

Abstract
Natural Language Understanding (NLU) studies machine
language comprehension and action without human inter-
vention. We describe an implemented system that supports
deep semantic NLU for controlling systems with multiple
simulated robot agents. The system supports bidirectional
communication for both human-agent and agent-agent inter-
action. This interaction is achieved with the use of N-tuples,
a novel form of Agent Communication Language using
shared protocols with content expressing actions or inten-
tions. The system’s portability and flexibility is facilitated
by its division into unchanging “core” and “application-
specific” components.

Introduction
Historically, controlling multi-agent systems has been dif-
ficult, particularly for systems involving both human
agents and autonomous or semi-autonomous robotic
agents. Multi-agent problems introduce new difficulties,
including the sharing of world information and solving
problems by planning or coordinating collaborative actions
(Taylor et al. 2011).
 Much previous research in the field has focused on di-
rect planning without agent collaboration (Shi et al. 2014),
while other work has incorporated more collaborative ele-
ments (Allen and Perrault 1980), (Ferguson and Allen
2011), (Subramanian, Kumar, and Cohen 2006).
 We have implemented an approach based on our previ-
ous work on Natural Language Understanding (Fig. 2)
(Khayrallah, Trott, and Feldman 2015). This is grounded in
cognitive linguistics research on deep embodied semantics
with a focus on the semantics of action (Feldman 2007),
(Feldman, Dodge, and Bryant 2009) and uses Embodied
Construction Grammar (ECG) and the ECG Analyzer
(Bryant 2008) as the front-end for the natural language
interface. All grammar development has been greatly aided
by the ECG Workbench, an Eclipse-based application used

for grammar design and testing. More information is avail-
able at:
http://www.icsi.berkeley.edu/icsi/projects/ai/ntl.
 We have filed a patent application on this development,
LCAS (Language Communication with Autonomous Sys-
tems). This paper extends the previous work with demon-
stration and discussion of the system architecture, includ-
ing for multi-agent communication.
 In the LCAS system, human-agent and agent-agent in-
teractions are facilitated by N-tuples (Fig. 1), which con-
tain action protocols and semantic content. Our goal is to
develop a framework whereby all agents involved in an
application can send and receive information in the same
form. The mechanism of universal, but customizable, agent
IPC is grounded in general N-tuple Templates. The tem-
plate underlying Figure 1 consists of the argument names
followed by type restrictions. Mapping from natural lan-
guage input to completed N-tuples like Figure 1 is the key
NLU step in the system, as will be discussed below.

System Architecture
The major components are shown in Fig. 2, which depicts
the layout of the components for a simulated robot appli-
cation with a single Agent/Problem Solver. A major design

Figure 1: N-tuple "Team, push the blue box east together!"

Natural Language Understanding and

Communication for Multi-Agent Systems

Sean Trott, Aurélien Appriou, Jerome Feldman, Adam Janin
International Computer Science Institute

1947 Center Street, #600
Berkeley, CA 94704

seantrott@icsi.berkeley.edu appriou.aurelien@berkeley.edu
 feldman@icsi.berkeley.edu janin@icsi.berkeleky.edu

Artificial Intelligence for Human-Robot Interaction
Papers from the AAAI 2015 Fall Symposium

137

goal is modularity, which we implement at two levels. At
the component level, the subsystems run as independent
programs communicating through well-defined protocols.
Although some code, such as the network communication
library, is shared among the components, they run inde-
pendently and potentially on separate machines. More de-
tails on the individual components are described later in
the paper.
 Another important level of modularity comes from sepa-
rating the components into Core and App parts. For each
component, the Core contains the parts of the component
that do not change from application to application. To re-
target the system to a new App, several steps of system
integration are needed, as will be discussed below. The
App parts comprise components that must be modified by
the system integrator when the application changes. We
believe that this separation will allow optimal repurposing
– some work must be done to integrate a new application,
but the majority of the language side need only be written
once in Core. The tractability of writing the language Core
only once arises from the restricted domain of control of
autonomous systems. General NLU across domains and
tasks remains intractable.
 The loose coupling between the language front-end and
the action (Fig. 2) allows the system to be retargeted for a
variety of tasks. Here, our implementation connects lan-
guage to a simulated robot, but ECG has also been used as
the language model for other tasks (Oliva et al. 2012).

