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Abstract
Partially observable stochastic games (POSGs) are a ro-
bust and precise model for decentralized decision mak-
ing under conditions of imperfect information, and ex-
tend popular Markov decision problem models. Com-
plexity results for a wide range of such problems are
known when agents work cooperatively to pursue com-
mon interests. When agents compete, things are less
well understood. We show that under one understanding
of rational competition, such problems are complete for
the class NEXPNP. This result holds for any such prob-
lem comprised of two competing teams of agents, where
teams may be of any size whatsoever.

Introduction
Markov decision processes (MDPs) are a well known math-
ematical model of a single agent taking actions with uncer-
tain outcomes, modeled probabilistically, and have over the
decades begot numerous variations, including partially ob-
servable models (POMDPs), in which the agent is uncertain
not only about action outcomes, but also about their environ-
ment. Decentralized MDPs and POMDPs extend the models
to cases in which multiple agents act cooperatively in or-
der to maximize the utility of the group. Finally, partially
observable stochastic games (POSGs) allow that agents may
have divergent interests, so that competition may arise where
policies benefit one agent, or set of agents, over others. As
such, POSGs provide an exact mathematical framework for
the analysis of multiagent decision making in a wide range
of real-world contexts in which groups of agents must nego-
tiate uncertainty as they seek to maximize their utility. The
general POSG model encompasses many others, and under-
standing that model provides insight into many planning and
learning problems.

The computational complexity of many of these various
sorts of decision problems has been extensively studied, dat-
ing at least to (Papadimitriou and Tsitsiklis 1987), where
it was shown that for both finite-horizon cases (where all
policies of action must come to an end by some fixed, fi-
nite point) and infinite-horizon cases (where policies may
continue indefinitely), MDPs are P-complete, while finite-
horizon POMDPs are harder, being complete for PSPACE.
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More details on the finite MDP case is given by (Mund-
henk et al. 2000). (Lusena, Mundhenk, and Goldsmith 2001)
showed that POMDPs are not generally approximable, and
(Madani, Hanks, and Condon 2003) showed that for the
infinite-horizon case POMDPs are in fact undecidable.

Interest in the complexity of stochastic games goes back
as far as (Condon 1992), where it was shown that sim-
ple games where players compete with shared perfect in-
formation were in the class NP ∩ co-NP. For decentralized
POMDPs (Dec-POMDPs), where the agents cooperate, but
the information is imperfect and private, (Bernstein et al.
2002) showed the problems to be complete for nondeter-
ministic exponential time (NEXP), representing a signifi-
cant upgrade in difficulty. Since the Dec-POMDP incorpo-
rates a wide range of other formal models of decision mak-
ing (see (Goldman and Zilberstein 2004) and (Seuken and
Zilberstein 2008) for surveys), this indicated that many in-
teresting real-world problems were unlikely to yield to opti-
mal solution. Following on this work, (Becker et al. 2004)
showed that the problems became “merely” NP-complete
under stringent restrictions on the ways in which agents
interacted—namely if they shared a common reward func-
tion, and might affect what one another observed, but oth-
erwise acted with complete independence from one another.
While a number of other restrictions on the basic model have
been suggested, under many of these assumptions they re-
main NEXP-hard (Allen and Zilberstein 2009).

In the general POSG case, once competition is possible
between agents, things become much less clear. In part, this
is due to the fact that game theory does not always dictate
a particular solution concept. It is well known via such as
the Prisoner’s Dilemma that equilibria of various sorts are
not always best-possible solutions, and other candidates, like
zero-regret strategies have their own quirks. (Goldsmith and
Mundhenk 2008) considers a particular version of this ques-
tion, whether one team in a two-team game has a strategy
with guaranteed positive expectation, no matter what strat-
egy is followed by the other team, and show that it is com-
plete for the (highly complex) class NEXPNP(so long as each
team has at least two members on it).

Our work here follows up on this line of thought, but
departs from the “all-out” understanding of competition, in
which a team seeks a policy that guarantees good results no
matter what their opponents do. Under this notion, the team
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is only successful if they can expect positive reward even in
cases where their opponents do not have any such expecta-
tion and may even expect lower reward yet. Instead, we sug-
gest another possible definition of rational competition, un-
der which the first team seeks a policy that provides positive
expectation so long as the other team does also, preventing
for instance self-sabotage by those who wish more to impose
costs on others than to gain rewards themselves. We show
that this class of problems is also complete for NEXPNP,
and that the result holds no matter what size the teams have.
This demonstrates that competitive problems remain highly
difficult in general under at least two different ways of mea-
suring success, and provides another piece in the framework
of results about utility maximization and decision making in
sequential and stochastic domains.

