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Abstract 
Autonomous agents require interfaces to define their inter-
actions with humans. The coupling between agents and hu-
mans is often limited, with disjoint goals between the agent 
interface and its associated autonomous components. This 
leads to a gap in human interaction relative to agent capabil-
ities. We seek to aid interface designs by clarifying agent 
capabilities within an interface context. A taxonomy was 
developed that can help elucidate the agent’s affordances 
and constraints that guide interface design. Moreover, the 
descriptors employed in the taxonomy can serve as a com-
mon language to support dialog between agent and interface 
developers, resulting in improved autonomous systems that 
support human-autonomy coordination. 
 

Introduction   
Key limitations in the strength and usability of a specific 
human-machine interface (HMI) can be addressed through 
an improved dialog between agent developers and HMI 
designers. Communication between the two design com-
munities is critical to developing systems that support ap-
propriate levels of human-autonomy coordination. To im-
prove the dialog, it is of benefit to consider establishing a 
common language with which HMI designers and agent 
developers can communicate certain goals and features. 
For the HMI designers, the language’s descriptors com-
municate desired agent capabilities. The same descriptors 
can help scope agent development, such that the agent’s 
capabilities are tuned to support interface features. Thus, a 
common language/taxonomy that aids productive dialog 
between agent developers and HMI designers helps to ad-
dress both problems: enabling HMI designers to construct 
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more effective interfaces and scoping feature sets for agent 
developers to support.  
 Through an Air Force Research Laboratory research 
initiative, we considered a number of agent development 
techniques in the context of designing more effective 
HMIs. The long-term goal of this research initiative is to 
support system developments such that future complex Air 
Force operations benefit from the joint capabilities of ad-
vanced agent and HMI technologies. In doing so, we con-
sidered the various affordances and constraints of a number 
of techniques. In evaluating these, we found three key is-
sues: 1) terms used to describe agents by various commu-
nities: HMI, agent development, and others (such as from 
the Department of Defense) rarely overlap; 2) when the 
terms did overlap, there was a distinct mismatch in the 
meaning of the terms between the communities; and 3) the 
lack of joint understanding can cause a disconnect between 
HMI designers and the developers of the new technologies 
for autonomous systems. The lack of a common language 
to describe desired goals and capabilities often leads to 
limitations in the resulting system’s capabilities. Even with 
feedback between the developers and HMI designers, HMI 
designers may make feature requests that are considered 
difficult or infeasible by the agent developers. The absence 
of a common taxonomy can also affect agent development, 
as the agent developers, unmindful of the potential HMI 
concerns or desired capabilities, may develop products that 
do not support many usability-related features. The HMI in 
some systems can be unmanageably complex if designed 
only from the perspective of the autonomous agent system 
rather than the joint operator-autonomous agent system 
(Bartram and Ovans 1995), (Steinfeld 2004). 
 In an effort to alleviate the disconnect between agent 
descriptions and the desired features of the human inter-
face, we focused on terms that are familiar to HMI design-
ers as they relate to an agent’s capabilities. However, even 
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within the human factors and cognitive psychology litera-
ture, the same terms are employed to describe different 
agent features in the context of human interaction and un-
derstanding. There is very little consistency between publi-
cations describing desired autonomous agent features (e.g., 
(Air Force Research Laboratory 2013), (US Air Force 
2011), (Department of Defense 2012)), so in order to es-
tablish a common language, consistent definitions are 
needed (Burke et al. 2004), (Korsah, Stentz, and Dias 
2013). 
 This paper reports the results of our efforts to bridge this 
communication gap between the agent and HMI communi-
ties. First, we provide a review of other taxonomies. Then, 
we introduce descriptors and provide discernable defini-
tions for each. These descriptors are the basis of our pro-
posed taxonomy. Next, we define levels within each of the 
defined taxonomic descriptors that provide a more granular 
description, supporting better communications between 
agent and HMI communities. Finally, we apply the pro-
posed taxonomy to example systems to show how the de-
scriptors help to close the loop between HMI designers and 
agent developers so that their joint developments can en-
hance human-autonomy coordination. 

