Deceptive and Counter-Deceptive Machines
Papers from the AAAI 2015 Fall Symposium

Formalizing Deceptive Reasoning in Breaking Bad:
Default Reasoning in a Doxastic Logic

John Licato
licatoj @ipfw.edu
Analogical Constructivism and Reasoning Lab (ACoRL)
Indiana University and Purdue University-Fort Wayne

Abstract

The rich expressivity provided by the cognitive event
calculus (CEC) knowledge representation framework
allows for reasoning over deeply nested beliefs, desires,
intentions, and so on. I put CEC to the test by attempt-
ing to model the complex reasoning and deceptive plan-
ning used in an episode of the popular television show
Breaking Bad. CEC is used to represent the knowledge
used by reasoners coming up with plans like the ones
devised by the fictional characters I describe. However,
it becomes clear that a form of nonmonotonic reason-
ing is necessary—specifically so that an agent can rea-
son about the nonmonotonic beliefs of another agent. I
show how CEC can be augmented to have this ability,
and then provide examples detailing how my proposed
augmentation enables much of the reasoning used by
agents such as the Breaking Bad characters. I close by
discussing what sort of reasoning tool would be neces-
sary to implement such nonmonotonic reasoning.

An old joke, said to be a favorite of Sigmund Freud, opens
with two passengers, Trofim and Pavel, on a train leaving
Moscow. Trofim begins by confronting Pavel, demanding to
know where he is going.

Pavel: “To Pinsk.”

Trofim: “Liar! You say you are going to Pinsk in order
to make me believe you are going to Minsk. But [know
you are going to Pinsk!” (Cohen 2002)

Fictional stories can sometimes capture aspects of decep-
tion in the real world, especially between individuals who
are skilled at reasoning over the beliefs of others (second-
order beliefs), the beliefs of one party about the beliefs of an-
other (third-order beliefs), and so on. For example, an agent
a desiring to deceive agent b may need to take into account
agent b’s counter-deception measures (where the latter mea-
sures may be directed back at agent a, as was suspected by
poor Trofim). Such fictional stories may thus sometimes be
a suitable source of test cases for frameworks specializing in
the representation of, and reasoning over, complex doxastic
statements. The cognitive event calculus (CEC) promises to
be such a framework, given its ability to represent beliefs,
knowledge, intentions, and desires over time (Arkoudas and
Bringsjord 2009).

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

27

In this paper, I will attempt to model the reasoning used by
agents in an episode of the television series Breaking Bad.
Episode 13 of season 5, entitled 7o hajiilee, is notably rich in
deceptive behaviors between characters, being a point in the
series’ overall story arc where the conflict between several
consistently wily characters comes to a climax. One group
(Jesse and Hank) devises a plan to lure, trap, and catch an-
other character (Walt), and I try to answer two questions
about their plan in this paper: First, what sort of reasoning
and knowledge representation would be necessary to devise
such a plan as the one created by Jesse and Hank? Second, is
CEC sufficiently powerful to represent such knowledge and
serve as a base framework for such reasoning?

Section 1 will argue that even an analysis of how well CEC
can model reasoning in a fictional story can be beneficial to
the field of automated human-level reasoning, discussing re-
lated literature. I give an overview of CEC in Section 2, fol-
lowed by a synopsis of the relevant portions of 7o hajiilee’s
plot (Section 3.1). An analysis of the plan generation used by
the characters! in Section 3.2 suggests the need for a form
of nonmonotonic reasoning that requires, at a minimum, rea-
soning over second-order beliefs. I then spend some time ex-
plaining how this nonmonotonic reasoning can work in CEC.
The paper wraps up with a discussion of implications for the
future of deceptive and counter-deceptive Al (Section 5).

1 Why Bother Modeling Reasoning in Plots?

The cognition of deception is particularly interesting to
model: Knowing when to deceive in social situations may
make for robots that are better accepted socially (Wagner
and Arkin 2009; Sharkey and Sharkey 2011). Deceptive ma-
chines may indeed be the inevitable consequence, or per-
haps explicit goal, of human-level Al (Castelfranchi 2000;
Clark and Atkinson 2013).