Basic Definitions
We begin by defining two main constructs: the decision
problems for which we wish to determine complexity, and
those used in reduction proofs to follow.

Partially Observable Stochastic Games
A POSG involves two or more agents seeking to maximize
utility under conditions of probabilistic uncertainty about
their environment and about the outcomes of their actions.
Our definition follows the approaches of (Bernstein et al.
2002) and (Hansen, Bernstein, and Zilberstein 2004).
Definition 1. A partially observable stochastic game is a
tuple G = (I, S, s0, {Ai}, {Ωi}, P,O, {Ri}), where:
• I is a finite, indexed set of n agents, {1, . . . , n}.
• S is a finite set of system states, with starting state s0.
• For each agent i, Ai is a finite set of available actions. A

joint action, (a1, . . . , an) ∈ ×i∈IAi is a sequence of n
actions, one per agent.

• For each agent i, Ωi is a finite set of observations. Joint
observations (o1, . . . , on) are defined like joint actions.
• P is a table of transition probabilities. For each pair of

states s, s′ ∈ S, and each joint action (a1, . . . , an), the
value P (s′ | s, a1, . . . , an) is the (Markovian) probability
that the system enters s′ from s, following that action.

• O is a table of observation probabilities. For each pair
of states s, s′ ∈ S, each joint action (a1, . . . , an),
and each joint observation (o1, . . . , on), the value
O(o1, . . . , on | s, a1, . . . , an, s

′) is the probability of that
observation following the given state-action transition.

• For each agent i, Ri : S ×i∈I Ai × S → < is a (real-
valued) reward function. Ri(s, a1, . . . , an, s

′) agent i’s
accrued reward after the given state-action transition.
As already described, a Dec-POMDP, where agents have

common ends and maximize utility via cooperation, is a spe-
cial case of the general model described here, in which each
reward function Ri is identical. A POSG with only a single
agent is simply a POMDP.

In such a problem, the system begins in start-state s0,
and then transitions state-by-state according to joint actions
taken by the agents, who receive generally imperfect infor-
mation about the underlying system via their own, private

observations. For agent i, a local history of length t is a se-
quence of observations over time, ot

i = (oi1 , . . . , oit) ∈ Ωt
i.

The set of all local histories for agent i, up to some maxi-
mum length T , is then ΩT

i = ∪Tt=1Ωt
i. For all n agents, a

sequence of local histories of same length t forms a joint
history, written ot

1,n = (ot
1, . . . ,o

t
n).

Each agent i acts based on a history-based local policy,
i.e. a function from local histories to actions, πi : ΩT

i → Ai.
A joint policy Π = (π1, . . . , πn) is a sequence of poli-
cies, one for each agent. For any joint history of length t,
the composite policy Π yields a unique joint action, written
Π(ot

1,n) = (π1(ot
1), . . . , πn(ot

n)).
For any joint policy Π, states s, s′, and joint history, the

probability of making the transition from s to s′ while each
agent i observes its own local portion of that history is de-
fined inductively on its length t. In the base case, where
t = 0 and ε is the empty history, a sole deterministic tran-
sition is possible: PΠ(s, ε, . . . , ε, s) = 1. For histories of
length t ≥ 1, we define PΠ(s,ot

1,n, s
′) as the product of (a)

its single last state-observation probability and (b) the prob-
ability of the sub-history leading up to that point:∑
s′′∈S

PΠ(s,ot−1
1,n , s

′′) · P (s′ | s′′,Π(ot−1
1,n )) ·

P (o1t
, . . . , ont

| s′′,Π(ot−1
1,n ), s′),

where each component-history in ot
1,n is ot

i = ot−1
i oit .

For each agent i, the expected value of a joint policy Π,
starting in state s and proceeding for t steps, is given by the
weighted sum of rewards available to the agent under that
policy, computed over all possible local histories of length
up to and including t− 1:

EV t
i (s |Π) =

t−1∑
k=1

∑
ok
1,n

∑
s′′∈S

∑
s′∈S

PΠ(s,ok
1,n, s

′′) ·

P (s′ | s′′,Π(ok
1,n)) ·R(s′′,Π(ok

1,n), s′).