Background 
Taxonomies for describing agent features, compositions, 
and interactions with external sources have been around for 
some time. The taxonomy that we propose in this paper 
does not preclude any of the taxonomies we have re-
viewed. Rather, our proposed approach establishes a com-
mon language to support dialog between agent and HMI 
communities that could actually lead to the use of other 
taxonomies (e.g., those related to agents, human robot in-
terfaces (HRI), human computer interfaces (HCI), interface 
mechanisms, etc.). The following provides a brief review 
of some of these as well as sources that guided the design 
of our taxonomy.  
 There have been taxonomies created for specific aspects 
of interactions between humans and robots/agents. On the 
agent side, there are many taxonomies created for multi-
agent systems. (Dudek et al. 1996) created a taxonomy that 
classifies multi-agent systems according to communica-
tion, computational, and other capabilities. (Gerkey and 
Mataric 2004) created a domain-independent taxonomy for 
the multi-resource independent task allocation problem in 
multi-robot systems. This taxonomy was extended by 
(Korsah, Stentz, and Dias 2013) to address problems with 
interrelated tasks and constraints. (Farinelli, Iocchi, and 
Nardi 2004) developed a taxonomy for describing coordi-
nation between teams, their relationship/knowledge, and 
their architectural makeup. A taxonomy to guide the design 
of multi-agent interaction based on the actions of an agent 

and their relationship or effects on the rest of the agents is 
described in (Van Dyke Parunak et al. 2004). The above 
taxonomies can be used to describe and visualize a team of 
agents as one collective agent (Humphrey, Gordon, and 
Adams 2006).  
 In contrast, there are taxonomies that describe the actual 
interfacing mechanisms between humans and machines, 
such as robots. (Seneler, Basoglu, and Daim 2008) de-
scribes a taxonomy for characteristics of interfaces that 
focuses on how the interface is used by the operator rather 
than the interface-agent relationship. Here the emphasis is 
on user acceptance of the interface technology, rather than 
optimizing the interface in terms of the operator’s interac-
tion with the agent.  
 The connecting mechanisms between the agents and the 
physical interfaces are the crux of many HRI/HCI/HMI 
taxonomies. For instance, (Yanco and Drury 2002), (Yanco 
and Drury 2004) created a taxonomy for HRI, which has a 
primary focus on levels of interaction that describe the 
architecture and information flow of the human-robot 
team. They use Sholtz’s identified five human roles that 
contribute to the effectiveness of HRI (Scholtz 2003) as a 
factor in their taxonomy. These roles dictate the situational 
awareness needs of the human, which relate to the HMI 
aspects of our proposed taxonomy. (Bartram and Ovans 
1995) also define an information taxonomy, describing 
communication flow through the interfaces, as opposed to 
the functionality that the interfaces provide with respect to 
agent capabilities and operator needs. This taxonomy ad-
dresses the supervisory control tasks of monitoring and 
controlling the autonomous agents.  
 Aside from these taxonomies, there have been metrics, 
principles, and lessons reported for HRI systems, further 
establishing a need for a common language to utilize and 
discuss these topics. (Steinfeld et al. 2006) established met-
rics to evaluate and compare implemented HRI systems. In 
an earlier publication, (Steinfeld 2004) recommended sev-
en topics that those producing interfaces for autonomous 
systems should address, six of which can be used in de-
scribing the human-machine system within our proposed 
taxonomy. Principles for implementing interfaces and 
measuring human/robot interaction were also published in 
(Goodrich and Olsen 2003). 

