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Abstract
Personalized medicine targets the customization of
treatment strategies to patients’ individual characteris-
tics. Here we consider the problem of optimizing per-
sonalized pharmacological treatment strategies for can-
cer. We focus primarily on developing effective strate-
gies to collect the data necessary for the construction of
personalized treatments. We formulate this problem as
a contextual bandit and present a new algorithm based
on repeated sub-sampling for robust data collection in
this framework. We present a case study showing ex-
periments on a simulation setting, built from real data
collected in a previous animal experiments. Promising
results in this case study have since lead us to deploy
this strategy in a partner wet lab to allocate treatments
for the next phase of animal experiments.

We consider the problem of designing an efficient data col-
lection strategy during animal experiments investigating the
effectiveness of cancer treatment medication. During an ini-
tial data collection phase, data was acquired by randomly as-
signing treatments twice a week to six mice with up to three
induced cancer tumours each. This allowed to collect data
on a total of 12 tumours. Tumour measurements were taken
right before administering a treatment. We consider the ad-
ministration of the following treatments: 1) none (n=42); 2)
5-FU (n=66); 3) imiquimod (n=24); and 4) simultaneous im-
iquimod and 5-FU (n=31). Given that some treatments may
be more effective at different cancer stages, our goal is to
use this data to determine an efficient treatment allocation
policy to be applied in the next batch of experiments.

We model this problem as a categorical contextual ban-
dit (Auer 2002; Langford and Zhang 2007) where the actions
correspond to the available treatments, the context is the tu-
mour volume (in mm3) before the treatment, as calculated
by π

6 (hv)
3
2 where h and v are respectively the horizontal and

vertical tumour measurements, and the reward is the tumour
volume reduction following the treatment. We formalize the
contextual bandit problem with categorical actions as an
episodic game. At each episode t > 0, the player observes a
context x(t) ∈ X and must choose the next action a(t) ∈ A
to play. The agent then observes a reward (perturbed by
noise) r(t) = fa(t)(x(t)) + ε(t), where fa : X → R
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is an unknown function and ε(t) is a zero mean random
noise i.i.d. accross episodes. A typical performance metric in
the stochastic bandit setting is the cumulative pseudo-regret,
that is the loss in reward incurred for not knowing which arm
is optimal in each context. For a given context x, the opti-
mal average reward f∗(x) = maxa∈A fa(x). The goal is
to minimize the cumulative pseudo-regret after T episodes,
given by R̂(T ) =

∑T
t=1 f

∗(x(t))− fa(t)(x(t)).
We assume that functions fa are samples from known

Gaussian process (GP) distributions. Rasmussen and
Williams (2006) describe a GP as a generalization of the
Gaussian probability distribution, where a stochastic pro-
cess governs the properties of Gaussian distributions at ev-
ery point of a space. A GP(µ, k) is completely described by
its mean function µ : Z → R, µ(z) = E[g(z)] and co-
variance (kernel) function k : Z × Z → R, k(z, z′) =
E[(g(z) − µ(z))(g(z′) − µ(z′))]. Suppose we condition a
GP(µ, k) on observed outputs y = [y1, . . . , yN ]T associ-
ated with inputs Z = {z1, . . . , zN}, where yn = g(zn) + ε
with i.i.d. Gaussian noise ε ∼ N (0, σ2). The predictive dis-
tribution at test point z∗ is estimated by

ĝ∗ = kT∗ (K + σ2I)−1y, (1)

V[g∗] = k(z∗, z∗)− kT∗ (K + σ2I)−1k∗ (2)

where k∗ = [k(z1, z∗), . . . , k(zN , z∗)]
T and K is the posi-

tive semi-definite kernel matrix [k(z, z′)]∀z,z′∈ZN
. Here, the

space Z corresponds to the set of contexts X .

Robust Estimation via Sub-Sampling
The recent bandit algorithm BESA (Baransi, Maillard, and
Mannor 2014) uses a sub-sampling procedure to fairly com-
pare actions. Given two actions a1 and a2 that have been
played respectively na1(t) and na2(t) > na1(t) times re-
spectively up to episode t, comparing their emprirical aver-
ages is not fair because action a1 has less samples than ac-
tion a2. To compensate for this situation, BESA sub-samples
without replacement na1(t) data out of the na2(t) samples
of action a2 and computes the empirical average of action
a2 on this subset. We consider a generalization of BESA to
the categorical contextual bandit problem.