We are interested in problem domains with a finite time-
horizon, and so we set a limit T = |G|, such that the maxi-
mum number of time-steps for which agents must act is lim-
ited to the size of the problem description. (Infinite-horizon
problems are undecidable, since infinite-horizon POMDPs
are a sub-case (Madani, Hanks, and Condon 2003).) Fur-
ther, since a POSG always begins in state s0, the value of
any policy Π for any agent i can be abbreviated as:

EVi(Π) = EV T
i (s0 |Π).

Tiling Problems
In a tiling problem, the goal is to completely fill a square grid
of size (N × N) with unit-square tiles. Each tile is chosen
from a set of tile-types L, with no limits on the number of
tiles of each type. A tiling is valid if the placement of tiles is
consistent with each of two sets of constraints H and V , de-
scribing what types of tiles are allowed to be placed next to
one another horizontally or vertically, respectively. Figure 1
shows a simple example, with one possible valid solution.

Tiling problems seem to have been first introduced by
(Wang 1961), in connection with systems of logical proof.
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Figure 1: A (5× 5) tiling problem instance, with one possible valid solution.

As a decision problem, the question whether a valid tiling
exists for a given problem instance has been remarkably use-
ful in computational complexity. As discussed by (Lewis
1978) and (Savelsbergh and van Emde Boas 1984), when
the size of the board, N , is given in logarithmic fashion
(typically in binary), then the decision question is com-
plete for nondeterministic exponential time (NEXP). Using
a unary representation of N , the complexity is reduced to
NP-completeness (meaning that tiling is NEXP-complete,
but not strongly so). A variety of uses of the problem and
its variants can be found in (Papadimitriou 1994).

(Goldsmith and Mundhenk 2008) use a version of tiling
called the exponential square problem, in which the value
N is given in unary, but the board to be tiled is is presumed
of size (2N × 2N ). This is thus simply a version of the
base problem, with larger input sizes, and remains NEXP-
complete. Of more interest is the more complex problem
they introduce, called the Σ2 tiling problem which asks
whether a valid tiling of the grid exists with a bottom row
that never appears as the top row of any valid tiling (the
same, or different). Intuitively, this is analogous to asking
whether some exponential time computation exists in which
the final state of the machine and its computation tape are
never the starting state for any other such computation. This
latter problem, by Theorem 2.2 of the cited work, is com-
plete for the class NEXPNP. This class—a generally unfa-
miliar one, as they note—is the set of problems decidable in
exponential time by a nondeterministic machine with access
to an NP oracle. That is, such a machine can, during its com-
putation, ask for and receive answers to a problem in NP “for
free” (that is, without any cost to be factored into the overall
runtime of the algorithm). Equivalently, such problems are
those decidable by a NEXP machine that makes exactly one
query to a co-NP oracle.

As noted, while (Goldsmith and Mundhenk 2008) work
with an exponential square version of tiling, that detail is
not important to the complexity results they generate, and is
really a matter of preference. Our work here draws also on
that of (Bernstein et al. 2002), in which the input value N is
given in logarithmic form; thus, to better unify the results of
those papers with our own, we define it as follows:

Definition 2. An instance of the Σ2 tiling problem consists
of a tiling problem instance with grid size N given in binary

form; the decision problem is whether a valid tiling T exists
with bottom row r such that, for any valid tiling T ′, the top
row of T ′ is not equal to r.

Known Results and Proof Techniques
Our results draw upon and extend two earlier research
projects, one of which showed that POSGs in which agents
cooperate are complete for nondeterministic exponential
time, and one of which showed that teams of competing
agents can increase that complexity.

Cooperative POSGs
(Bernstein et al. 2002) showed that Dec-POMDPs (i.e.
POSGs with a common reward function, in which
agents maximize expected value cooperatively) are NEXP-
complete; as usual, the optimization problem of finding a
joint policy that maximizes collective reward is re-framed as
a decision problem, asking the cooperative question, namely
whether there exists a joint policy Π under which every
agent has positive expectation:

∀i ∈ I, EVi(Π) > 0. (1)

Here, the upper bound is achieved by showing how to con-
vert any such problem, featuring n ≥ 2 agents, along with a
policy that has been guessed nondeterministically, first into
an equivalent single-agent POMDP, and then into an equiv-
alent belief-state MDP. Verifying the value of the guessed
policy in that MDP can then be done in polynomial time;
however, the size of the final problem version is exponential
in the size of the original, yielding nondeterministic expo-
nential time (NEXP) overall.