Agent/HMI Focused Taxonomy 
The taxonomies and other approaches just described focus 
on total systems in the context of their applications. Our 
taxonomic approach focuses instead on the system’s agents 
with the goal of clearly defining relevant tradeoffs that 
guide HMI design. Even though our approach emphasizes 
optimizing agent/human operator interaction, our de-
scriptors can also be used to characterize functionality at 
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the system level. Similarly, the various taxonomies, princi-
ples, lessons, and metrics described earlier can help de-
scribe lower-level aspects of our taxonomy, informing 
what is required by both agent and operator team members 
to optimize interaction. 
 For our taxonomy, the focus to date has been on defin-
ing the descriptors and describing corresponding levels for 
each. Similarly, (Korsah, Stentz, and Dias 2013) employed 
a two-level taxonomy by defining terminology that distin-
guished between task types and applying Gerkey’s taxon-
omy (Gerkey and Mataric 2004) to describe their levels in 
more detail. Our approach, however, aims to help HMI 
designers communicate the operator’s needs for interacting 
with the autonomous agent, as well as assisting autono-
mous agent developers in communicating the agent’s ca-
pabilities and how it can (or cannot) support certain HMI 
functionality. This taxonomy is necessary to support 
agent/HMI developments for autonomous systems. 

Descriptors 
Our proposed taxonomy is composed of four descriptors: 
Agility, Directability, Observability, and Transparency. 
Each descriptor is decomposed into five levels: None, Min-
imal, Limited, Moderate, and Complete (the latter is High 
in the case of Agility). These taxonomic levels are de-
scribed in more detail later. In this section, we provide a 
working definition for each descriptor, as well as support-
ing rationale. 

Agility 
The Air Force Research Laboratory Autonomy S&T Strat-
egy states that “systems will have the robustness and flexi-
bility to assure operations in complex, contested, and dy-
namic environments” (Air Force Research Laboratory 
2013). The terms ‘robustness’ and ‘flexibility’ are used to 
describe this capability. For our definition of agility, we 
view robustness and flexibility as characteristics that may 
contribute to agility, since neither term is sufficient for 
defining agility alone. We define agility:  

 Agility–the ability of an agent to respond in an effective man-
ner to new inputs within a short timeframe.  

 The Technology Horizons report identifies: “the benefits 
of agility … allow many systems to swing from high-end, 
general-purpose applications to lower-end irregular war-
fare applications” (US Air Force 2011). This implies that 
the system can be modified to operate in different missions 
or “self-adapt as the environment in which the system is 
operating changes” (US Air Force 2011). This capability is 
addressed repeatedly, in reports from the Department of 
Defense (DoD) (Department of Defense 2012), the US Air 
Force (US Air Force 2011), and the Air Force Research 

Laboratory (AFRL) (Air Force Research Laboratory 2013) 
using different terms related to the same goal: agility.  
 The DoD also uses the terms ‘resilience’ and ‘adaptive’ 
for other desired features. The terms are combined in the 
DoD’s description of directability: “directability (both to 
specify objectives but also how to adapt to the unex-
pected)” (Department of Defense 2012). Again, neither of 
these terms is quite sufficient as an alternative for the term 
‘agility’. 
 Other authors discuss agility by inverting the concept. 
They call this ‘brittleness’ (Department of Defense 2012), 
(Clare et al. 2012), (DePass et al. 2011), (Klein et al. 
2004), (Christoffersen and Woods 2002), (Woods and 
Hollnagel 2006). “Inevitably, robot capabilities will exhibit 
brittleness as situations develop beyond their boundary 
conditions … these represent challenges to the adaptive 
power or resilience …” of the robot and human-robot team 
(Woods and Hollnagel 2006). If a design is brittle, it results 
in unnecessary performance tradeoffs and “additional 
manpower, vulnerabilities and lack of adaptability for new 
missions” (Department of Defense 2012). Although there 
were numerous references to ‘brittleness’ in the literature, 
we frame this feature more positively by proposing the 
term ‘agility’.  
 The delineation between the related characteristics (ro-
bustness, flexibility, resiliency, and adaptability) and agili-
ty is that an agent may possess any or all of these charac-
teristics, but lack agility. However, if the agent is agile, it 
does possess at least one of those characteristics. The dif-
ference is the corresponding timeframe. All of the charac-
teristics contribute to agility, but unless that characteristic 
can be engaged quickly, the agent is not agile. The 
timeframe that drives agility is subjective, and depends on 
the operator, the domain/environment, and the system it-
self. The operator and/or agent developers define the de-
gree of agility using this subjective context, as there is no 
globally attributable timeframe for agility. If the agent’s 
response is considered quick enough, meeting the domain-
specific time requirements, then the agent is perceived as 
agile.  
 Our definition of agility seeks to separate the terms 
agility, robustness, resiliency, adaptability, and flexibility. 
They are not all the same thing, though they are related. 
For our taxonomy, agility is the ability of the agent to lev-
erage one or more of these characteristics to adjust the 
agent’s behavior, and do so quickly.  