Instances of deception in fiction are not difficult to find.
Some variant of deceptive behavior seems to appear in any
story involving characters containing beliefs, intentions, and
desires about the beliefs of other characters, depending on

'Of course, the characters I discuss here are fictional. I really
am talking about the work of the writers of the show, who are rea-
soning from the perspectives of the fictional characters. It will be
more convenient in this paper to simply say it is the fictional char-
acters doing the reasoning.

the definition of deception one accepts. Although some sto-
ries are better than others at accurately portraying realistic
behaviors, all were written at some point by imaginative hu-
man beings (with some exceptions, cf. (Bringsjord and Fer-
rucci 1999)). They therefore offer clues about the human
ability to think deceptively and counter deceptively; e.g., a
plan of deception devised by a fictional character, at the very
least, tells us what types of plans humans are capable of both
comprehending (as the readers of a story do) and creatively
generating (as the writers did). For researchers interested in
understanding the expressivity of human-level thought, sto-
ries of deception are useful benchmarks.

2 An Overview of CEC

The cognitive event calculus (CEC) is a first-order modal
logic for knowledge representation first introduced by Ark-
oudas and Bringsjord (2009) as a way to model Piaget’s
false-belief task. A member of the cognitive calculi family
of logics (Bringsjord et al. 2015), CEC contains operators
for several mental states and events: Belief, Knowledge,
Intention, Desire, Common knowledge, and Speech acts.
Note that not all of these operators are introduced in Ark-
oudas and Bringsjord (2009); rather, much of the current
version of CEC reflects subsequent developments, most of
which were produced in parallel with work on the deon-
tic cognitive event calculus (DCEC™), an extension of CEC
(Bringsjord et al. 2014).

CEC is loosely based on the event calculus (Kowalski and
Sergot 1986), but departs from it and other similar logics in
several important ways, two of which are especially relevant
to this paper’s purposes:

e Although no formal semantics is fully defined for CEC,
there is a preference for proof-theoretic (and the highly re-
lated argument-theoretic) semantics and a natural deduc-
tion (Jaskowski 1934) style of inference. Although there
are some cases where cognitively implausible techniques
such as resolution may assist in the proof-finding process,
the underlying inferences are rooted in a set of constantly
refined inference rules.

e CEC rejects the use of logical operators and inference
rules in contexts for which they were not designed. Stan-
dard deontic logic (SDL) made the mistake of trying to
define an obligation operator as a direct analog of the ne-
cessity operator from standard modal logic, with disas-
trous consequences (Chisholm 1963; McNamara 2014).

Most CEC formulae contain terms for at least one agent, a
temporal unit, and a nested formula. For example, B(a, ¢, ¢)
is read “agent a believes ¢ at time ¢”. There are two excep-
tions to this form: C(t, ¢) is read “all agents believe ¢ at
time ¢”, and S(a, b, t, @) says “at time ¢, agent a says ¢ to
agent b”. The syntax used in this paper is pictured in Figure
L.

3 Can CEC Model Hank’s Deceptive
Reasoning?

The cognitive event calculus provides a formalism for repre-
senting cognitively rich knowledge, but as this section will

28

Syntax
s Object | Agent | Self [_ Agent | ActionType | Action C Event |

" Moment | Boolean | Fluent | Numeric

action : Agent x ActionType — Action

initially : Fluent — Boolean

holds : Fluent x Moment — Boolean

happens : Event x Moment — Boolean

clipped : Moment x Fluent x Moment — Boolean
initiates : Event x Fluent x Moment — Boolean
terminates : Event x Fluent x Moment — Boolean
prior : Moment x Moment — Boolean

interval : Moment x Boolean

payoff : Agent x ActionType x Moment — Numeric

t:Boolean | =0 | dAY | OV VY|
0= P(a,1,0) | K(a,1,9) | C(1,0) | S(a,b,1,0) | S(a,t,0)

B(a,t,0) | D(a,t, holds(f,t')) | I(a,, happens(action(a® ,&),t"))
Figure 1: The CEC Syntax Used in this Paper

show, an augmentation is needed before the sort of reason-
ing used by the Breaking Bad characters can be faithfully
modeled.