For the lower bound, and completeness, the basic tiling
problem is reduced to a 2-agent Dec-MDP, which is a Dec-
POMDP for which the underlying system state can be com-
puted with certainty, if one is given access to observations
of all agents. Specifically, any instance of the tiling problem
is turned into a Dec-MDP in which each agent is given one
randomly chosen location on the board, and responds with
a tile to be placed at that location. Rewards are designed so
that agents have positive expected value if and only if they
know a valid tiling of the entire game board, establishing
NEXP-completeness of Dec-POMDPs.

This reduction proof has the following important features:
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Logarithmic representation When converting the Dec-
POMDP to an instance of tiling, it would be a mistake
to have the locations chosen be part of the state space of
the new problem. Doing so would result in a Dec-POMDP
with state-space of size at least N2, which would then be
exponential in the size of the original problem for suf-
ficiently large N , since the tiling problem encodes the
value N using a logarithmic binary representation. Thus,
the Dec-POMDP reveals the locations to each agent bit-
by-bit, sacrificing time to convey information for space,
and ensuring that the size remains polynomial in that of
the original tiling instance.

Necessary decentralization It is a key necessary feature of
these reductions that there be at least two agents, each of
which only knows one location. Should the agents know
both locations at any point, then the proof breaks down,
since it is possible for them to feign a valid tiling even
though none exists. (For instance, if the agents knew the
two locations were the same, they could reply with some
same pre-arranged identical tiles.)

Proof against cheating Not only is decentralization neces-
sary to prevent gaming the system, agents must also echo
back the location they were given when choosing tiles.
This allows the system to compute whether or not the
locations and tiles chosen are consistent, without requir-
ing that it remember those locations itself (as already de-
scribed, requiring such a system memory would violate
space requirements for the reduction). Thus, a fixed num-
ber of bits of each location are retained by the system and
used to validate what the agents echo back—meanwhile,
agents are unaware of the exact bits recorded, and again
cannot dupe the system.

Competitive POSGs
(Goldsmith and Mundhenk 2008) showed that certain forms
of competition between teams of agents increased complex-
ity. In particular, they consider POSGs with n = 2k, k ≥ 2
agents, divided into two teams of size k. They then ask the
all-out competitive question (our term for it, not theirs),
namely whether there exists some set of policies for the first
team under which each agent on that team has positive ex-
pectation, no matter what the other team may do:

∃π1, . . . , πk, ∀πk+1, . . . , π2k, ∀i ≤ k,EVi(Π) > 0, (2)

where joint policy Π = (π1, . . . , πk, πk+1, . . . , π2k).
It is then determined that this problem is complete for

NEXPNP. As already discussed, this is the class decidable in
exponential time by a nondeterministic machine that makes
a single oracle query for the solution to a problem in co-NP,
a fact used in the proof of upper bounds. Prior work showed
that under stationary policies—i.e., those based on single
observations rather than histories—the cooperative problem
for a single-agent POMDP is NP-complete (Mundhenk et al.
2000). Similar techniques are used to show that in a POSG, a
set of stationary policies can be guessed, and their expected
values checked, in polynomial time, placing for example the
cooperative problem (Eq. 1) for stationary polices in NP.
This result also means that the question of whether all agents

have positive expectation under all possible stationary poli-
cies is in co-NP, since we can answer no by simply guessing
and checking a single counter-example policy under which
some agent has non-positive expectation.

Finally, based on this fact, the NEXPNPupper bound for
the competitive problem (Eq. 2) is shown via a constructive
proof: for any POSG G, a set of history-based policies for
the first team is guessed, and then a new POSG G′ is built in
which the second team alone must act. In G′, the system re-
produces joint actions comprised of those chosen by the first
team’s guessed policies and those now chosen by the sec-
ond team, via the state-transition and observation functions.
(Since G′ is exponentially larger than G, this is a NEXP al-
gorithm so far.) Rewards in G are “re-routed” so that each
member of team two now receives the reward that would
have been received in G by a matching member of team one
under the corresponding joint action. Finally, it is shown that
the expectation for any stationary policy by a member of the
second team in G′ is identical to the expectation for the as-
sociated, history-dependent first-team policy guessed for G.
Thus, all agents in G′ have positive expectation under ev-
ery stationary policy if and only if all agents in team one
have positive expectation no matter what team two does in
G, which places the original problem in NEXPNP.

