Sequential Decision Making for Intelligent Agents
Papers from the AAAI 2015 Fall Symposium

MDPvis: An Interactive Visualization
for Testing Markov Decision Processes

Sean McGregor, Hailey Buckingham, Rachel Houtman,
Claire Montgomery, Ronald Metoyer, and Thomas G. Dietterich
Oregon State University
1148 Kelley Engineering Center
Corvallis, OR 97331

Abstract

Markov Decision Process (MDP) simulators and opti-
mization algorithms integrate several systems and func-
tions that are collectively subject to failures of speci-
fication, implementation, integration, and optimization.
We present a domain agnostic visual analytic design
and implementation for testing and debugging MDPs:
MDPvISs.

A common approach for solving Markov Decision Processes
is to implement a simulator of the stochastic dynamics of
the MDP and a Monte Carlo optimization algorithm that in-
vokes this simulator. The resulting software system is often
realized by integrating several systems and functions that
are collectively subject to failures (referred to as “bugs”) of
specification, implementation, integration, and optimization.

Since bugs are subject to the same stochastic processes
as their underlying systems, detecting and characterizing
bugs requires exploration with an “informed trial and er-
ror” (Sedlmair et al. 2014) process. This process involves
writing an interactive client to manually execute transitions,
followed by a visualization of state development as a policy
rule is followed.

A domain agnostic visual analytic interface could facil-
itate testing and debugging, but during semi-structured in-
terviews of MDP researchers we did not find anyone using a
generic visualization tool for testing. We posit this is because
researchers have heretofore not had access to a visualization
that is easily connected to their MDP simulator and MDP
optimizer.

In the following section we summarize the implementa-
tion and integration of MDPVIS presented in McGregor et
al. (2015).

Implementation and Integration
MDPVIS’ target users are researchers interested in steering
the optimization itself, simulator developers who are inter-
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ested in ensuring the policies optimized for the problem do-
main are well founded, or domain policy experts primarily
interested in the outcomes produced by the optimized pol-
icy. In real-world settings these roles can be filled by a sin-
gle person, or each role can be performed by a large team of
developers and domain experts.

MDPVIS extends computational steering from the high
performance scientific visualization community (Parker et
al. 1996). Whereas computational steering traditionally
refers to modifying a computer process during its execution
(Mulder, van Wijk, and van Liere 1999), we treat optimiza-
tion as an open-ended process whose parameters are repeat-
edly changed for testing and debugging.

Sedlmair et al. (2014) label techniques for understand-
ing the relationship between input parameters and outputs
as Parameter Space Analysis (PSA), “...the systematic vari-
ation of model input parameters, generating outputs for each
combination of parameters, and investigating the relation be-
tween parameter settings and corresponding outputs.” This
is a suitable definition for the MDP debugging and testing
processes. Testing for MDP bugs requires exploring Monte
Carlo rollouts. These rollouts are the output of the sys-
tem under test, but since the distribution of these rollouts
is defined by applying a policy in many successive states,
the rollouts are tightly coupled with the parameter space of
the MDP’s component functions. Similarly, establishing bug
causality (debugging) requires varying the model parameters
and examining the resulting rollouts.

The VL/HCC paper explores MDP testing questions in
the following six broad tasks introduced by Sedlmair et al.
(2014):

1. Fitting: Do the outputs match real-world data or expecta-
tions?

2. Outliers: Are low probability events occurring with un-
expected frequency?

3. Partition: Do different system parameters produce the
expected differences?

4. Optimization: Did the optimization algorithm find the lo-
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Figure 1: A high level overview of the Markov Decision Process visualization prototype: MDPVIS. The top row has the three
computational steering controls for (A) the reward specification, (B) the model modifiers, and (C) the policy definition. A fourth
panel gives the history of Monte Carlo rollout sets generated under the parameters of panels (A) through (C). Changes to the
parameters enable the optimization button found under the policy definition and the Monte Carlo rollouts button found under
the Exploration History section. The visualization has two buttons in the History panel for each set of Monte Carlo rollouts, one
for visualizing the associated Monte Carlo rollouts and another for comparing two sets of rollouts. Below the control panels are
visualization areas for (E) histograms of the initial state distribution, (F) fan charts for the distribution of variables over time,
and (G) a series of individual states rendered by the simulator as images. For a readable version of the visualization we invite
users to load the visualization in their browser by visiting MDPvis. github.io.

cal optimum and does the policy exploit a bug in the spec- changes to the optimized policy?
ification or implementation?

To test these questions, MDPV1S (Figure 1) has four com-
putational steering control sets and three visualization areas.
The controls give the reward, model, and policy parameters
6. Sensitivity: Do small changes to the system result in big that are exposed by the MDP’s software. These layers are

5. Uncertainty: How confident are we in the proposed re-
sults?
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memoized in an exploration history that records the param-
eters and rollouts computed by the MDP.

The first visualization area shows state distributions at
time steps under the current policy. The second visualiza-
tion area gives the distribution of a variable’s development
through time. The last visualization area gives details of in-
dividual states.

Each of these steering controls and visualizations are de-
signed to integrate with MDP simulators and optimizers us-
ing the same read-eval-print loop (REPL) that is typically
implemented in current development practices.

We built MDPVIS as a data-driven web application. The
web stack emphasizes standard data interchange formats that
are easily linked to MDP simulators and optimization algo-
rithms. We identified four HTTP requests (initialize, roll-
outs, optimize, and state) that are answered by the MDP
simulator or optimizer. In each case the current values of the
steering controls are sent to a web server acting as a bridge
between the HTTP request and the syntax expected by the
REPL.

1. /initialize — Ask for the steering parameters that should be
displayed to the user. The parameters are a list of tuples,
each containing the name, description, minimum value,
maximum value, and current value of a parameter. These
parameters are then rendered as HTML input elements for
the user to modify. Following initialization, MDPVIS au-
tomatically requests rollouts for the initial parameters.

2. /rollouts?QUERY — Get rollouts for the parameters that
are currently defined in the user interface. The server re-
turns an array of arrays containing the state variables that
should be rendered for each time step.

3. /optimize?QUERY — Get a newly optimized policy. This
sends all the parameters defined in the user interface and
the optimization algorithm returns a newly optimized pol-
icy.

4. /state?IDENTIFIER — Get the full state details and im-
ages. This is required for high dimensional problems in
which the entire state cannot be returned to the client for
every state in a rollout

The most domain-specific element of any MDP visual-
ization is the representation of a specific state. In Figure
1 individual states are given as two dimensional images of
landscape fuel levels. This is a visualization that our forestry
colleagues typically generate for natural resource domains.
The fourth HTTP request can optionally return images to ac-
commodate these landscapes and arbitrary domain images.
These landscapes can be rendered without any changes to
the MDPVIS code base.

A live version of the visualization is available at MD-
Pvis.github.io for a wildfire suppression policy domain
(Houtman et al. 2013). The visualization has been tested on
Google Chrome and Firefox and is responsive to a variety of
screen resolutions.

In the VL/HCC paper we presented a use-case study to
provide anecdotal evidence of the utility of MDPVIS on the
wildfire problem. The case study involved user sessions with
our forestry economics collaborators who have formulated
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an MDP optimization problem to study fire suppression poli-
cies. When applying MDPVISs we found numerous simula-
tor and the optimization bugs.
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