3.1 Plots and Plans

Three characters are relevant to the plot at this point. Wal-
ter White (“Walt”) is a now-retired methamphetamine king-
pin who is in possession of over $80 million, trying to
live the remainder of his life (likely not to be long due
to a recurrence of cancer) in peace with his family. Henry
Schrader (“Hank”) is Walt’s brother-in-law, but is also a spe-
cial agent with the Drug Enforcement Agency while being
completely unaware of Walt’s second life as a drug dealer.
Hank has been searching for the meth manufacturer known
only as “Heisenberg,” unaware that it is Walt. Finally, Jesse
Pinkman is a former student of Walt’s (when Walt was still
working as a high school chemistry teacher) who Walt re-
cruited to start and build his drug empire. Due primarily to
selfish choices made by Walt over the course of their collab-
oration, Jesse’s life of late has been beset by many tragedies,
and Jesse wants revenge.

In the episodes leading up to To’hajiilee, several revela-
tions are made. Hank begins to strongly suspect that Walt
is Heisenberg, but realizes after a confrontation with Walt
that he has no clear way to collect evidence that can convict
him. When Walt confirms that Hank knows his secret, Walt
immediately drives to a location in the desert and buries his
money, not telling anyone where he has hidden it. Mean-
while, Jesse figures out some of the terrible things Walt has
done and reluctantly decides to team up with Hank to ac-

quire evidence to put Walt away (a collaboration that Walt is
unaware of, and believes is not even a distant possibility—
this misplaced faith in Jesse proves to be a significant strate-
gic disadvantage for Walt).

A plan devised by Jesse is only partially successful, as
it provides Jesse and Hank with the knowledge that Walt’s
money is buried somewhere in the desert inside specific
types of barrels, and that there are exactly seven such bar-
rels, but the location of the barrels is still inaccessible. At
this point (time ¢(), Hank devises a plan to get Walt to unin-
tentionally reveal the location of the money:

e Jesse and Hank will start by hiding at Walt’s place of busi-
ness (a car wash).

e When Walt arrives at the car wash (time t¢1), Jesse is to
send Walt a picture of a barrel, of the same sort Walt used
to bury his money, filled with cash and looking like it was
recently dug out of a hole in the desert. Jesse is to call
Walt and tell him several things:

— that Jesse knows the location of Walt’s money and will
destroy a certain amount every minute until Walt ar-
rives at that location,

— that Jesse knows there are six other barrels that Walt
buried,

— that Jesse discovered the location of Walt’s money
through an elaborate plan involving a GPS tracker on
Walt’s van that he was unaware of, and

— that Jesse orders Walt not to hang up the phone and call
for help, or he will instantly destroy the entire amount.

o As Walt is driving to the location of the money, Jesse and
Hank will follow him covertly, while Jesse keeps Walt on
the phone.

e When Walt finally arrives at the location of the money,
(time t5), Hank will arrest Walt and collect his money as
evidence.

Hank’s plan does not unfold as expected. Walt ends up
admitting, on the phone, his role in many of his most hor-
rendous crimes (providing evidence for Hank who is pre-
sumably recording the conversation), and upon arriving at
the location of Walt’s money, they encounter another hos-
tile group, both possibilities that Hank could have never pre-
dicted. The success or failure of his plan, however, is not the
focus of this paper. Instead, I indend to take steps towards
understanding what sort of knowledge representation and
reasoning would be required for an artificial agent to gen-
erate a plan with the sophistication and foresight of Hank’s.

In CEC, there are no constructs specifically created for
representing plans, though this shortcoming can be easily
remedied. Following Russell and Norvig (2010), an action
schema consists of a precondition, an action, and an effect,
along with a set of free variables. A plan is a sequence of
grounded action schemas (action schemas whose free vari-
ables have all been instantiated) carried out in service of
some goal, where the goal is usually one of the effects of
the last action schema in the sequence.

