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Abstract

Nonverbal communication is a critical way for humans
to relay information and can have many forms including
hand gestures, touch, and facial expressions. Our work
focuses on touch gestures. In typical systems the recog-
nition process does not begin until after the communica-
tion has completed, which can create a delayed response
from the robot. It may take time for the robot to plan the
appropriate response to touch, which could delay the re-
action time. We have trained an artificial neural network
on features extracted from the Leap Motion Controller,
and successfully performed early recognition of touch
gestures with high accuracy.

Introduction
Touch gestures are those gestures where a user will be
coming in contact with the robot, such as touching, slap-
ping, pushing, pulling, grabbing, poking, etc. For systems in
which a user will be interacting with the robot via a touch
gesture, the gesture recognition process will begin after a
touch has occurred (Ji et al. 2011; Jung 2014). In both pa-
pers, large scale skin-like touch sensors were added to a
robot where support vector machines and bayesian classi-
fiers were used respectively to classify the types of touch.
However, in cases where path planning is needed, processing
the sensor data after a touch has occurred will create a de-
lay in robot interaction. In certain human-robot interactions
such as firefighting this delay can be much more critical to
the performance of the system.

To minimize this type of delay and establish a real-time
interaction between the user and the robot, we propose a
system that anticipates user interaction as soon as possible
in order to recognize an interaction gesture prior to touch.
By recognizing the intended touch gesture early, the robot
can begin the process for movement planning early so that
execution of movement can occur immediately after contact
and control between the user and the robot can be seamless.

Current research on anticipation of human activity has fo-
cused on a variety of topics including object path predic-
tion for catching (Kim, Shukla, and Billard 2014), human
focus and engagement towards a robot (Durdu et al. 2011;
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Vaufreydaz, Johal, and Combe 2015), human activity predic-
tion in a specific environment (Koppula and Saxena 2013),
or early face expression detection (Hoai and De la Torre
2014)

Our research makes use of the Leap Motion Controller
where several features are extracted to determine proxim-
ity for engagement and to train an artificial neural net-
work (ANN) for touch gesture anticipation. The number
of image frames used to perform classification is a frac-
tion of the total number of frames in the full interaction
movement sequence which ensures that recognition will oc-
cur prior to touch. Current research using the Leap Mo-
tion has focused on recognizing non-contact hand gestures
like pointing or sign language and not interaction gestures
as done in our approach (Potter, Araullo, and Carter 2013;
Marin, Dominio, and Zanuttigh 2014).

Data Collection
Data is collected from a Leap Motion Sensor, which is a
compact (76 mm) stereo NIR camera, that is mounted on
the backside of a humanoid robot just above waist height
and angled upwards. In our research, we are processing the
NIR images directly rather than using the extracted hand in-
formation provided by the Leap application programming
interface (API). This done because the API may not recog-
nize a hand shape early enough due to the hand’s orientation
or other factors. Therefore, the API may not provide any rel-
evant data in the timeframe that we need.

The stereo NIR images that the Leap collects are prepro-
cessed to enhance edges and minimize noise. An adaptive
thresholding algorithm is then used to detect the hand/arm
blobs. Convex hulls are created around the detected blobs
using the QuickHull algorithm. Movement vectors are con-
structed by matching points within the current convex hull to
edges in the subsequent detected convex hull. A histogram
of angles is constructed containing 8 bins where each bin
relates to a range of angles. The histogram is constructed
by adding the magnitudes of the movement vectors to its
corresponding angle bin. Figure 1 shows the preprocessed
image, followed by the identified hand/arm blob. The right-
most image in Figure 1 shows the sequential convex hulls
and mapped vectors that are used to construct the angle his-
togram.

The ratio of blob size to convex hull size estimates rough-
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Figure 1: A. Preprocessed B. Blob Detection C. Vectors

ness for use as another feature. The number of pixels be-
tween the convex hulls in the two stereo images repre-
sents our approximate depth measure. Data was collected
from several frames where an object was held at a spe-
cific distance from the sensor; comparing the predicted
and actual distances, we have a 95% confidence interval
of [0.832, 0.902] percentage of alignment between the es-
timated and true values.