Directability 
Directability is a term used when describing autonomous 
agents. Various authors/literature describe directability as: 

The ability, “in which a human supervisor can define 
policies to influence agent activities at execution 
time” (Morley and Myers 2001).  
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The “means for controlling aspects of agent autonomy 
in a fashion that can be both dynamically specified 
and easily understood” (Klein et al. 2004).  

“… giving the users the ability to substantively influ-
ence the machine agent’s activities” (Christoffersen 
and Woods 2002). 

Being achieved “by providing multiple mechanisms 
by which users can modify default assumptions and 
guide problem solution” (Truxler et al. 2012). 

 
 All of the above descriptions imply an external control 
to the agent that influences its behavior. Inspired by these, 
our definition of directability is: 

 Directability–the ability for some external party to influence a 
change in the operation of an agent in order to accomplish a 

specific output or objective.  

 Our definition matches the first half of the definition of 
directability in a DoD Defense Science Board Task Force 
Report: “both to specify objectives but also how to adapt to 
the unexpected” (Department of Defense 2012). The sec-
ond half (i.e., how to adapt to the unexpected) of the re-
port’s definition is more aligned with our definition of agil-
ity. 
 For an agent to be directable, the first step is to identify 
which aspects of its functionality need to be directable. 
This, in turn, influences the agent’s implementation. Di-
rectability can be at odds with autonomy and may require 
adjustment based on the desired level of autonomy. How-
ever, directability is a requirement in many system applica-
tions, so it is important to know what is directable in an 
agent in order to provide human operators with appropriate 
interfaces. 

Observability 
Many authors define, either explicitly or implicitly, the 
terms transparency and observability in such a way that 
they can be used interchangeably. We believe there is a 
distinct difference between the two and therefore will elab-
orate on the differences.  
 Rudolf Kalman defines observability in very mathemati-
cal terms and provides a mathematical proof for his defini-
tion of a plant’s observability (Kalman 1959): “The state of 
a system is said to be ‘observable’ if the exact state of the 
system can be determined from measurements of the out-
put signals over a finite time.” However, we have simpli-
fied his definition slightly for our use: 

 Observability–the level to which the exact state of the system 
can be determined from measurements of the output over a finite 

time. 

 Observability enables “users to enter information, re-
view default assumptions, and inspect and compare alter-

native COAs” (DePass et al. 2011). In other words, ob-
servability is the ability for an observer to measure the out-
puts of the system and understand what the agent has done, 
is doing, or will do soon. 

Transparency 
Authors typically do not define the word transparency 
when they use it, but imply its meaning in the context of 
the scenario they are describing or what transparency pro-
vides. “Machine transparency enables the human to under-
stand what the machine is doing and [WHY]” (Air Force 
Research Laboratory 2013). For the human operator to 
understand what the agent is doing and why, agents “must 
be able to make pertinent aspects of their status and inten-
tions obvious to their teammates” (Klein et al. 2004). In 
addition to the “why” of an agent’s actions, some authors 
describe transparency as the insight or understanding of 
HOW the agent generated a solution, plan, action, etc. 
(Clare et al. 2012). Therefore, we use the following as the 
definition: 

 Transparency–the ability to provide information about why 
and/or how an agent is in its current state. 

