,P )

i (bi) ≥ V DPi (bi) for any bi, Equation 4
holds for DP. Suppose otherwise and b < 1 exists such that
V

(mi,P )
i (b) is equal to V DPi (b). We have χi

[
(D, b), b

]
=

b∗:
bs+ (1− b)p

b(q + s) + (1− b)(p+ q)
= b∗.

This is because DP and (mi, P ) differ only after (D, b) and
are indifferent if χi

[
(D, b), b

]
= b∗. Solving this, we obtain

b =
p− b∗(p+ q)

(1− b∗)(p− s) .

Since χi
[
(D, b), bi

]
is decreasing in bi, V

(mi,P )
i (bi) is

smaller than or equal to V DPi (bi) if and only if bi ≥ b.
Hence Equation 4 holds if both V DPi (1) ≤ V

(mi,R)
i (1)

and b∗ ≤ b hold. Some calculations show that V DPi (1) ≤
V

(mi,R)
i (1) is equivalent to Eq. 3, though we omit the de-

tails due to space limitations. b∗ ≤ b is equivalent to
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Figure 4: Expected discounted payoffs where Equation 2 is
violated.

(p − s)(b∗)2 − (2p + q − s)b∗ + p ≥ 0. Solving this, we
obtain

b∗ ≤
2p+ q − s−

√
(q − s)2 + 4pq

2(p− s) .

Using the definition of b∗ and solving for δ, we see that this
is equivalent to Eq. 2.

Finally, for CP, due to the symmetry of the signal distribu-
tions, by applying a similar argument to DP, we can prove
that Equation 4 holds if Equations 2 and 3 hold.
Only if part: Suppose first that Equation 2 fails. Then b∗ > b
follows, which is shown in Fig. 4. Now no target belief divi-
sion D̂i is covering; V DPi (bi) exceeds V (mi,P )

i on (b, b∗).
We show that player i’s belief is in the range under some
history, i.e, no D̂i accommodates θ.

To this end, let b̃ be a belief such that χi
[
(D, b), b̃

]
= b̃.

Since χi
[
(D, b), bi

]
is decreasing in bi, b̃ uniquely exists. For

any bi and b′i 6= bi, we have

(bi − b′i)
{
χi
[
(D, b), bi

]
− χi

[
(D, b), b′i

]}
< 0.

Letting bi = b and b′i = b̃ and recalling χi[(D, b), b] = b∗,
we obtain (b − b̃)(b∗ − b̃) < 0. Since b∗ > b, b < b̃ < b∗

follows.
Let b(t) be player i’s belief when she observed (D, b) in

all past t periods. For any t, we have

b(t+ 2)− b(t) =
b(t+ 1)s+

{
1− b(t+ 1)

}
p

b(t+ 1)(q + s) +
{

1− b(t+ 1)
}

(p+ q)
− b(t)

=
(p− s)

{
b(t)

}2 − (2p+ q − s)b(t) + p{
b(t)s+

(
1− b(t)

)
p
}

(q + s) + q(p+ q)
(q + s).

Since this equation is decreasing in b(t) and zero at b(t) = b̃,
it is nonnegative if b(t) ≤ b̃ and nonpositive if b(t) ≥ b̃.
Therefore, b(t) converges to b̃ as t → ∞. This proves that
player i’s belief is in (b, b∗), as is desired.

Finally, suppose Equation 3 fails. Then DP clearly attains
a greater payoff at the initial history, i.e., bi = 1. Thus, this
contradicts that 1MP forms an RFSE.

Note that the posterior belief that followed from b̄ is a cru-
cial role for 1MP to be an equilibrium. Indeed, when 1MP is
not an equilibrium, at the posterior (in this case b∗), the cor-
responding one-shot extension is profitable. From this fea-
ture, we would like to consider a more efficient verification
algorithm in future work.

R

(g,*), (b,g)

(b,b)
P

(b,*)

ai=(C,C) ai=(C,D)
(g,*)

(a) Locally-cautioning

R

(g,*), (b,g)

(b,b)
P

(g,g)

ai=(C,C) ai=(D,D)
(g,b), (b,*)

(b) Globally-cautioning

Figure 5: New FSAs for two markets: ∗ indicates g or b.