These measures are combined to create feature vector for
a single frame. We gather 10 sequential frames in total and
average together pairs of frames to construct a total of 5
separate vectors. These vectors are concatenated to create
a single feature vector in 60 dimensional space, which is
then normalized and used by our ANN. The number of fea-
tures and frames to use were determined experimentally us-
ing both cross-validation and a separately collected test set.
Our ANN is fully connected with a single hidden layer con-
taining 60 nodes. Each node within the network uses a sym-
metric sigmoid activation function, and is trained using re-
silient backpropagation.

Experimental Results
For our training and testing purposes, we are assuming that
the robot is a nozzle operator of a firefighting unit and the
human supervisor is providing instruction on how to pro-
ceed. We also assume that the supervisor is either behind or
to the side of the robot.

We examine 9 types of interaction differentiating them
by urgency, standing position, and interaction type. Each
of these differentiating factors can take on two meaningful
values, and an additional value where the interaction is not
well-defined. The urgency can be non-urgent or urgent. The
position can be assigned as either to the side or back of the
robot. The interaction type is used for designating what type
of gesture the operator is performing, either pulling the robot
back or pushing the robot forward.

Classification can be performed on 9 separate classes
where they are designated as SidePush, UrgentSide-
Push, SidePull, UrgentSidePull, BackPush, UrgentBack-
Push, BackPull, UrgentBackPull, and NonIntegration. The
NonIntegration class is used to denote movement in prox-
imity of the robot where direct interaction is not happen-
ing such as walking past the robot, reaching or grabbing for
other proximal objects. The NonIntegration class catches all
of the movements that have at least one differentiating factor
that is not well-defined. For our training set we have gath-
ered 550 samples, with approximately 120 samples for the
NonIntegration class, and 50 samples for each of the other
classes. Using 10-fold cross validation to recognize all 9
classes separately, we have an overall accuracy of 82.2%,

Neither Non-Urgent Urgent Acc
Urgency (R) 0.913 0.862 0.929 0.902
Urgency (P) 0.967 0.876 0.889

Neither Side Behind Acc
Position (R) 0.906 0.838 0.943 0.891
Position (P) 0.920 0.894 0.872

Neither Pulling Pushing Acc
Movement (R) 0.898 0.973 0.953 0.952
Movement (P) 0.983 0.932 0.965

Table 1: (R)ecall, (P)recision, and Overall (Acc)uracy

but we get improved results when we run recognition sepa-
rately on each of the 3 differentiating factors: urgency, posi-
tion, and movement type.

In Table 1, we show the results classifying each differen-
tiating factor using 10-fold cross validation. We can see that
our technique works very well for recognizing the type of
movement. This shows that our technique is well-balanced
at separating out similar classes, but performs even better
when the 3 dimensional output vector is examined to isolate
the factors of the classes. The output vector can be used by
our robot control unit to make informed decisions about mo-
tion planning: speed, operator location, and target direction;
thus allowing a level of planning to occur even when one of
these factors is known.

On average, our algorithm finishes recognition after
52.3% of the full movement has been completed, with ur-
gent gestures completing a larger percentage of movement
(73.8%) due to the nature of the urgent gestures taking less
time to perform. However, recognition occurs after only
39.5% of the total movement for non-urgent gestures. This
equates to recognition occurring between 62 to 269 ms prior
to touch.

Discussion
We have demonstrated the ability to recognize different
classes of touch gestures prior to the moment of touch,
which can reduce robot response time to achieve a more
fluid interaction. Our future work will incorporate an addi-
tional Leap sensor on the other side of the robot and intro-
duce other classes to check for turn and poke commands.
We will also incorporate feedback from tactile sensors for
terminating the touch gesture signal.

We will then verify experimentally that our touch an-
ticipation system performs faster than our existing system,
which uses only the tactile sensors as a synthetic skin. We
will then perform a set of user studies to determine a how
natural the interaction feels between these two systems.
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