 In more general terms, transparency is the degree to 
which an operator can understand what an agent is think-
ing. The Defense Science Board’s Task Force Report on 
the Role of Autonomy in DoD Systems implies this mean-
ing of transparency in its recommendation for the future 
development of autonomy: “The objective should be to 
create a technology base of diverse, platform-independent, 
transparent cognitive functions and tactics for integration 
into new missions” (Department of Defense 2012). 
 Some authors have either described transparency as ob-
servability or observability as transparency. In (Christof-
fersen and Woods 2002), observability is defined as “open-
ing up the black box”. Additionally, (Bass, Baumgart, and 
Shepley 2013) implied that observability gives the user 
insight into “the automation’s judgment strategy” and, in 
turn, “found that human judgment performance improved 
when meta-information was provided regarding how the 
automation integrated input data to derive its judgment … 
compared to when only the judgment was provided.” 
These descriptions match more closely to our definition of 
transparency, as opposed to observability, since it is giving 
the human more insight into why or how the agent is oper-
ating, not what its state happens to be at a given time. In 
contrast, it can be viewed that (Olson and Wuennenberg 
2001) merge our definitions of observability and transpar-
ency when they describe visibility on a user interface. 
 Having more insight into why and how a system is oper-
ating helps the human operator anticipate agent behavior 
and calibrate one’s trust in the agent’s functionality. “For 
humans and machines to function as an effective team, 
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there must be an understanding of, and confidence in, its 
behaviors and decision making across a range of condi-
tions” (Air Force Research Laboratory 2013). “If the robot 
is transparent to the user, than only one mental model is 
required … Thus, transparency is a desired element of effi-
cient interaction” (Goodrich and Olsen 2003). “This under-
standing will enable an appropriate level of reliance on, or 
trust in, each team member for a given situation” (Air 
Force Research Laboratory 2013). When a user has trust in 
the system, then they will have more confidence when 
making decisions and directing the agent to perform its 
autonomous missions.  
 In sum, for these two descriptors, observability address-
es what an agent is doing, and transparency is related to 
how or why an agent chose to do something. 

Taxonomic Levels 
Each of the descriptors defined above has five levels for 
classifying an agent (None, Minimal, Limited, Moderate, 
and Complete/High). The following are our initial thoughts 
on how these levels can be applied in describing the extent 
to which an agent possesses each descriptor. It is important 
to note, however, that these levels are influenced by the 
particular application domain. An agent may be defined as 
highly agile in one domain, but not agile in another. In 
other words, an agent designed for a certain domain may 
not retain the same descriptor level when applied to a dif-
ferent domain. This also means that any effort to improve 
an agent to achieve a higher level of a particular descriptor 
needs to take into account the application domain and how 
a change in the agent’s computational techniques will, in 
turn, influence the level of that descriptor. Nevertheless, 
the domain does not need to be strictly scoped: agent de-
velopers and HMI designers do not need to agree on how 
to define the domain in order to use these descriptor levels. 
They do, however, need to agree on the salient features of 
the domain used in relation to this taxonomy.  
 Another factor to consider when applying these taxo-
nomic levels is that a human’s perspective also plays a role 
for interpreting agent descriptors. For instance, one person 
may view an agent ‘completely transparent’ if it is known 
that an agent will avoid obstacles that are in its path. A 
different person may want more detailed information for 
“complete transparency” (e.g., knowledge of the agent’s 
algorithmic approach to obstacle avoidance). Another ex-
ample pertains to agent observability: an agent developer 
may inform an HMI designer that complete observability 
cannot be provided for an obstacle avoidance technique 
because the vector fields cannot be displayed; an HMI de-
signer may not need such detailed information to consider 
the agent observable. Despite these potential differences in 
interpretation, the proposed taxonomy and the accompany-

ing descriptors and levels should improve communication 
between agent developers and HMI designers. The follow-
ing details the proposed levels for each descriptor. 