Figure 2: System architecture. This API references the MORSE

simulator but other applications could be substituted.

Communication Paradigm: N-tuples
A key feature of our system is the shared ability across all
agents to send and receive N-tuples. Language input from a
human user is converted into N-tuples, and agents com-
municate with each other (to share information and plan
collaborative actions) and the human (when asking for
clarification, etc.) through the use of N-tuples. All avenues
of N-tuple communication are bidirectional.

 Agent communication to the human operator is done
using N-tuple information in pattern-based natural lan-
guage generation (e.g., “which box?” or “I have discovered
a new box at location x, y”). For most interaction purposes,
we feel the pattern-based responses are sufficient. In fact,
there are informal studies that suggest that habitability is
improved by making the system responses less human-
like.
 A crucial part of our design is that agent-agent commu-
nication can be accomplished solely through N-tuples,
without the need to generate natural language or another
type of agent communication language. The design does
not suggest that the N-tuples used for Agent-Agent com-
munication should be translated into natural language. One
should not expect end users to monitor the detailed interac-
tion of agents. Any language interaction with a user is
channeled through the Agent-UI as shown. Of course, an
App will likely interact with a user non-linguistically, such
as by modifying displays or other HCI capabilities. For
example, in the pilot system, the Morse App (using Blend-
er) provides realistic action displays.
N-tuple Implementation
The communication of N-tuples is provided by a Core fa-
cility known as Transport. Typically, each agent (the
Agent-UI and each Agent/Problem Solver) instantiates one
Transport using the agent's name (e.g. the Agent-UI
Transport is called "Agent-UI"; the top-level Problem
Solver is called "Boss-Agent"). An agent can then send an
N-tuple to any other agent (Fig. 4). It is also possible for
multiple agents to share a transport with the same name.
For example, Agent 1 and Agent 2 could both receive N-
tuples sent to the Transport "Team-Agent".
 The current implementation of Transport requires no
setup configuration – all agents automatically and trans-
parently announce themselves on the local area network. In
practice, it is likely that sites will require a component that
implements the Transport API following their own security
and authentication policies.

Language Front-End: Analyzer/Specializer
A human user gives a natural language command to an
Agent-UI (User-Interface Agent). The Agent-UI is respon-
sible for mediating communication between the human
agent and the agents involved in the application.
 Specifically, the Agent-UI (Figure 2) receives speech or
text input from a human user, performs a deep semantic
analysis using the ECG Analyzer (Bryant 2008) which
outputs and produces a SemSpec as shown in the lower left
of Figure 2. This operation is described in more detail in
the 2015 paper (Khayrallah, Trott, and Feldman 2015). The
SemSpec is intended to be independent of any application,
but we have not yet tested this extensively.

138

 The App-dependent aspects of the language analysis are
handled by the Specializer, which crawls the SemSpec
structure and outputs an N-tuple (like Fig. 1) for the Prob-
lem Solver. The Agent-UI then sends the N-tuple to the
Problem Solver. Task relevant information is defined de-
claratively in the N-tuple templates, which are shared be-
tween the Specializer and the Problem Solver.
 The Agent-UI is capable of receiving feedback from the
Problem Solver (as a different N-tuple), as well as interact-
ing with the user through speech or text. As mentioned
above, natural language generation is accomplished with
the use of pattern-based responses, which are geared to-
wards the types of information or dialogs a human might
need to hear. The most common forms of interaction are
requests for clarification (if the user input is under-
specified), responses to queries, or notifications of object
discovery.
Front-End Modularity
 Both the Analyzer and the Specializer are divided into
Core and App sides. The Analyzer core contains gram-
mars, schemas, ontologies, and code that support the subset
of a language related to control of autonomous systems;
most of our work has been in English, but we have also
implemented the robot demo in Spanish and French.
 A system integrator adds domain-specific words and
ontology entries relevant to the application to the Analyzer
App. For example, the Analyzer Core has grammar and
words for commanding an autonomous system to move.
The system integrator could add a specific term "dash"
meaning to move at the robot's top speed. The speed of
“dash” is application-specific, so must be implemented by
the App side. Adding words and ontology entries will be
quite common, and we provide a specific user interface
called the Token Editor (Fig. 3) to make it easy. If the ap-
plication requires grammar that isn't in Core, the applica-
tion integrator must add it to Core, using the ECG Work-
bench. We believe that this will be rare.
 The Specializer Core contains code that traverses the
SemSpec produced by the Analyzer component. The Spe-
cializer-App includes the Core, as well as task-relevant N-
tuple templates and code that specify how to build N-tuples
from a SemSpec. As mentioned above, these templates are
shared between the Specializer and Problem Solver; this
establishes a shared set of vocabulary and communication
language between the two modules. The values in an N-
tuple (Fig. 1) are all ontology values. A key part of our
design is a “shared ontology” (Fig. 2) between the lan-
guage and application sides; the Token Editor (Fig. 3) can
be used to specify mappings from the text to language and
application ontologies.