As a first attempt at representing an ac-
tion schema in CE&EC, first let the formula

29

causes(holds(pre, t), happens(act,t), holds(ef f,t'))
hold if and only if: when precondition pre holds at time
t, performing action act will cause effect ef f to hold at
time ¢/, where ¥ > t. An action schema consists of a
formula whose root predicate is causes (so that it is of the
form causes(x,y, z) and (if it is ungrounded) a set of free
variables v1, ..., v,.

The predicate causes may seem to capture the naive intu-
ition behind action schemas. But in practice, actually using
an action schema in an doxastic logic to infer holds(ef f,t’)
turns out to be more complex than the causes predicate can
handle in its present form. As I will explain next, the use of
a technique like default reasoning is necessary.

3.2 The Need for Default Rules in CEC

The process of plan generation might start with a desire for
some event to occur or state to hold. That desire may trans-
late into an extremely sparse high-level plan (e.g., “I plan
to make what I desire true”), followed by iterative elabo-
rations of that plan. Under this model, Hank would have
started with the desire to convict and incarcerate Walt. One
way to achieve this desire is to ensure that two conditions are
met: First, that Hank is in possession of evidence sufficient
to convict Walt; and second, that Hank has Walt in custody.
The knowledge of such a connection is represented as an ac-
tion schema, and Hank could presumably search backwards
through these schemas to create a plan (similar to the process
of explanation generation in (Licato, Sun, and Bringsjord
2014)).

But such action schemas would be lacking in even a
slightly more robust simulation, much less the real world.
Consider a simple example: Assume Hank believes that if
Walt believes his money is in danger of being destroyed by
Jesse (the precondition), and Hank takes the action of se-
cretly following Walt (the action), then Walt will lead Hank
directly to the money (the effect). But what if the effect
of this action schema not hold, even when the precondition
holds and the action takes place? Walt might take a detour
and obtain something belonging to Jesse to hold hostage, or
he might make a call to another character who would pro-
vide Walt with information leading him to doubt that Jesse
actually knows where the money is. There are virtually an
unlimited number of possibilities, or confounders, that might
happen to prevent the effect from happening. It is the job of
the planning agent to try to anticipate as many of these con-
founders as possible, or to make use of causal knowledge
that is subject to as few confounders as possible.

Worse yet, if the action schemas are treated as simple ma-
terial conditionals within CEC, confounders may lead to log-
ical contradictions. Consider the case where preconditions
p1,...,Pn and action « lead to effect e, and preconditions
P1, ..., Pnt1 and action « lead to effect —e. It is conceivable
that both sets of preconditions are met (since one is a subset
of the other), and a naive approach to inferring the effects
of action schemas might lead one to reason that both e and
—e hold, which clearly can not be the case. Furthermore,
it is unrealistic and intractable to expect a formalization to
populate all of its action schemas with every possible pre-
condition, taking into account all possible confounders. This

is particularly true in a deception situation, where planning
agents may need to consider other agents’ first-order beliefs,
second-order beliefs, and so on as possible confounders.

Given these difficulties, it seems reasoning in a counter-
deceptive fashion is better captured by a form of nonmono-
tonic reasoning. Here I will draw on default reasoning, a
form of nonmonotonic reasoning that allows action effects
to be represented and reasoned over without having to list
all of the possible confounders (Reiter 1980; Horty 2012;
Koons 2014). A default rule is a triple (p,J, ¢) where p is
a prerequisite, J is a set of justifications, and c is a con-
clusion. The default rule is understood as saying if p holds,
and each of the ;7 € J are consistent with a pre-established
background theory, then c can be inferred. For example, if
p = isBird(z) and e = canFly(z), a useful justification
would be j; = canFly(x). In other words, if « is a bird
and z being able to fly is not inconsistent with the back-
ground theory, then we can safely infer that = can fly. This
ensures consistency with an instantiation of x as a penguin;
if z is a penguin, since it is known that penguins cannot
fly (—canFly(penguin)), the inference canFly(penguin)
is not made.