Lastly, NEXPNP-completeness is established via reduc-
tion from Σ2 tiling. For a given tiling instance, a composite
POSG is created that first establishes whether the first team
of k ≥ 2 agents know a valid tiling, before checking that
the second team knows one as well. Rewards are set up so
that the first team has a positive reward so long as a valid
tiling does exist, unless every such tiling has a bottom row
that appears at the top of some valid tiling as well—in the
latter case, the second team can mirror that bottom row at the
top of their own valid tiling, and deny the first team positive
expected reward.

As in the NEXP-completeness proofs for Dec-POMDPs
discussed above, the reduction portion of this proof features
the need for a logarithmic (i.e., binary) representation of lo-
cations on the board, so as not to over-inflate the state-space
size upon reduction. As discussed, the use of the “exponen-
tial” version of tiling here is non-essential, and the same re-
sult could be had for the one in which the board size N is
given logarithmically (as in Definition 2). In addition, the
POSG again features checks to ensure both that no single
agent, nor team of agents, can cheat to achieve positive ex-
pectation without actually possessing a proper tiling of the
grid. Other important features are:

One-sided rationality We have termed the competitive
question in (Eq. 2) a form of “all-out” competition, since
the question is simply whether or not the first team of
players in a POSG has a policy with positive expectation,
no matter what the second team does—even if the com-
petition itself is following a policy with non-positive ex-
pectation. Thus, while a positive answer means that team
one is guaranteed some form of a “win” in the game being
played, a negative answer does not mean that team two is
guaranteed its own “win” in turn.

Minimal team-sizes A key element of the proofs cited is
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that each team in the POSG contain at least 2 agents. By
construction, each team must be separate, to prevent team
two from unfairly depriving team one of reward by echo-
ing its bottom row as the top of its own feigned tiling.
Furthermore, each team must have at least two members,
since any team with only a single member would know all
locations to be tiled at one stage of the game, and could
give answers that appeared consistent even though they
did not in fact know of any such tiling.

This last feature is especially key. As the authors note,
their proofs leave open two key questions, namely the com-
plexity for competitive POSGs with less than four agents,
where one team, or both, has only a single member. While
these versions of the problem may well have the same
NEXPNPcomplexity as the others, it is an open possibility
that the complexity is somewhat less, as it does not seem
possible to construct a reduction of the form used by (Gold-
smith and Mundhenk 2008) that permits single-agent teams.

New Results
As already discussed, the question of all-out competition in-
volves a one-sided view of rational game play, since it only
asks if the first team in a two-team POSG has a response
with positive expectation to literally any strategy employed
by team two, including ones in which team two has no pos-
itive expectation of its own—and may even fare worse than
team one. This is certainly an interesting question, and can
tell us whether the first team is guaranteed some positive
value in a game. At the same time, it is not the only way
in which to understand rational competition, since it presup-
poses no necessary self-interest on the part of the second
team of players. We thus propose another competitive ques-
tion, at least as interesting as the first, which we call the
self-preserving competitive question: does team one in the
POSG have a policy with positive expectation under any cir-
cumstances, and is that policy a positive response to every
policy of the second team that also has positive expectation?
That is, for a POSG with n agents, divided into one team
of k < n agents, (1, . . . , k) and a second team of (n − k)
agents (k + 1, . . . , n), we ask if is it true that:

∃π1, . . . , πk, [∃πk+1, . . . , πn,∀i ≤ k, EV (Π) > 0)] ∧
[∀π′k+1, . . . , π

′
n,∀j > k, EVj(Π

′) > 0→
∀i ≤ k, EVi(Π) > 0], (3)

where joint policy Π = (π1, . . . , πk, πk+1, . . . , πn), and
joint policy Π′ = (π1, . . . , πk, π

′
k+1, . . . , π

′
n) in each case.