Agility Levels 
Recall that our definition of agility is the ability of an agent 
to respond in an effective manner to new inputs within a 
short timeframe. The inputs could be realized as environ-
mental changes, new or changed data (such as from sen-
sors), or even changes within the agent itself. The levels of 
agility assigned to an agent are:  
- None: if an agent cannot respond to changes. Also as-
signed if the agent cannot adapt to a change without re-
starting, as if from a clean slate. That is, it cannot leverage 
the existing state nor its existing knowledge to handle a 
change. 
- Minimal: if the agent can be changed from its general 
implementation/configuration to handle very specific 
changes, but otherwise performs as if its agility rating is 
None. 
- Limited: if the agent’s current implementation can re-
spond to changes for very specific cases. 
- Moderate: if there are situations where the agent can 
generally respond to changes, but there are also situations 
where the agent cannot respond to those same changes. 
- High: if the agent, under most situations, can consistent-
ly handle changes. 

Directability Levels 
Directability is the ability for some external party to influ-
ence a change in the operation of an agent in order to ac-
complish a specific output or objective. The emphasis on 
directability is the imposition of will: directability is relat-
ed to the controlling agent or operator’s desired output. 
The levels of directability assigned to an agent are: 
- None: if the agent provides no ability for the human op-
erator to achieve a targeted output via changing an agent’s 
inputs (“inputs” include changes to variables/techniques in 
the agent’s computational process). 
- Minimal: if the operator can cause changes to some 
agent outputs, decisions, or actions via changing inputs, 
but in a way that may not reflect the operator’s desired 
output. 
- Limited: if the operator can manipulate a subset of the 
agent’s inputs to change a subset of the agent’s outputs to 
reflect the operator’s desired output. 
- Moderate: if the operator can make the agent achieve 
desired outputs via manipulation of the agent’s inputs, but 
only indirectly. 
- Complete: if the operator can make the agent achieve 
desired outputs via manipulation of the agent’s inputs di-
rectly. 
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Observability Levels 
Observability is the level to which the exact state of the 
system can be determined from measurements of the out-
put over a finite time. Observability and transparency (de-
scribed next) are tightly coupled. For instance, human op-
erators typically want to increase their knowledge about 
the system and want to know more about both its state (ob-
servability) and why it is in that state (transparency). For 
the descriptor of agent observability, the proposed levels 
are:  
- None: if the agent is a “black box”, in which it only 
shows the outputs and nothing that helps the operator un-
derstand what the agent is doing, has done or is going to 
do. 
- Minimal: if the agent can show the operator some of 
what it is doing, but additional state understanding cannot 
be obtained, even with multiple observations.  
- Limited: if the agent can show the operator what it is 
doing, and support requests to obtain more state under-
standing, with a number of observations. 
- Moderate: if the agent can provide enough information 
on what it is doing, such that, over a series of observations, 
its state can be completely understood by an operator.  
- Complete: if the agent can show its complete state to an 
operator. Note: this does not mean that the internal state is 
shown, although it is possible. Ideally, to meet the ‘com-
plete’ level, this requirement needs to be communicated 
before the agent development process begins. Having 
complete observability typically results in increasing the 
agent’s level of transparency as well (see next). 

Transparency Levels 
Transparency is the ability to provide information about 
why and/or how an agent is in its current state. Typically, 
an operator’s understanding of the underlying mechanisms 
within the agent and its current state is what increases 
transparency. Increases in transparency can come from 
operator knowledge and increased observability of the 
agent’s state through time. Therefore, observability and 
transparency are coupled. Additionally, one can view 
transparency as a measure of the likelihood of the agent 
acting as expected. The levels for an agent are: 
- None: in cases where the agent is given inputs and gen-
erates an output with no straightforward indication on how 
or why the agent produced the output. 
- Minimal: if there is no observability into the state of the 
agent and the limited understanding of the agent’s behavior 
extends from the operator’s general knowledge of the un-
derlying system. 
- Limited: if observation and knowledge of the underlying 
mechanisms is required to determine why and how the 
agent is in its current state, but there are some elements 
that may produce unexpected results. 