Drawing from default rules, a default action schema
(DAS) shall be defined as a set of free variables v, ..., v,
and a formula of the form:

DAS (Default Action Schema) Formula

causes, (holds(pre,t), happens(act,t),
J,pri, holds(ef f,t'))

Where:
e precondition pre is a CEC formula
e qact is an action

e pri is a priority value used for prioritizing competing de-
fault action schemas

e cf f is the effect.

e J,a CEC formula called the justifications, is of the form
J1 N\ ...\ jm (each j; will be referred to as a justification).

Just as producing inferences using default rules requires
performing consistency checks relative to some background
theory, the effects of DASes hold only if they are consis-
tent with some background theory II. The special function
consistent(Il, j) is new to CEC, and it is meant to ap-
proximate the notion of consistency used in default reason-
ing. IT is a set of CEC formulae, and J is the justifications.
An implementation of default action schemas will have to
check if the justifications are consistent with II, subject to
implementation-specific practical considerations (for exam-
ple, an implementation might try to prove IT U {J} Fege L
and regard the reaching of a pre-set time limit as sufficient to
treat consistent(Il, J) as true). Therefore, consistent
should not be thought of as a normal function, but rather a
special instruction to the reasoner to perform a consistency
evaluation (it is for this reason and other reasons discussed
in Section 3.3 that I write consistent in teletype font).

30

Making use of the consistent function allows the intro-
duction of a new CEC inference rule, DAS Extension (Fig-
ure 2). The notation, IT% is used to represent the background
theory of agent a at time ¢. Section 3.3 will explain why
evaluation of rule DAS extension requires special consider-
ations.

If rule DAS extension is used to add an inference to a
background theory, the resulting background theory is re-
ferred to as an extension of the previous theory (Koons
2014). As will be explained in Section 3.4, there is often
a choice to make between which default action schemas to
use to create inferences.

3.3 Reasoning Over DASes of Others

The introduction of default reasoning into CEC becomes
more powerful when default reasoning constructs become
objects over which agents can reason. For example, when
Hank is generating his plan to deceive Walt, he needs to an-
ticipate how actions made as part of his plan will affect Walt.
Hank may need to modify his plans if he believes Walt will
act or generate beliefs in accordance with a certain DAS,
even if that DAS is not one that Hank himself is subject to.

At time ty, Hank knows that there was no GPS tracker
on the van Walt used when burying his money. But Hank
also knows that Walt does not know whether the van did
or did not have GPS. Hank can therefore justifiably believe
that Walt, after being told that Jesse knows how many barrels
were buried, will conclude by default that the van did in fact
have a GPS tracker. Hank’s belief can be captured by the
formula:

B(hank,to, B(walt, to, causes, (
holds(B(walt, to, B(jesse, to, numBarrels(6))), to),
happens(S(jesse, walt, ty, hasGPS(van)), to),
B(walt, tg, hasGPS(van)),
3,
holds(B(walt, ty, hasGPS(van)),to))))

Hank must therefore evaluate a DAS from Walt’s perspec-
tive. According to rule DAS extension, this requires evalua-
tion of the consistent function. However, because the call
to the consistent function is within the scope of a B op-
erator, any evaluation of consistency must be done from the
perspective of the agent doing the reasoning. I1%, in the case
of the formula B(a, ¢, consistent(II%, J)), consists of all
formulas of the form B(a, t, ¢). But what about cases where
an agent is reasoning about the DASes of another agent?
In Hank’s case, he needs to perform a consistency check of
justifications with the background theory of Walt (H%}{,alt).
But Hank would not evaluate the DAS against Walt’s actual
background theory, because Walt may have beliefs that Hank
is not aware of. Rather, Hank should be evaluating the DAS
against what Hank believes Walt’s background theory is!