For this hybrid question, then, a positive answer means
not only that team one can achieve a positive result in the
POSG, under some response by team two, but that team one
can guarantee such a result so long as their opponent is also
trying to achieve positive utility. Conversely, a negative an-
swer means that the first team can not expect a positive re-
sult: either the game is simply a no-win situation for them,
or their opponents have some self-preserving strategy that
guarantees team one non-positive results. Under this under-
standing of rational competition, we have the following main
result, which we then go on to prove in two separate results,
as is typically the case:

Theorem 1. For any POSG with n ≥ 2 agents, and any
first team of size k, 1 ≤ k < n, deciding the self-preserving
competitive question (Eq. 3) is NEXPNP-complete.

Upper Bounds
We begin by establishing that problem is decidable given the
required bounds. To do so, we will use the following:
Claim 1. Let G be POSG with n ≥ 2 agents, divided into
one team of k < n agents and a second team of (n − k)
agents. Let ΠS be the set of all stationary joint policies for
G; that is, any (π1, . . . , πn) ∈ ΠS is such that every indi-
vidual policy is a function from individual observations to
actions: ∀i ∈ I, πi : Ωi → Ai. Then the question whether
any such policy with positive performance for team two also
has positive performance for team one, namely:

(∀j > k, EVj(Π) > 0)→ (∀i ≤ k, EVi(Π) > 0),

for every Π ∈ ΠS, is in the class co-NP.

Proof. This result is merely a modification of (Goldsmith
and Mundhenk 2008), Corollary 3.3, and can be proven in
essentially the same way. To show that the problem stated is
in co-NP, we must show that its negation is in NP; that is,
we can verify the existence of some Π ∈ ΠS such that

(∀j > k, EVj(Π) > 0) ∧ (∃i ≤ k, EVi(Π) ≤ 0),

using only nondeterministic polynomial time. This is
straightforward, since all we need to do is guess some such
stationary joint policy, and then evaluate it. Since the poli-
cies under consideration are stationary, writing them out can
take no more space than it takes to represent G itself—in
fact, as Theorem 3.1 in the cited paper points out, it takes
no more space than the tabular representation of transition-
function P . Evaluating the fixed set of policies in the POSG
is then straightforward to perform in polynomial time (re-
call that throughout this work, all policies of concern are of
length no more than |G|).

We now use this result in the proof of upper bounds. Since
our competitive question is a conjunction of two different
claims, this will involve a somewhat more involved proof
that prior results, but in any case we show that nondetermin-
istic exponential time, along with a co-NP oracle, is suffi-
cient to decide both conjuncts.
Lemma 1. For any POSG with n ≥ 2 agents, and any first
team of size k, 1 ≤ k < n, the self-preserving competitive
question (Eq. 3) is in NEXPNP.

Proof. To establish an answer to the self-preserving com-
petitive question, we must ascertain first whether or not a
joint policy with positive expectation for the first team of k
agents exists. This phase of the problem is in all essentials
identical to the cooperative Dec-POMDP question; to solve
it, we guess policies for both teams and proceed in the man-
ner of (Bernstein et al. 2002). That is, we convert the POSG
and joint policy for all n agents into a single agent POMDP,
and then into a belief-state MDP, before verifying its value,
in total time exponential in the size of the original POSG
(since the equivalent single-agent models, that incorporate
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that policy directly, are exponentially larger). The only ef-
fective difference between that original proof is that the re-
ward function produces a tuple of rewards, one for each of
the k agents in team one, and the verification stage checks
not merely a single expected value, but that the expectation
for every element of the reward-tuple is positive. If the ex-
pectation for any of the k elements is negative, we reject;
otherwise, we move on to the next phase.

In the second part of our algorithm, we must verify that
the policy guessed for team one has positive expectation un-
der any response under which team two also has positive ex-
pectation. Here, we proceed analogously to (Goldsmith and
Mundhenk 2008). That is, we construct a new POSG that
takes the guessed policy for team one and encodes it into
the state-transitions, again using exponential time, as the do-
main grows exponentially larger. (Full details can be found
in Lemma 3.3 of the cited paper.) In our version of the con-
struction however, each of the (n−k) members of team two,
who act in the new domain, retain their original reward func-
tions. In turn the reward functions for the k members of team
one are shifted to a new team of k agents, each of which has
a single available action that has no effect on the state transi-
tions at all. In this fashion, the values accrued by each agent
under stationary policies of team two are as in the original
POSG. Finally, we can query an oracle whether every such
stationary policy that has positive value for team two also
has positive value for the agents receiving team one’s re-
wards (this is the role of Claim 1), accepting if the answer is
yes and rejecting otherwise.

