
 

 
 

Abstract 
Natural Language Understanding (NLU) studies machine 
language comprehension and action without human inter-
vention. We describe an implemented system that supports 
deep semantic NLU for controlling systems with multiple 
simulated robot agents. The system supports bidirectional 
communication for both human-agent and agent-agent inter-
action. This interaction is achieved with the use of N-tuples, 
a novel form of Agent Communication Language using 
shared protocols with content expressing actions or inten-
tions. The system’s portability and flexibility is facilitated 
by its division into unchanging “core” and “application-
specific” components.  

Introduction 
Historically, controlling multi-agent systems has been dif-
ficult, particularly for systems involving both human 
agents and autonomous or semi-autonomous robotic 
agents. Multi-agent problems introduce new difficulties, 
including the sharing of world information and solving 
problems by planning or coordinating collaborative actions 
(Taylor et al. 2011). 
 Much previous research in the field has focused on di-
rect planning without agent collaboration (Shi et al. 2014), 
while other work has incorporated more collaborative ele-
ments (Allen and Perrault 1980), (Ferguson and Allen 
2011), (Subramanian, Kumar, and Cohen 2006).  
 We have implemented an approach based on our previ-
ous work on Natural Language Understanding (Fig. 2) 
(Khayrallah, Trott, and Feldman 2015). This is grounded in 
cognitive linguistics research on deep embodied semantics 
with a focus on the semantics of action (Feldman 2007), 
(Feldman, Dodge, and Bryant 2009) and uses Embodied 
Construction Grammar (ECG) and the ECG Analyzer 
(Bryant 2008) as the front-end for the natural language 
interface. All grammar development has been greatly aided 
by the ECG Workbench, an Eclipse-based application used 

for grammar design and testing. More information is avail-
able at: 
http://www.icsi.berkeley.edu/icsi/projects/ai/ntl.  
 We have filed a patent application on this development, 
LCAS (Language Communication with Autonomous Sys-
tems). This paper extends the previous work with demon-
stration and discussion of the system architecture, includ-
ing for multi-agent communication. 
 In the LCAS system, human-agent and agent-agent in-
teractions are facilitated by N-tuples (Fig. 1), which con-
tain action protocols and semantic content. Our goal is to 
develop a framework whereby all agents involved in an 
application can send and receive information in the same 
form. The mechanism of universal, but customizable, agent 
IPC is grounded in general N-tuple Templates. The tem-
plate underlying Figure 1 consists of the argument names 
followed by type restrictions. Mapping from natural lan-
guage input to completed N-tuples like Figure 1 is the key 
NLU step in the system, as will be discussed below. 

System Architecture 
The major components are shown in Fig. 2, which depicts 
the  layout of the components for a simulated robot appli-
cation with a single Agent/Problem Solver. A major design 

 
Figure 1: N-tuple "Team, push the blue box east together!" 
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goal is modularity, which we implement at two levels. At 
the component level, the subsystems run as independent 
programs communicating through well-defined protocols. 
Although some code, such as the network communication 
library, is shared among the components, they run inde-
pendently and potentially on separate machines. More de-
tails on the individual components are described later in 
the paper. 
 Another important level of modularity comes from sepa-
rating the components into Core and App parts. For each 
component, the Core contains the parts of the component 
that do not change from application to application. To re-
target the system to a new App, several steps of system 
integration are needed, as will be discussed below. The 
App parts comprise components that must be modified by 
the system integrator when the application changes. We 
believe that this separation will allow optimal repurposing 
– some work must be done to integrate a new application, 
but the majority of the language side need only be written 
once in Core. The tractability of writing the language Core 
only once arises from the restricted domain of control of  
autonomous systems. General NLU across domains and 
tasks remains intractable. 
 The loose coupling between the language front-end and 
the action (Fig. 2) allows the system to be retargeted for a 
variety of tasks. Here, our implementation connects lan-
guage to a simulated robot, but ECG has also been used as 
the language model for other tasks (Oliva et al. 2012).  

 
Figure 2: System architecture. This API references the MORSE 

simulator but other applications could be substituted. 

Communication Paradigm: N-tuples 
A key feature of our system is the shared ability across all 
agents to send and receive N-tuples. Language input from a 
human user is converted into N-tuples, and agents com-
municate with each other (to share information and plan 
collaborative actions) and the human (when asking for 
clarification, etc.) through the use of N-tuples. All avenues 
of N-tuple communication are bidirectional.  