My proposed solution is as follows: evaluation of the truth
value of the consistent function should take into account
the entirety of the nested formula in which the function oc-
curs. For instance, imagine we are faced with a formula such
as:

Rule DAS extension:

B(a,t, causes,, (holds(pre,t), happens(act,t), J, pri, holds(ef f,t'))),t <t/

B(a,t,consistent(IlL, J)) — B(a,t, holds(ef f, "))

Figure 2: The Rule “DAS Extension”

B(a,t,B(b,t, consistent(II}, J)))

In this formula, the evaluation of consistent(II},.J)
must be consistent with what agent a thinks the back-
ground theory of agent b is, i.e. all formulas of the form
B(a,t,B(b,t,¢)). This example can be stated more gener-

ally:

Evaluation of consistent

For any formula of the form:
B(ai,t,B(as,t,...B(an, t, consistent (I}, J)))...)

The evaluation of consistent(II} ,.J) will return
true if and only if J cannot be shown to be inconsis-
tent with the set consisting of all formulas of the form
B(ai,t,B(as,t,....B(an,t,¢))...) (ranging over all
possible ¢).

3.4 Using Default Action Schemas to Pre-empt
Confounders

In situations of deception and counter-deception, an agent
can make use of DASes to search for possible confounding
factors in a guided way. The basic idea is simple: You can
start with a simple plan, and search for possible confounders
to that plan. If a confounder is discovered, then the plan is
augmented to ensure the goals of the plan are still satisfied.
This is repeated iteratively until the reasoner is satisfied.

Drawing another example from the Breaking Bad plot,
Hank may start planning by deciding that he will discreetly
follow Walt, having reasoned from a DAS that says if Walt
believes Jesse knows where his money is, and Jesse con-
vinces Walt he will destroy the money, then Walt will head
directly to the money’s location, accompanied by nobody.
But there are a virtually unlimited number of confounders,
e.g., Walt may decide, while en route to the money, to call
someone else to form a counter-strategy. In such a case, Walt
likely will not come alone; worse yet, he may not go to the
money’s location at all. Hank must therefore reason over the
following DASes:

H, : causes, (
holds(B(walt, to, knowsLoc(jesse, money)), to),
happens(S(jesse, walt, to,
I(jesse, t1, destroy(money))), to),
holds(travel Alone(walt, location(money)), to),
1,

holds(travel Alone(walt, location(money)), to))

31

H> : causes, (
holds(B(walt, to, knowsLoc(jesse, money)), to) A
happens(callsFor Help(walt), to),
happens(S(jesse, walt, to,
I(jesse, t1, destroy(money))), to),
—holds(travel Alone(walt, location(money)), to),
2,

—holds(travel Alone(walt, location(money)), to))

DASes therefore provide a structured way to search
through possible confounders to a plan. In this case, the
confounder can be pre-empted by Hank, by having Jesse
threaten to burn all of the money if Walt hangs up the phone
or calls for help (a detail that was indeed part of Hank’s final
plan).

DASes H; and H,, are two DASes that may have their
preconditions and actions satisfied simultaneously, yet they
produce incompatible conclusions. Such a situation is sim-
ilar to the Nixon diamond, a situation in which two default
rules can produce incompatible inferences (Horty 2012). In
the Nixon diamond, the two default rules are essentially
that Quakers are pacifist, and Republicans are not pacifist.
Nixon, however, is both a Quaker and a Republican. Is he or
is he not pacifist?

The priority value pri allows a system to choose one DAS
over another in many cases, but what if competing DASes
have the same priority? In so-called fixed priority default
theories (Horty 2012), there is no other option: an arbitrary
decision must be made. Instead, a flexible reasoner might try
to compare things such as the size of the preconditions met,
or some measure of “activeness” to simulate the human bias
known as the availability heuristic.

4 Making it Happen:
Flexible Reasoning with MATR

One thing is clear about reasoning over DASes in CEC:
simply plugging axioms into a standard theorem prover
will likely be slow. My initial explorations with this in the
SPASS-based prover TALOS (a prover designed for use with
DCEC* (Licato 2015)) timed out without completing its
proofs virtually every time. It seems that to perform, e.g.,
the confounder searching and plan elaboration as described
in Section 3.4, what is needed is a very directed reasoner,
one that knows in a sense what it’s trying to prove (e.g. that
it’s trying to specifically find things to expand the plan, and
how to find confounders).