Locally cautioning
This section investigates novel FSAs in Figs. 5a and
5b, which we call locally-cautioning (LC) and globally-
cautioning (GC). Unfortunately, it is extremely difficult to
analyze these FSAs with equal clarity as in Theorem 1. In-
deed, we have to find out which one-shot extensions are
most relevant from the 4 · 24 = 64 one-shot extensions even
when the number of markets is two (1MP has only eight)
and verify that they do not improve the continuation payoff.
Accordingly, we entrust the verification task to a numerical
analysis.

In what follows, the stage game payoff is set from x =
y = 0.12 and the discount factor δ is fixed at 0.9, while the
parameters of the joint signal distributions p, q, and if nec-
essary p′ vary. s and s′ are derived from those parameters.
With these settings, using the verification method (Iwasaki et
al. 2014) we exhaustively search for small-sized FSAs that
are an equilibrium. We enumerate all possible FSAs with
two or fewer states, i.e., |A||Θ| · |Θ||Θ|·|Ω|=4096 FSAs, and
check whether they form an RFSE. For FSAs with three
states, it is impossible to enumerate all possible FSAs be-
cause we require about 34 millions of them (43 × 33×4 =
34, 012, 224). Thus, an exhaustive search is currently in-
tractable. However, we examined three state FSAs that we
infer from LC and GC and will mention later. As a result of
an exhaustive search with two state FSAs, we found that LC
is the most efficient (achieves the highest average payoff)
among the FSAs that are RFSE in a reasonably wide range
of signal parameters and that GC is the most efficient among
such FSAs that a player at state P defects in both markets.

In LC, a player first cooperates in both markets. If her op-
ponent defects in both of them, she also defects in either of
them. However, after one period of mutual cooperation in
the market that she continues to cooperate, she returns co-
operation. We say that she locally cautions (defects in either
of markets) her opponent when she punishes him. In GC, a
player at state R behaves similarly to LC. However, when a
player punishes her opponent, she globally cautions her op-
ponent (defects in all markets). After punishment, she con-
tinues punishment only if she observes cooperation in both
markets. Otherwise, she returns to cooperation.

Under nearly-perfect monitoring, in addition to J-1MP,
both LC and GC can be sequential equilibria (RFSE). Fig-
ure 6 illustrates the range of signal parameters over which
LC is RFSE. For comparison, we show the ranges where
J-1MP and GC are RFSE. We can see that LC and GC
are RFSE in a reasonably wide range of signal parameters,
though the range is smaller than J-1MP. When the proba-
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Figure 6: Range of signal parameters over which J-
1MP/LC/GC is RFSE under nearly-perfect monitoring. Note
that the feasible parameter space is p+ 2q ≤ 1.
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Figure 7: Average payoffs under nearly-perfect monitoring
(q = 0.04).

bility that either agent receives the wrong signal (one-error)
is quite small (q ; 0), LC is RFSE in the range of signal
of no-error p ∈ [0.65, 0.82]. As the one-error probability
becomes larger (q > 0.13), LC is no longer RFSE. GC is
RFSE in a wider range of no-error probabilities than LC
(p ∈ [0.58, 0.91]). However, GC is not RFSE for q > 0.06,
which is smaller than the upper bound of LC. J-1MP is the
most robust against noisy observation and completely over-
lays the regions of LC and GC. Note that J-1MP’s region
includes the case of q > s which corresponds to the bottom-
left side of q = 1/3− p/3 in Fig. 6. The numerical verifica-
tion also shows that Theorem 1 covers most of the J-1MP’s
region.

Now, let us examine the average payoffs. In Fig. 7, the x-
axis indicates no-error probability p, while one-error prob-
ability q is fixed at 0.04. The y-axis indicates the average
payoff per period and market. Note that an average payoff
is 1 if mutual cooperation is always achieved. It is clear
that LC significantly outperforms GC and GC outperforms
J-1MP, regardless of the no-error probability. For example,
when p = 0.7, these FSAs are RFSE simultaneously. LC
achieves a payoff of 0.96, while GC and J-1MP achieve 0.92
and 0.74.