It is worth emphasizing that the total time required for the
combined algorithm of the prior proof, which checks both
conjuncts in Equation 3, is still exponential in the size of the
original POSG G. Although it takes longer than either of the
original algorithms on which it is based, it is simply a sum
of two exponential-time sets of operations.

Lower Bounds and Completeness
We now show that our deciding the question of self-
preserving competition actually requires NEXPNPresources,
establishing tight bounds on our problem.

Lemma 2. For any POSG with n ≥ 2 agents, and any first
team of size k, 1 ≤ k < n, the self-preserving competitive
question (Eq. 3) is NEXPNP-hard.

Proof. We show hardness—and indeed completeness—by
reduction from the NEXPNP-complete Σ2 tiling problem. As
already discussed, this problem asks, for a given tiling in-
stance, whether (a) some valid tiling of the square exists, and
(b) whether there is such a tiling for which the bottom row
never appears as the top row of any valid tiling (same or oth-
erwise). We show how to reduce any such problem instance
to a POSG with two teams, with a single agent each, for
which the answer to the self-preserving competitive question
is yes if and only if a tiling of the desired type exists. Doing
so establishes that any POSG with larger teams is similarly
hard (in fact, one could simply show hardness for any such
case directly, since the reduction could always add members

to each team whose actions did nothing, and whose rewards
were identical to their active team-mates).

The full details of such a reduction are quite complex, es-
pecially the binary encoding of tile locations into the POSG
problem domain, and the precise specification of the tran-
sition and observation functions; for examples of proofs
worked out in all the gory details, see (Bernstein et al. 2002;
Bernstein 2005; Allen 2009; Allen and Zilberstein 2009). To
aid in exposition, Figure 2 gives an overview of the problem
instance produced in the reduction. The POSG begins at the
position marked Start and then proceeds through a number
of stages as follows:
Query (01). A single (x, y) location in the tiling grid is re-
vealed to the player on each team. As is usual in these re-
ductions, each player receives the location bit-by-bit (this
ensures that the size of the overall state-space of the reduced
problem is polynomial in that of the original). Also as usual,
neither player observes the location given to the other, and
locations are chosen stochastically from all possible grid-
squares, so no player can cheat the process.
Choose (01). Each player chooses a tile type to be placed
at its location. Again, the system ensures that players do not
cheat, while maintaining a state-space of permissible size,
by ensuring that each player repeats back the location at
which they will place the tile.
Consistency Check. The system checks whether the chosen
pair of tiles is consistent or not. That is, if the locations given
to each team were the same, the tiles must be the same; if
they are adjacent horizontally or vertically, then they must
be valid according to the relevant tiling constraints; if they
are non-identical and non-adjacent, then any choice at all
is considered consistent. Again, the system can verify these
properties in the requisite amount of space, and collusion
and cheating are prevented by the requirement that agents
truthfully report the locations they were first given (a fixed
number of bits of each location are recorded by the system
ahead of time for verification purposes).
Reward Phase. If the tiles chosen by the agents do not pass
the consistency check, then each team receives reward of
−1 (all actions up to this point have reward of 0), and the
POSG terminates in the absorbing End state. If the tiles are
consistent, each team receives reward of +1, and continues.
Query (02). A second set of grid locations are revealed to
each team, separately as before.
Choose (02). Each team again chooses a tile type for its lo-
cation, and repeats its location back.
Consistency Check. The chosen pair of tiles is subjected to
the same consistency check as before.
(Possible) Reward Phase. As before, if the agents fail the
consistency check, then each team receives −1 reward (for
a net of 0 units accumulated each), and the process termi-
nates; if they pass the consistency check, the process contin-
ues without reward for the moment.
Check for Top-Bottom Matches. A second check is made
for the two most recently chosen tiles. These tiles are said
to comprise a top-bottom match if (a) one is in the top row
of the tiling grid, and the other is in the bottom row, (b) the
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Figure 2: A two-team POSG corresponding to an instance of the Σ2 tiling problem.

columns of each is the same, and (c) the tiles are identical.
If any of these conditions fail to hold (including when both
tiles are in the same row), then no such match exists.
Reward Phase. If there was no top-bottom match, then each
team receives 0 reward (for a net of +1 units accumulated
each). If such a match is found, then the first team receives a
penalty of −N4 (where N is the size of the tiling grid), and
the second team receives 0 reward. In either case, the POSG
terminates and the process is over.

