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Introduction
Multi-robot systems offer a compelling application domain
for multi-agent AI research: they pose challenging ques-
tions, they offer an immediate bridge to actual and tangible
systems, and they have vast potential for real-world appli-
cations. However, most multi-robot systems are controlled
by hand-built special-purpose algorithms that are difficult
to design, implement and verify. For single robots, auto-
matic planning systems provide a flexible general-purpose
strategy for constructing plans given high-level declarative
domain specifications, even in the presence of substantial
stochasticity and partial observability (Thrun, Burgard, and
Fox 2005). Our recent research has shown that this same
strategy—finding the appropriate generic model and writing
general-purpose planners for it—can be applied to multi-
robot systems. Our methods allow automatic off-line con-
struction of robust multi-robot policies that support coordi-
nated actions. As a natural consequence, our methods can
generate control and communication strategies that optimize
the group’s overall objective.

Specifically, we are interested in problems where robots
share the same objective function and each individual robot
can only make noisy, partial observations of the envi-
ronment. The decentralized partially observable Markov
decision process (Dec-POMDP) is a general framework
for representing multi-agent coordination problems. Dec-
POMDPs have been widely studied in artificial intelligence
as a way to address the fundamental differences in decision-
making in decentralized settings (Amato et al. 2013; Bern-
stein et al. 2002; Oliehoek 2012). Like the POMDP (Kael-
bling, Littman, and Cassandra 1998) model that it extends,
Dec-POMDPs consider general dynamics, cost and sensor
models. Any problem where multiple robots share a sin-
gle overall reward or cost function can be formalized as a
Dec-POMDP. Unfortunately, this generality comes at a cost:
Dec-POMDPs are typically infeasible to solve except for
small problems (Bernstein et al. 2002; Amato, Konidaris,
and Kaelbling. 2014).

One reason for the intractability of solving large Dec-
POMDPs is that current approaches model problems at a
low level of granularity, where each robot’s actions are prim-
itive operations lasting exactly one time step. Our recent
research has addressed the more realistic MacDec-POMDP
case where each robot has macro-actions: temporally ex-
tended actions which may require different amounts of time
to execute (Amato, Konidaris, and Kaelbling. 2014). An al-
ternative formulation is the Dec-POSMDP, which operates
directly in belief space (Omidshafiei et al. 2015). These
models allow coordination decisions to only occur at the
level of deciding which macro-actions to execute. Macro-
actions are a natural model for the modular controllers (e.g.,
navigating to a waypoint or grasping an object) sequenced
to obtain robot behavior, bridging the gap between robotics
research and Dec-POMDPs.

MacDec-POMDPs and Dec-POSMDPs
In Dec-POMDPs, multiple robots operate with partial and
local views of the world. At each step, every robot chooses
an action based on locally observable information, resulting
in an observation for each individual robot. The robots share
a single reward function, making the problem cooperative,
but their local views mean that execution is decentralized.

MacDec-POMDPs incorporate macro-actions into the
Dec-POMDP framework, where macro-actions have defined
initial conditions where they can be executed and this execu-
tion continues until some terminal condition is reached. In
the MacDec-POMDP framework, it is assumed that either a
low-level (Dec-POMDP) model or a simulator is available in
order to evaluate solutions. As a result, MacDec-POMDPs
do not explicitly model the time until completion. In con-
trast, Dec-POSMDPs explicitly model the distribution of
time until completion. Solutions in this semi-Markov model
can then be evaluated using a higher-level model (including
completion time) or in a simulator.

Two Dec-POMDP algorithms have been extended to the
MacDec-POMDP case (Amato, Konidaris, and Kaelbling.
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(a) The warehouse problem

(b) The bartender and waiters domain

(c) The package delivery problem

Figure 1: Experimental domains

2014), but other extensions are possible. The resulting solu-
tion is a policy for each agent, which can be represented
as a set of trees. In the Dec-POSMDP, we represent the
policy as a finite-state controller for each agent. Heuristic
search (Amato et al. 2015a) and sample-based optimization
methods (Omidshafiei et al. 2015) have been successfully
used for generating the parameters for these finite-state con-
trollers.

The MacDec-POMDP framework is a natural way to rep-
resent and generate behavior for general multi-robot sys-
tems. We assume an abstract model of the system in the
form of macro-actions, which include the initiation and ter-
minal conditions. These macro-actions are controllers op-
erating with possibly continuous actions and feedback, but
their operation is discretized for use with the planner. Given
the macro-actions and simulator, the planner then automati-

cally generates a solution which optimizes the value function
with respect to the uncertainty over outcomes, sensor infor-
mation and other robots. This solution comes in the form
of hierarchical state machines for use in a ROS-based robot
environment.

Experiments
We performed comparisons with previous work on existing
benchmark domains and demonstrated its effectiveness in
different scenarios (Warehouse (Amato et al. 2015b), Bar-
tender and waiters (Amato et al. 2015a), and Package deliv-
ery (Omidshafiei et al. 2015)). In the warehouse problem
(Figure 1(a)), a team of robots is tasked with finding a set of
large and small boxes in the environment and returning them
to a shipping location. Here, coordination is needed not just
for assigning robots to push specific boxes, but also requires
that two robots push the larger box at the same time. In
the bartender and waiters problem (Figure 1(b)), the waiters
(Turtlebots) must find and deliver orders as quickly as pos-
sible, retrieving drinks from a bartender (PR2). In the pack-
age delivery problem (Figure 1(c)), the robots retrieve and
deliver packages from base locations to delivery locations.
In all problems there is stochasticity in the movements of
robots and partial observability of the location of the other
robots and the other objects (boxes, orders and packages).

These problems are very large (consisting of over a billion
discrete states or having a continuous state space), and thus
unsolvable by previous Dec-POMDP-based approaches. We
also consider cases where the robots can send communica-
tion signals to each other, but we do not define the mean-
ing of the messages. Therefore, our planner must determine
where the robots should navigate, what boxes they should
push and what communication messages should be sent (if
at all) at each step of the problem to optimize the solution for
the team. The robots must make these decisions based solely
on the information they individually receive during execu-
tion (e.g., each robot’s location estimate as well as where and
when boxes and other robots have been seen). Our methods
outperform naive methods that do not consider uncertainty
and generate optimized solutions for each problem based on
the high-level domain description.

Summary
Multi-robot systems are an exciting application domain
for AI research and Dec-POMDPs, specifically. MacDec-
POMDP methods can produce high-quality general solu-
tions for realistic heterogeneous multi-robot coordination
problems by automatically generating control and commu-
nication policies, given a model. In contrast to most exist-
ing multi-robot methods that are specialized to a particular
problem class, our approach can synthesize policies that ex-
ploit any opportunities for coordination that are present in
the problem, while balancing uncertainty, sensor informa-
tion, and information about other agents.
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