Perhaps the clearest example of the need for flexibility
comes from the evaluation of the consistent function,

Proof to be solved

Codelet Manager

Ax. 1. {P(y) A D Valp(z) = ¥(a)]} — P(y)
Ax. 2. P(=p) ¢ ~P(p)

Th. 1. P(p) = 0 3afp(z)]

D 1. G(x) <= Ve[P(p) = o(z)]

Ax. 3. P(G)

Th. 2. ¢ 3z G(x)

Df 2 pessa = (z) AVH{w(z) - OVyle(y) >)]}
Ax. 4. P(p) -0 P(p)

Th. 3. G(z) =G essz

DE. 3. E(x) <= Vlp essz =03y p(y)
Ax. 5. P(E)

Th 4. O3z Gl)

Process repeats until
proof is done

Figure 3: The Codelet Manager in MATR Deploys and Coordinates Codelets

which is very implementation-specific and may need to be
configurable based on the needs of some particular domain.

Only one such prover, to my knowledge, has the flexibility
to reason in such a way with minimal reprogramming effort,
performing fast searches for confounders while preserving
its ability to be a general-purpose reasoner. That reasoner is
MATR (Machina Arachne Tree-based Reasoner). MATR is
currently being developed by myself and researchers at the
Rensselaer Al and Reasoning (RAIR) lab, having recently
finished an early alpha version.

I believe a general-purpose, argument-theoretic natural
reasoner like MATR is the only way forward for CEC and
the other cognitive calculi, given that augmentations such
as the DASes introduced in this paper will likely become
more numerous, and each such augmentation may require
unique methods of reasoning and tailorable search strate-
gies to make their inclusion in real-time systems feasible.
MATR allows such reasoning methods and search strategies
to run in parallel by outsourcing the bulk of its heavy lift-
ing to codelets. Combinations of codelets can be deployed
depending on the high-level needs of MATR’s end user (e.g.
selecting codelets for general-purpose CEC reasoning versus
finding proofs in propositional calculus) or the dynamically
changing needs of a specific reasoning session (e.g. certain
codelets may be better to run at the beginning, middle, or
end of a proof).

The codelet manager component controls the deploy-
ment and coordination of codelets once a reasoning ses-
sion has begun (Figure 3). During a reasoning session, the
codelet manager will constantly scan the current state of
the inference space (these scans will often be superficial
for speed reasons) and use adaptive metrics to determine
which codelets are most appropriate to start. The codelet
manager’s suggestions may not be optimal, but the overall
strategy is one of massive parallelization—many strategies
are deployed simultaneously and their results synthesized,
and this process is repeated over many iterations.

32

The granularity of codelets is variable: an API will be
available to develop codelets in Java, along with example
codelets that are very low-level, corresponding to individual
inference rules so that the resulting proof found by MATR
is one resembling natural deduction, or high-level, such as
a codelet which calls another theorem prover entirely. Fur-
thermore, codelets are not limited to deduction; initial explo-
rations into developing codelets for inductive and analogico-
deductive (Licato, Bringsjord, and Hummel 2012) reasoning
are already underway.

5 Conclusion and Future Work

There are three primary contributions of this paper: First,
this is to my knowledge the first instance of action schemas,
and reasoning over them, in one of the cognitive calculi.
Second, this is the first time default reasoning has been at-
tempted in the cognitive calculi, and finally, the discussion
of how they can be used, particularly with special functions
such as consistent, will be used as a starting point for fu-
ture work. I introduced MATR as an example of a reasoner
designed to handle the flexibility of reasoning that DASes
will require.

The approach to DASes in CEC, presented for the first
time in this paper, will need some significant refinement.
One potential problem may arise from the implicit assump-
tion that if an agent believes some action schema, then the
relevant background theory against which that DAS must be
evaluated for consistency may not consist entirely of beliefs
of the agent. More work will have to be done in this area to
understand all the implications of this approach.