 Agent communication to the human operator is done 
using N-tuple information in pattern-based natural lan-
guage generation (e.g., “which box?” or “I have discovered 
a new box at location x, y”). For most interaction purposes, 
we feel the pattern-based responses are sufficient. In fact, 
there are informal studies that suggest that habitability is 
improved by making the system responses less human- 
like.  
 A crucial part of our design is that agent-agent commu-
nication can be accomplished solely through N-tuples, 
without the need to generate natural language or another 
type of agent communication language. The design does 
not suggest that the N-tuples used for Agent-Agent com-
munication should be translated into natural language. One 
should not expect end users to monitor the detailed interac-
tion of agents. Any language interaction with a user is 
channeled through the Agent-UI as shown. Of course, an 
App will likely interact with a user non-linguistically, such 
as by modifying displays or other HCI capabilities. For 
example, in the pilot system, the Morse App (using Blend-
er) provides realistic action displays.  
N-tuple Implementation 
The communication of N-tuples is provided by a Core fa-
cility known as Transport. Typically, each agent (the 
Agent-UI and each Agent/Problem Solver) instantiates one 
Transport using the agent's name (e.g. the Agent-UI 
Transport is called "Agent-UI"; the top-level Problem 
Solver is called "Boss-Agent"). An agent can then send an 
N-tuple to any other agent (Fig. 4). It is also possible for 
multiple agents to share a transport with the same name. 
For example, Agent 1 and Agent 2 could both receive N-
tuples sent to the Transport "Team-Agent". 
 The current implementation of Transport requires no 
setup configuration – all agents automatically and trans-
parently announce themselves on the local area network. In 
practice, it is likely that sites will require a component that 
implements the Transport API following their own security 
and authentication policies. 

Language Front-End: Analyzer/Specializer 
A human user gives a natural language command to an 
Agent-UI (User-Interface Agent). The Agent-UI is respon-
sible for mediating communication between the human 
agent and the agents involved in the application.  
 Specifically, the Agent-UI (Figure 2) receives speech or 
text input from a human user, performs a deep semantic 
analysis using the ECG Analyzer (Bryant 2008) which 
outputs and produces a SemSpec as shown in the lower left 
of Figure 2. This operation is described in more detail in 
the 2015 paper (Khayrallah, Trott, and Feldman 2015). The 
SemSpec is intended to be independent of any application, 
but we have not yet tested this extensively. 
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  The App-dependent aspects of the language analysis are 
handled by the Specializer, which crawls the SemSpec 
structure and outputs an N-tuple (like Fig. 1) for the Prob-
lem Solver. The Agent-UI then sends the N-tuple to the 
Problem Solver. Task relevant information is defined de-
claratively in the N-tuple templates, which are shared be-
tween the Specializer and the Problem Solver.  
   The Agent-UI is capable of receiving feedback from the 
Problem Solver (as a different N-tuple), as well as interact-
ing with the user through speech or text. As mentioned 
above, natural language generation is accomplished with 
the use of pattern-based responses, which are geared to-
wards the types of information or dialogs a human might 
need to hear. The most common forms of interaction are 
requests for clarification (if the user input is under-
specified), responses to queries, or notifications of object 
discovery.  
Front-End Modularity 
 Both the Analyzer and the Specializer are divided into 
Core and App sides. The Analyzer core contains gram-
mars, schemas, ontologies, and code that support the subset 
of a language related to control of autonomous systems; 
most of our work has been in English, but we have also 
implemented the robot demo in Spanish and French.  
 A system integrator adds domain-specific words and 
ontology entries relevant to the application to the Analyzer 
App. For example, the Analyzer Core has grammar and 
words for commanding an autonomous system to move. 
The system integrator could add a specific term "dash" 
meaning to move at the robot's top speed. The speed of 
“dash” is application-specific, so must be implemented by 
the App side. Adding words and ontology entries will be 
quite common, and we provide a specific user interface 
called the Token Editor (Fig. 3) to make it easy. If the ap-
plication requires grammar that isn't in Core, the applica-
tion integrator must add it to Core, using the ECG Work-
bench. We believe that this will be rare. 
 The Specializer Core contains code that traverses the 
SemSpec produced by the Analyzer component. The Spe-
cializer-App includes the Core, as well as task-relevant N-
tuple templates and code that specify how to build N-tuples 
from a SemSpec. As mentioned above, these templates are 
shared between the Specializer and Problem Solver; this 
establishes a shared set of vocabulary and communication 
language between the two modules. The values in an N-
tuple (Fig. 1) are all ontology values. A key part of our 
design is a “shared ontology” (Fig. 2) between the lan-
guage and application sides; the Token Editor (Fig. 3) can 
be used to specify mappings from the text to language and 
application ontologies.  
 

 
Figure 3: Token Editor, used to add "dash" and other tokens to 
grammar. 