In the categorical contextual bandit problem, we model
each function fa using a dedicated GP, denoted GPa. The
hyperparameters of each GPa are estimated using the initial
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available data (Krause and Ong 2011). When selecting one
of two actions a1 and a2, a natural way of proceeding is to
base the decision upon the posterior distributions of their re-
ward functions by conditioning the GPs on their respective
history of observations. Following the idea of BESA, this
would not be fair because they might not have the same num-
ber of samples. To compensate, we propose to compute the
posterior distribution by conditioning only on a sub-sample
(without replacement) of the available samples, as shown by
Algorithm 1. Similar to BESA, the algorithm can easily be
extended to multiple arms by organizing a pair-wise tourna-
ment between randomly permuted arms (Baransi, Maillard,
and Mannor 2014).

Algorithm 1 Sub-sampled GP for a contextual bandit with
two categorical actions
Require: Actions a1 and a2 associated with Gaussian pro-

cesses GPa1 and GPa2 , the number of times na(t) that
action a has been played up to episode t, the history
of observations Da(t) associated with action a up to
episode t, and the context x(t) received at episode t.

1: n(t) = mina∈{a1,a2} na(t)
2: Uniformely sample n(t) observations without replace-

ment from Da1(t) and Da2(t) as Sa1(t) and Sa2(t), re-
spectively.

3: Define f̂a1(t) and f̂a2(t) as the posterior means of
GPa1 and GPa2 , respectively conditioned on observa-
tions Sa1(t) and Sa2(t), and evaluated at test point x(t).

4: Choose a(t) = argmaxa∈{a1,a2} f̂a(t), break tie by
choosing a(t) = argmina∈{a1,a2} na(t).

5: Play a(t) and observe r(t).

Experiments
On each episode, a tumour volume is sampled from the ex-
ponential distribution λe−λ(x−γ) with γ = 3.42 and scale
1/λ = 66.88, fitted on the distribution of the available con-
texts. Tumour reductions are modelled using cubic regres-
sion on available data and noise is modelled by linear re-
gression on the standard deviations of available data from
the cubic model, as shown by Figure 1. Red indicates that
the treatment is optimal (it has the largest expected value)
in this context. A negative reduction indicates a grow. The
logarithmic scale emphasizes the expected reward functions
for small tumours, as they are more frequent than large tu-
mours. This setting raises an important new challenge: the
noise is not constant over the space of contexts. Moreover,
the noise increases with the tumour volume, and so is the
sub-optimality gap. This situation is especially hard on re-
gret cumulation as each mistake leads to more regret and
mistakes are more likely to occur when it is noisy.

We compare the sub-sampling approach based on BESA
with two other approaches for (non-linear) contextual ban-
dits using GPs: CGP-UCB (Krause and Ong 2011) and
Thompson sampling (Thompson 1933). All approaches use
squared exponential kernels. Experiments are conducted
over T = 2000 episodes, for 20 runs.
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(a) None
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(b) 5-FU
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(c) Imiquimod
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(d) 5-FU+Imiquimod

Figure 1: Experimental models of average reward functions
using polynomial regression and linear noise (gray area).
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(a) Sub-sampling
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(c) Thompson

Figure 2: Initial policies as probability of administering no
treatement (dark blue), 5-FU (green), imiquimod (red), or
5-FU+imiquimod (light blue) given the context.

Figure 2 shows the initial recommended policies (us-
ing only the available data). Being randomized, the sub-
sampling approach and Thompson recommend every treat-
ments according to their estimated probabiblity of being op-
timal, while deterministic CGP-UCB recommends a single
treatment for each context. The policy recommended by the
sub-sampling is similar to Thompson, with emphasis on 5-
FU for low tumour volume. Though this allocation policy
does not yet match the optimal regions (red) of the aver-
age reward functions (Fig. 1), Figure 3a shows that the sub-
sampling approach adapts faster to the model and at a lower
regret cost than the other methods. In order to validate that
the results not only due to a favorable modelling, experi-
ments are also conducted using average rewards functions
obtained with linear regression (instead of cubic regression).
Figure 3b shows the average cumulative pseudo-regret with
this linear model. One observes that, if Thompson performs
better than with the polynomial model, the sub-sampling ap-
proach still outperforms all alternatives.
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(a) Polynomial model
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(b) Linear model

Figure 3: Cumulative pseudo-regret using sub-sampling
(red), CGP-UCB (dash), and Thompson sampling (dot).

Conclusion
We presented a problem that highlights several challenges
of real-world applications such as how to deal with low
amount of initial data and high noise. We formulate it as
a (non-linear) contextual bandit and propose a new solu-
tion approach based on an easy-to-implement sub-sampling
approach that requires few parameters. This approach is
strongly supported by our experimental results in the sim-
ulation case. On the basis of these findings, we have since
deployed the strategy in a partner wet lab to collect the next
phase of experimental data. Results should be available in
the coming months.
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