- Moderate: if observation and knowledge of the underly-
ing mechanisms is required to determine why and how the 
agent is in its current state. 
- Complete: if the internal computations can be made 
available for a user to understand how and why the system 
behaves in the way that it does. 

Discussion 
Agent developers and HMI designers can leverage the de-
scriptors and their levels to improve the design of the joint 
agent/HMI system. To illustrate this concept, we provide a 
few simple examples. 

Example 1: Route Planner Agent 
In a tri-service autonomy focused research initiative that 
AFRL leads, we have an autonomous ground vehicle agent 
that can generate a route from its current location to a tar-
get location using a road network. The HMI for this super-
visory control application provides the operator a “god’s 
eye” view of the domain on a map (Figure 1). The agent 
development team knows the algorithms and the basic re-
quirements of the domain (e.g., navigate to the target loca-

tion), and the HMI team knows the agent can perform this 
navigation. With this most basic knowledge, the HMI is 
limited to the selection of a location to which the agent 
navigates. 
 The agility of the system is based heavily on the algo-
rithm(s) in use. In this example, the agent developer chose 
Dijkstra’s algorithm and built an all-to-all mapping of the 
domain, performed when the agent starts. Then, all routes 
are a simple lookup from the existing table. This makes the 
agent response fast, but it severely affects agility. It pre-
vents the agent from responding to extenuating events, 
such as blocked or slow roads. Thus, the agility level that 
this approach provides is None: for each new input (e.g., 
blocked road), it has to restart Dijkstra’s algorithm to solve 
its route. Additionally, the level of directability it provides 
is None: the agent does not deviate from its shortest route 
to a target location. However, it can have Moderate ob-
servability, since the distance metric in use is simple to 

Figure 1: Sample ground route shown on a map in simulation. 
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understand. Finally, transparency is Complete, since the 
decisions regarding the route selection are easy to under-
stand. 
 Now, consider the case where HMI designers wish to 
improve the agent’s agility and directability: they want the 
agent to handle blocked roads and to visit certain locations 
enroute to its target location. The agent then must be re-
worked to comply with these new requirements. This re-
work is better scoped since it is clear what the HMI de-
signers intend: increase both agility and directability to the 
Limited or Moderate levels, and keep the rest of the levels 
the same as much as possible. In response, the agent devel-
oper changes the routing algorithm to A*. This takes more 
time to calculate for each request, but it is still sufficiently 
fast to provide adequate agility for the domain. Given its 
speed, and its on-demand activity, it increases agility to 
Limited: it can perform a calculation based on a blocked 
road, as it is removed from the agent’s list of candidate 
edges. It also increases Directability, since the operator 
could exclude roads to visit. The improvement in Directa-
bility that the HMI designer desired was to route the vehi-
cle through certain points. The agent developer then pro-
vides a way to chain the target locations, where the agent 
solves for a route to the first location, then from the first to 
the second, etc. This helps to realize Complete Directabil-
ity in defining the points to visit, along with Limited Di-
rectability in avoiding certain roads. This additional Lim-
ited Directability was not requested by the HMI designers, 
but has emerged as an additional feature that the agent can 
provide. The other taxonomic levels remain the same. 
Thus, with a change in the algorithm and some sacrifice in 
the runtime, the agent shifted from a precomputed solution 
to an on-demand solution. This increased agility and di-
rectability in a way that was desired by the HMI designers, 
plus provided an additional feature that the HMI designers 
did not anticipate. Given this taxonomy’s common lan-
guage for describing these features in the context of the 
domain, these improvements were facilitated and attention 
can then shift to designing interfaces by which the operator 
communicates more detailed route requests (e.g., which 
roads are blocked) to the agent. 
 The above example illustrates how our taxonomy can be 
applied such that a simple agent in a well-understood do-
main can be improved to support HMI requirements. It also 
describes how feedback between the HMI and agent devel-
oper communities helped to define the desired features of 
the agent in a clear, concise manner, which assists in iden-
tifying needed developments. While more work is involved 
in implementing changes to the agent and HMI, the overall 
capabilities of the resulting system for future, complex-task 
environments will be enhanced by the improved coordina-
tion between the operator and autonomous agents. 