Action: Problem Solver  
The Problem Solver uses information from an N-tuple, as 
well as its world model, to make decisions and solve com-
plex problems. It makes API calls to the underlying appli-
cation – in this case, the MORSE robot simulator (Eche-
verria et al. 2011). A Problem Solver’s capabilities are 
inherently dependent upon the constraints of the underly-
ing application. As such, the Problem Solver core is quite 
small, consisting mainly of code to scan, build, and trans-
mit N-tuples, as well as answering queries and requesting 
clarification from the human by communicating with the 
Agent-UI, as discussed in the earlier 2015 paper (Khayral-
lah, Trott, and Feldman 2015). 
 In this case, the MORSE simulator offers realistic mo-
tion physics, as well as various proximity sensors, which 
are used in detecting or discovering new objects. If new 
information is gleaned about the world (by contact in the 
current demo), the Problem Solver communicates this in-
formation in an N-tuple to the Agent-UI, which informs the 
user via speech or text. 
 Part of our new multi-agent system is the development 
of multiple levels of complexity, which involve more than 
one Problem Solver. 
Levels of Multi-Agent Complexity 
The first level of complexity uses only one Problem Solver 
and involves only one Agent Problem Solver (as depicted 
in Fig. 2), which has one world model. If a robot discovers 
a new object in the world, the shared world model is up-
dated. The Agent Problem Solver communicates all re-
quests and other N-tuples back to the Agent-UI and in-
structions to application modules. 
 The second level of complexity uses multiple Problem 
Solvers (Fig. 4). There is a Boss-Agent, and there are also 
Application-Agents, each with its own separate world 
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model. The Boss-Agent contains its own world model. The 
Boss-Agent receives incoming N-tuples from the Agent-UI 
and conveys them to the Application-Agents. The Boss-
Agent also performs high-level problem solving, such as 
determining which Application-Agent is best suited for a 
given task. In this model, there is no communication be-
tween the individual Application-Agents, but Application-
Agents and Boss-Agents communicate with each other 
using N-tuples.  
 The third level of complexity, like the second, involves a 
Boss-Agent and individual Application-Agents (Fig. 4). 
The chief difference is that Application-Agents can also 
send N-tuples to each other and coordinate actions among 
themselves, as depicted by the arrow in the lower right of 
the diagram below (Fig. 4).  

 
Figure 4: System architecture for second and third level of com-

plexity. 

Applications 
  Our current demonstration involves two simulated robots 
(“Robot1” and “Robot2”), and boxes of varying color and 
size. The user can address a particular robot, such as “Ro-
bot1, dash behind the blue box!” In this case, the Boss-
Agent routes the resulting N-tuple to one of the Applica-
tion-Agents. 
 The user can also address the system as a whole using 
the word “Team”, such as: “Team, push the blue box east 
together!” The Analyzer produces a SemSpec as usual, and 
the Specializer’s resulting N-tuple (Fig. 1) notes that the 
“protagonist” of the process is “team_instance”. The N-
tuple also notes that the process is meant to be collabora-
tive. 
 In this case, the Boss-Agent must perform high-level 
problem solving. This process is also collaborative, mean-
ing the Application-Agents should work together to solve 
it. The Boss-Agent composes its own N-tuples from the 
command, which contain detailed instructions, and dis-
patches versions to each Application-Agent. Ultimately, 
the two robots move into position and use their combined 
power to push the blue box east. 

 The Boss-Agent must also make high-level decisions if 
the user’s instructions are less precise, such as: “Team, 
push the blue box east!” In this case, the user is requesting 
the same desired effect – the blue box being pushed east – 
but specifies neither the actual agent (“Robot1” or “Ro-
bot2”) or whether the process should be done collabora-
tively. The Boss-Agent takes into account various factors 
from its world model to decide how the task ought to be 
executed. For example, if Robot1 is closer to the blue box, 
the Boss-Agent might build and dispatch an N-tuple to 
Robot1 ordering it to push the box east. However, if Ro-
bot1 is occupied with another task, or is unable to perform 
this task, the Boss-Agent would select Robot2 and send a 
customized N-tuple with instructions for action (Fig. 5). 
Alternatively, if the box was too heavy for one robot to 
push, the Boss-Agent would order the robots to work col-
laboratively. Of course, the factors taken into consideration 
by the Boss-Agent are contingent on the task and applica-
tion domain.  

 
Figure 5: Sample N-tuple fragment sent from Boss-Agent to Ap-
plication-Agent (Robot2). 

A video demonstration of this example can be found at: 
https://www.youtube.com/watch?v=46jYgBIw_VA.  

A compilation video demonstrating various features of 
our robot system can be found at:  
https://www.youtube.com/watch?v=mffl4-FqZaU.  

Limitations and Future Work 
Currently, communication from the Boss-Agent back to the 
user – such as requests for clarification – is translated from 
an N-tuple into a “pattern” response, such as: “which red 
box?” The addition of more complex natural language gen-
eration might improve the system.  
 In an attempt to modularize the system further, we are 
implementing a model that communicates N-tuples across 
different network channels; this would be invaluable for 
situations such as communicating with an autonomous 
submarine from land. 
 Finally, we are integrating a speech front-end to the lan-
guage module.  
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