Finally, it should be noted that default reasoning has its
share of problems: it fails some tests for defeasible reasoning
such as cautious monotony and distribution (Koons 2014).
Default reasoning is also not the only way to explain the
types of reasoning discussed in this paper (see for example
(Pollock 2000)). The limitations of default reasoning will

need to be explored in future work and compared to other
reasoning types. It remains to be seen how well CEC (and
the other cognitive calculi) can accommodate realistic non-
monotonic reasoning in general.

References

Arkoudas, K., and Bringsjord, S. 2009. Propositional Atti-
tudes and Causation. International Journal of Software and
Informatics 3(1):47-65.

Bringsjord, S., and Ferrucci, D. 1999. Artificial Intelligence
and Literary Creativity: Inside the Mind of Brutus, A Story-
telling Machine. Psychology Press.

Bringsjord, S.; Govindarajulu, N. S.; Ellis, S.; McCarty, E.;
and Licato, J. 2014. Nuclear Deterrence and the Logic
of Deliberative Mindreading. Cognitive Systems Research
28:20-43.

Bringsjord, S.; Govindarajulu, N. S.; Licato, J.; Sen, A.;
Johnson, J.; Bringsjord, A.; and Taylor, J. 2015. On Logi-
cist Agent-Based Economics. In Proceedings of Artificial
Economics 2015 (AE 2015). Porto, Portugal: University of
Porto.

Castelfranchi, C. 2000. Artificial Liars: Why Computers
Will (Necessarily) Deceive Us and Each Other. Ethics and
Information Technology 2:113-119.

Chisholm, R. M. 1963. Contrary-to-Duty Imperatives and
Deontic Logic. Analysis 24:33-36.

Clark, M., and Atkinson, D. J. 2013. (Is There) A Future
for Lying Machines? In Proceedings of the 2013 Deception
and Counter-Deception Symposium.

Cohen, G. 2002. Deeper Into Bullshit. In Buss, S., and
Overton, L., eds., Contours of Agency: Essays on Themes
from Harry Frankfurt. Cambridge, MA: MIT Press. 321-
339.

Horty, J. F. 2012. Reasons as Defaults. Oxford University
Press.

Jaskowski, S. 1934. On the Rules of Suppositions in Formal
Logic. Studia Logica 1:5-32.

Koons, R. 2014. Defeasible Reasoning. In Zalta, E. N., ed.,
The Stanford Encyclopedia of Philosophy. Stanford Univer-
sity, spring 2014 edition.

Kowalski, R., and Sergot, M. 1986. A Logic-based Calculus
of Events. New Generation Computing 4(1):67-94.

Licato, J.; Bringsjord, S.; and Hummel, J. E. 2012. Ex-
ploring the Role of Analogico-Deductive Reasoning in the
Balance-Beam Task. In Rethinking Cognitive Development:
Proceedings of the 42nd Annual Meeting of the Jean Piaget
Society.

Licato, J.; Sun, R.; and Bringsjord, S. 2014. Using Meta-
Cognition for Regulating Explanatory Quality Through a
Cognitive Architecture. In Proceedings of the 2nd Interna-
tional Workshop on Artificial Intelligence and Cognition.

Licato, . 2015. Talos page.
http://rair.cogsci.rpi.edu/projects/automated-
reasoners/talos/.

prover

33

McNamara, P. 2014. Deontic Logic. In Zalta, E. N., ed., The
Stanford Encyclopedia of Philosophy. Stanford University,
winter 2014 edition.

Pollock, J. L. 2000. Rational Cognition in OSCAR. Lecture
Notes in Computer Science 1757:71-90.

Reiter, R. 1980. A Logic for Default Reasoning. Artificial
Intelligence 13:81-132.

Russell, S. J., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice Hall, 3
edition.

Sharkey, A., and Sharkey, N. 2011. Anthropomorphism and
Deception in Robot Care and Companionship. IEEE Robots
and Automation Magazine 18(1):32-38.

Wagner, A. R., and Arkin, R. C. 2009. Robot Deception:
Recognizing when a Robot Should Deceive. In Proceedings
of the IEEE International Symposium on Computational In-
telligence in Robotics and Automation (CIRA-09).