Example 2: Sense and Avoid Agent 
This example pertains to a sense-and-avoid (SAA) agent 
developed for AFRL that is designed to provide autono-
mous conflict avoidance capabilities for unmanned vehi-
cles by monitoring for potential conflicts with other aircraft 
in the airspace and providing avoidance steering. The SAA 
agent’s agility is High as it is highly reactive to new infor-
mation obtained from sensors. It is rated Limited for Ob-
servability, since the assembled trajectories can be shown. 
However, these trajectories are subject to hysteresis that 
adversely affects the observability. Since the resulting tra-
jectory and the sensor input are fairly straightforward to 
correlate, its Transparency is Moderate. Its Directability, 
however, is Minimal, since the operator has little control 
over how the system responds to inputs.  
 AFRL has determined that increases in the agent’s Di-
rectability is needed, such that the operator can improve 
SAA in response to changes in the operational environ-
ment. Specifically, it is desirable for the operator, via the 
HMI, to specify avoidance rule priorities and values (e.g., 
change well-clear distance), adjust the minimum separation 
threshold for maneuvers, and select which avoidance rules 
can be violated (e.g., right of way).  
 However, given that the SAA agent was initially devel-
oped to be autonomous, independent of operator input, a 
large part of its core functionality was built under the as-
sumption that no HMI would be needed, and if one was 
needed, that the HMI would not need to interface with the 
agent’s processing. If Directability had been considered 
early enough, the mechanisms leveraged by the SAA algo-
rithm could have been made adjustable. The resulting sys-
tem is very limited and any changes to increase Directabil-
ity now (e.g., to provide access to parameters that are to be 
operator-adjustable) will be very difficult and time con-
suming.  
 This is an example where we feel the use of our taxon-
omy and descriptors early in the design process to support 
communications between agent developers and HMI de-
signers would have resulted in a SAA agent with more 
Directability. Additionally, our taxonomy can be used to 
describe the limitations of the SAA agent in regards to an 
HMI, which would help in managing any expectations of 
possible HMI implementations.  

Conclusion 
Taxonomies for human-robot or human-machine interac-
tion exist, but most are compositional in nature. They serve 
to improve understanding of the relationship between op-
erators and systems, but provide little guidance for devel-
oping HMI that supports effective coordination between 
the operator and autonomous agents. Our proposed taxon-
omy provides a common language to support dialogue be-
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tween agent developers and HMI designers to identify 
needed system functionalities earlier or describe current 
system functionalities and limitations. This taxonomy is by 
no means comprehensive, nor is it truly objective in nature: 
user bias, knowledge, and experience may influence the 
user’s subjective interpretation of taxonomic levels. Also, 
all aspects of the taxonomy are tempered against the appli-
cation domain, which should be well understood.  
 Our descriptors may also be useful for efforts focused on 
verification and validation (V&V) of autonomy. Often, 
autonomous agents are built to emphasize Agility and Di-
rectability without heed to the Transparency and Observa-
bility needed to build the operator’s trust in the system. 
Those that focus on maximizing Transparency and Ob-
servability (to maximize the potential for V&V) often sac-
rifice Agility and Directability. Ideally, given some instan-
tiated agent, there is a middle ground where Observability 
and Transparency can be improved while also maximizing 
the Agility and Directability. 
 Future work includes leveraging this taxonomy within 
our projects and determining what revisions are needed. In 
particular, the descriptors will be employed in dialog be-
tween our agent developers and HMI designers on projects 
that aim to provide HMI that support more effective coor-
dination between the operator and autonomous agents. 
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