Figure 3: Token Editor, used to add "dash" and other tokens to
grammar.

Action: Problem Solver
The Problem Solver uses information from an N-tuple, as
well as its world model, to make decisions and solve com-
plex problems. It makes API calls to the underlying appli-
cation – in this case, the MORSE robot simulator (Eche-
verria et al. 2011). A Problem Solver’s capabilities are
inherently dependent upon the constraints of the underly-
ing application. As such, the Problem Solver core is quite
small, consisting mainly of code to scan, build, and trans-
mit N-tuples, as well as answering queries and requesting
clarification from the human by communicating with the
Agent-UI, as discussed in the earlier 2015 paper (Khayral-
lah, Trott, and Feldman 2015).
 In this case, the MORSE simulator offers realistic mo-
tion physics, as well as various proximity sensors, which
are used in detecting or discovering new objects. If new
information is gleaned about the world (by contact in the
current demo), the Problem Solver communicates this in-
formation in an N-tuple to the Agent-UI, which informs the
user via speech or text.
 Part of our new multi-agent system is the development
of multiple levels of complexity, which involve more than
one Problem Solver.
Levels of Multi-Agent Complexity
The first level of complexity uses only one Problem Solver
and involves only one Agent Problem Solver (as depicted
in Fig. 2), which has one world model. If a robot discovers
a new object in the world, the shared world model is up-
dated. The Agent Problem Solver communicates all re-
quests and other N-tuples back to the Agent-UI and in-
structions to application modules.
 The second level of complexity uses multiple Problem
Solvers (Fig. 4). There is a Boss-Agent, and there are also
Application-Agents, each with its own separate world

139

model. The Boss-Agent contains its own world model. The
Boss-Agent receives incoming N-tuples from the Agent-UI
and conveys them to the Application-Agents. The Boss-
Agent also performs high-level problem solving, such as
determining which Application-Agent is best suited for a
given task. In this model, there is no communication be-
tween the individual Application-Agents, but Application-
Agents and Boss-Agents communicate with each other
using N-tuples.
 The third level of complexity, like the second, involves a
Boss-Agent and individual Application-Agents (Fig. 4).
The chief difference is that Application-Agents can also
send N-tuples to each other and coordinate actions among
themselves, as depicted by the arrow in the lower right of
the diagram below (Fig. 4).

Figure 4: System architecture for second and third level of com-

plexity.

Applications
 Our current demonstration involves two simulated robots
(“Robot1” and “Robot2”), and boxes of varying color and
size. The user can address a particular robot, such as “Ro-
bot1, dash behind the blue box!” In this case, the Boss-
Agent routes the resulting N-tuple to one of the Applica-
tion-Agents.
 The user can also address the system as a whole using
the word “Team”, such as: “Team, push the blue box east
together!” The Analyzer produces a SemSpec as usual, and
the Specializer’s resulting N-tuple (Fig. 1) notes that the
“protagonist” of the process is “team_instance”. The N-
tuple also notes that the process is meant to be collabora-
tive.
 In this case, the Boss-Agent must perform high-level
problem solving. This process is also collaborative, mean-
ing the Application-Agents should work together to solve
it. The Boss-Agent composes its own N-tuples from the
command, which contain detailed instructions, and dis-
patches versions to each Application-Agent. Ultimately,
the two robots move into position and use their combined
power to push the blue box east.