We can now argue that the resulting POSG satisfies the
self-interested competition condition if and only if the tiling
problem with which we begin has a valid tiling with no bot-
tom row that appears as a top row in any such tiling. Suppose
that such a tiling exists. Then a policy exists under which
team one chooses tiles according to that tiling when queried,
and this policy has positive expected reward in those cases
in which team two does the same. Furthermore, the only
possible responses for which team two can expect positive
rewards also choose tiles validly, and in the resulting joint
policy, chosen tiles will pass both consistency checks, yield-
ing positive guaranteed reward, and the fact that the bottom
and top rows of the tiling must be distinct from one another
means that the top-bottom matching penalty will not reduce
expectation below 0.

If such a tiling does not exist, then there are two possi-
bilities: either no valid tiling of the grid is possible at all, or
any valid tiling has a bottom row that is identical to the top
row of some valid tiling. In the first case, any joint policy
in the resulting POSG will have negative expectation, since
there is no way for agents to game the system by simply
guessing tile types. This means that there is no policy under
which the first team has positive expectation at all, no mat-

ter what team two does, and the first conjunct of Equation 3
fails. In the second case, since valid tilings do exist, but the
bottom rows are repeated elsewhere as top rows. Thus, if
team one chooses tiles validly, there are joint policies for
which the second team has positive expectation, but the first
team does not, and the second conjunct fails. (In these poli-
cies, team two will again tell the truth about valid tilings,
but these tilings will have the same tiles in the bottom and
top rows.) Too, if team one ignores the valid tiling, then they
cannot expect positive reward at all. In either case, then, one
conjunct of Equation 3 fails, showing that Σ2 tiling reduces
to self-preserving competition for POSGs.

Conclusions and Future Work
We have shown that self-preserving competitive solutions
to team-based partially observable stochastic games are
NEXPNP-complete. The problem of whether agents can ex-
pect positive value, when faced with opponents who also
seek positive expected value is significantly more complex
than the similar problem, in which agents actually work
together. While previous work has clarified that under all
but the most restrictive assumptions the cooperative (Dec-
POMDP) version of the problem remains NEXP -hard, we
see now that under common understandings of rational com-
petition, the full POSG problem is harder yet, requiring not
only nondeterministic exponential time, but access to NP-
class oracles as well. As for the cooperative problem, of
course, this is not the end of the story. While these re-
sults generally mean that optimal solution algorithms will be
simply infeasible, much work has already gone into study-
ing approximation techniques. Given that POSGs represent
many real-world scenarios in which human and automated
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problem-solving is applied, there is still much to be gained
from such studies.

In truth, this research began as an attempt to answer two
open questions found in (Goldsmith and Mundhenk 2008):
the complexity of “all-out” competition (Eq. 2) when (a)
each team has only a single player (1 versus 1 play), and
(b) the first team has a single player, but the second team
has more than one (1 versus many play). While that work
was able to show both problems to be in the class NEXPNP,
via a completely general upper-bound result, lower bounds
(and completeness) are left open, since the existing reduc-
tions make intrinsic use of multiple players on each team,
in order to provide proof against cheating via true decentral-
ization. As is often the case, trying to prove one thing often
leads another, as we discover what additional assumptions
need to be made for a given form of proof to go through. In
this case, we discovered that the additional requirements of
self-preservation allowed a fully general complexity result;
fortunately, this is interesting enough in its own right.

Still, the open questions remain. We are currently engaged
in other ways of approaching the still open questions. If an-
swered, these promise to fill in one remaining blank spot
in what is now a rather complete framework of complex-
ity results for stochastic decision problems, both single- and
multi-agent, both cooperative and competitive. In this con-
nection, we do state one conjecture, based on preliminary
results: in stochastic games in which all agents share ob-
servations in common (whether fully observable or partially
so), the 1 versus 1 and 1 versus many problems are in fact
NEXP-complete. Whether this reduction in complexity (rel-
ative to NEXPNP, anyhow) holds for those problems without
the restriction on observations, or holds for the many versus
many problem under the same restriction, is less certain.
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