Let us next examine LC and GC with respect to Propo-
sition 1. When LC is RFSE, the target belief division is al-
most covering and no profitable one-shot extension exists.
Thus, the target belief division accommodates initial state
(R,R); each player’s belief is not outside the target belief
division for any history starting at (R,R). The GC’s target
belief division is not covering. For example, for p = 0.7

and q = 0.04, the target belief division D̂i is {D̂P
i , D̂

R
i } =

(CC,CD)

(CD,CC)

(CD,CD) (CC,CC)

RR

RP

PR

PP

1-s2-2q(q+2s)

(1-q)(p+q)

s(p+q)

s(p+q)

(1-q)(p+q)

q+s(q+s)

q+s(q+s)

q(p+q)
q

s

p

q

q(q+2s)

q(q+2s)

s2

Figure 8: Joint FSA for LC under nearly-perfect monitoring

{[0, 0.41], [0.85, 1]}. Let us consider a case where a player
with bi ∈ D̂R

i deviates to (C,D) and observes (b, g). If her
opponent is atR, since she observes the bad signal in market
A, her opponent observes b with higher probability s

q+s than
g with q

q+s . Likewise, in market B, her opponent is likely
to observe b. She suspects that her opponent is moving to P
in the next period. If her opponent is at P , the same reason-
ing leads to the fact that her opponent observes (g, g) and
moves to P with high probability. The player has the belief
that her opponent is at P in the next period for sure. Accord-
ingly, after any deviation and observation, a player is sure
which state her opponent is. The GC’s target belief division
accommodates (R,R) under nearly-perfect monitoring.

Discussion
LC is an equilibrium and attains a high level of payoffs even
when the monitoring is nearly-perfect, since there exists no
such a small-sized FSA that can be an equilibrium except
the trigger strategy for the single market case.

Under perfect monitoring, neither LC nor GC is SPNE.
For behavior specified by an FSA to be an equilibrium in
repeated games, Equation 4 ensures that the current gain
from each one-shot extension (deviation) never exceeds the
future loss caused by that deviation. Hence, no future loss
arises and she can safely exploit her opponent by deviating
to (C,D) or (D,C) when each player is at R.

Under nearly-perfect monitoring, that consequence dras-
tically changes. Figure 8 shows the joint FSA of LC. Under
any joint state, the players cooperate in market A, and hence
(g, g) is the most likely signal profile in that market. Since
each player will be at R in the next period whenever his sig-
nal in market A is g, they are most likely to be at RR in the
next period irrespective of the current joint state (the thick
arrows in Figure 8). This tendency to quickly return to RR
explains why LC attains a large payoff.

In LC, any deviation is punished by a cautioning in mar-
ket B only. The large difference between p and s ensures
that the punishment is sufficiently severe. This is true de-
spite that, as we argued above, the cautioning in market B is
likely to last only for one period. A primary reason is that the
deviation gain x is small, which is just offset by one-period
punishment.

Things are quite different for GC, which is an equilibrium
only under near-perfect monitoring. Note that GC is similar
to 1MP, in the sense that the transition of the states given
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(g, g) or (b, b) exactly corresponds to that of 1MP given g or
b, respectively. This correspondence explains why GC works
under near-perfect monitoring, where 1MP also works well.

As we have observed, LC and GC devise state transi-
tions by the combination of signals inherent in multimarket
contact and realize high average payoffs in equilibria. One
might think that a more complicated FSA improves the pay-
off, i.e., FSAs with more than three states are more efficient
than LC. However, this is not true. Indeed, adding a new re-
warding state, e.g., R′ where a player chooses (C,C), is in-
effective for achieving an equilibrium since it gives a player
a chance to exploit her opponent and simply increases her
incentive to defect. Conversely, adding a punishment state
P ′ may lead to an equilibrium. However, such an FSA de-
creases the payoff because a player is likely to punish. Thus,
more complicated FSAs would not perform better.

One natural question is that LC works under more than
two markets. In the three market case, we confirm that some
extensions of LC are an equilibrium in a range of signal
parameters. For example, consider an extension such that
a player chooses (C,C,C) at R and (C,C,D) at P . This
extended FSA with appropriate state transitions achieves a
significantly higher payoff than J-1MP. Another extension
such that she chooses (C,D,D) at P is more likely to be an
equilibrium than the first extension, but it lowers the payoff
even though it remains higher than J-1MP.

Conclusions
This paper identifies simple pure strategy equilibria in re-
peated multimarket contact with a noisy signal about the op-
ponent’s action, which is one instance of private monitor-
ing. Our contribution is twofold. First, we fully characterize
a condition where J-1MP is an equilibrium by introducing
several assumptions. Second, we propose LC, which incor-
porates observable signals and decides the actions in each
market and show that it is an equilibrium. Its efficiency is
the most efficient than any other FSAs through an exhaus-
tive search. In future works, we would like to characterize
the equilibrium condition for LC and to generalize its con-
cept to an arbitrary number of markets.
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