 The Boss-Agent must also make high-level decisions if
the user’s instructions are less precise, such as: “Team,
push the blue box east!” In this case, the user is requesting
the same desired effect – the blue box being pushed east –
but specifies neither the actual agent (“Robot1” or “Ro-
bot2”) or whether the process should be done collabora-
tively. The Boss-Agent takes into account various factors
from its world model to decide how the task ought to be
executed. For example, if Robot1 is closer to the blue box,
the Boss-Agent might build and dispatch an N-tuple to
Robot1 ordering it to push the box east. However, if Ro-
bot1 is occupied with another task, or is unable to perform
this task, the Boss-Agent would select Robot2 and send a
customized N-tuple with instructions for action (Fig. 5).
Alternatively, if the box was too heavy for one robot to
push, the Boss-Agent would order the robots to work col-
laboratively. Of course, the factors taken into consideration
by the Boss-Agent are contingent on the task and applica-
tion domain.

Figure 5: Sample N-tuple fragment sent from Boss-Agent to Ap-
plication-Agent (Robot2).

A video demonstration of this example can be found at:
https://www.youtube.com/watch?v=46jYgBIw_VA.

A compilation video demonstrating various features of
our robot system can be found at:
https://www.youtube.com/watch?v=mffl4-FqZaU.

Limitations and Future Work
Currently, communication from the Boss-Agent back to the
user – such as requests for clarification – is translated from
an N-tuple into a “pattern” response, such as: “which red
box?” The addition of more complex natural language gen-
eration might improve the system.
 In an attempt to modularize the system further, we are
implementing a model that communicates N-tuples across
different network channels; this would be invaluable for
situations such as communicating with an autonomous
submarine from land.
 Finally, we are integrating a speech front-end to the lan-
guage module.

Acknowledgments
This work is supported by the Office of Naval Research
grant number N000141110416.

140

References
Taylor, M. E., Jain, M., Kiekintveld, C., Kwak, J. Y., Yang, R.,
Yin, Z., & Tambe, M. (2011). Two decades of multiagent team-
work research: past, present, and future. In Collaborative Agents-
Research and Development (pp. 137-151). Springer Berlin Hei-
delberg.
Shi, Z., Zhang, J., Yue, J., & Yang, X. (2014). A Cognitive Mod-
el for Multi-Agent Collaboration. International Journal of Intelli-
gence Science, 4(01), 1-6.
Allen, J. F., & Perrault, C. R. (1980). Analyzing intention in ut-
terances. Artificial Intelligence, 15(3), 143-178.
Ferguson, G., & Allen, J. F. (2011). A Cognitive Model for Col-
laborative Agents. In AAAI Fall Symposium: Advances in Cog-
nitive Systems.
Subramanian, R. A., Kumar, S., & Cohen, P. R. (2006). Integrat-
ing joint intention theory, belief reasoning, and communicative
action for generating team-oriented dialogue. In Proceedings of
the National Conference on Artificial Intelligence (Vol. 21, No. 2,
p. 1501).
Khayrallah, H., Trott, S., & Feldman, J. (2015). Natural Language
For Human Robot Interaction. Proceedings of the Workshop on
Human-Robot Teaming at the 10th ACM/IEEE International
Conference on Human-Robot Interaction, Portland, Oregon.
Feldman, J., Dodge, E., & Bryant, J. (2009). A neural theory of
language and embodied construction grammar. The Oxford
Handbook of Linguistic Analysis., 111 —- 138.
Feldman, J. (2007). From Molecule to Metaphor. A Neural theory
of Language. The MIT Press.
Bryant, J. E. (2008). Best-Fit Construction Analysis. Analysis.
Oliva, J., Feldman J., Giraldi L., and Dodge E. (2012) Ontology
Driven Contextual Reference Resolution in Embodied Construc-
tion Grammar. In the proceedings of the 7th Annual Constraint
Solving and Language Processing Workshop. Orléans, France.
Echeverria, G.; Lassabe, N.; Degroote, A. and Lemaignan, S.
(2011). Modular open robots simulation engine: Morse. In the
proceedings of the 2011 IEEE International Conference Robotics
and Automation, 46-51 IEEE.

141

