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INTRODUCTION
We examine the temporal evolution of a neural-network
model of word-referent co-learning engaged in an interac-
tive learning task with a human teacher (Veale, Schermer-
horn, and Scheutz in preparation). The observed naturally-
timed interaction is used to argue that in at least some in-
teresting interactive situations, explicit representation of or
operation on time is not necessary. Observing that many in-
teractive situations will be similar, we hypothesize that in
fact most interactions will require no explicit representation
or reasoning about time. Rather, natural timing of interac-
tion falls out of dynamical properties of the coupled system
involving the interactors’ brains, bodies, and the shared en-
vironment. A change in internal dynamics in one interactor
may be caused by its own internal dynamics (e.g. getting
bored) or by cues from the other interactor (e.g. a word ut-
tered), or by a combination of both. This may cause cause
him to produce cues affecting the other interactor, complet-
ing the dynamical loop.

To contextualize our argument, we examine research
showing that a variety of interesting (temporal) behaviors
can be produced and explained by adopting a dynamical sys-
tems stance. None of the agents examined have any explicit
representation or knowledge of time, yet still manage to en-
gage in interesting temporally extended behaviors. We then
present a more thorough analysis of the interaction in our
experiments, investigating the internal dynamics of the robot
model and the human interactor, how they produce what be-
haviors, and how all of this can be put together to build a
convincing picture of the coupled interaction dynamics. We
conclude that even in complex HRI interactions, explicit rep-
resentation of time is not required to produce rich temporal
dynamic interaction.

RELATED RESEARCH
It is not a new development that interesting (temporally-
extended) behavior can be had from very simple dynami-
cal systems. A concrete example is the walking behavior in
a variety of simulated and real hexapod agents (e.g. (Beer
2008) for an overview). A neural network with no explicit
representation of time is controlling the agent. A similar
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dynamical controller is used in (Williams, Beer, and Gasser
2008), where referential communication is evolved in sim-
ple agents engaged in a task where a sender knowledgable
of the correct target location must guide an ignorant receiver
to that location. This communication is accomplished via
strategies which necessarily incorporate time. The interac-
tion between the agents is naturally extended over time, yet
in neither agent does any explicit representation of or rea-
soning about time occur. Kelso et al’s Virtual Partner Inter-
action (Kelso et al. 2009) is a paradigm in which a virtual
hand is guided by a dynamical system known to guide most
human coordination. A human interacts with this on certain
tasks (e.g. matching the rhythm of the hand moving back-
and-forth), thus creating a coupled dynamical system which
can be used to study interaction in novel ways. Interest-
ing temporally extended interaction (such as regular motion,
rhythm) is demonstrated both by each individual system, and
by the coupled system as a whole. However, each system is
guided by a dynamical system, with no explicit representa-
tion of time.

TIME-AGNOSTIC HRI
In (Veale, Schermerhorn, and Scheutz in preparation) we
present an architecture and model of word-referent co-
learning, as well as experiments involving interaction be-
tween a human and the model instantiated in a robot. The
neural-network based model non-linearly and incrementally
builds associations between words (as phoneme strings) on
one side, and colors (as locations in 3-d RGB-feature space)
on the other. Activation of one side will cause some acti-
vation of associated nodes on the other. The vision side of
the network is connected to a rudimentary attention-guiding
algorithm which is based on saliency. The saliency of an
object is a combination of its novelty, size, local motion,
and “context” given the state of other perceptual modalities.
E.g., if a word associated with an object is uttered, that in-
creases the “contextual” saliency of that object.

In the interactive experiment (figure 1), the robot is al-
lowed to habituate to two blocks placed in its visual field.
A human interactor then enters, and draws the robot’s atten-
tion to each block in turn, several times, while uttering the
associated word. To test association learning, a third, novel
object is placed with the original two, drawing the robot’s
attention. The robot’s interest in the salient novel object is
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Figure 1: Above: steps of the experiment. Below: model’s
view/focus.

Figure 2: Evolution of the salience of two objects to the
word-learning agent over the beginning of a typical experi-
ment with a human. Qualitative events are indicated.

then “displaced” by one of the learned words, uttered by the
human. The robot fixates on the object associated with the
uttered word.

The graph (figure 2) shows the saliency of objects to the
agent over the first part of a typical experimental run. The
agent is presented with two objects in its visual field: a red
block and a blue block. Initially one can see the fixation
times on each object extend as habituation occurs. Finally,
fixation times settle into a baseline dynamics. This is dis-
placed when the human experimentor picks up and wiggles
one of the boxes to draw the attention of the robot. The
human waits until the robot is attending to the desired ob-
ject (cued by a head movement). This takes several seconds.
When he is convinced the robot is attending, he utters the
word. He then ceases local motion of the object, allowing
the robot to return to its natural baseline dynamics of switch-
ing focus between objects in the visual field.

Analysing the interactive dynamics between the human
and the robot in this context, we see natural interaction as
a human would expect when performing a similar task with
a human infant, as intended. The robot moves naturally be-
tween several general states in response to cues and inter-
nal dynamics: habituating, baseline, when being provoked
to attend to an object, and finally when a known word is
uttered. We see natural temporal behavior in the fixation
times of objects, and also in the lag between the initiation
of an action by the teacher and the desired reaction in the
robot. The human is also very much a part of this interac-
tion. After he cues the robot by shaking the box, he waits
until the behavior of the robot cues him that it is ready, so
he can perform the next step in word-teaching. Though we
cannot access the human’s dynamical state as we can that
of the robot, we can assume at the very least that he is in
some state before shaking the object. Some change in in-
ternal dynamics (e.g. tired of waiting) causes a qualitative

change in behavior: he begins to shake the object. Knowing
his task, he waits for the learner robot to respond, so he waits
and shakes the object until convinced. Becoming convinced
represents yet another change in qualitative behavior, and he
utters the word (a complex process in itself, involving the
production of several sounds in order). Finishing this task,
his behavior changes yet again: he returns to the initial do-
nothing period (though the exactly dynamical state will have
shifted slightly).

Over this whole evolution, the part of the robot’s state in-
volving attention is internally evolving (figure 2). This evo-
lution causes changes in behaviors on the part of the robot,
from “baseline state” to “focus on red” and then back again.
Taken as a single system, the human and the robot engage
in what looks to a third party to be natural interaction of
adult-infant word-teaching. Indeed, up to the point of the
infant being a robot, the system is doing so. Not only that,
but it is doing so in a way sufficiently faithful to real inter-
actions that the human behaves as if the robot is not a robot.
Again, the robot has no explicit representation of time, and
we might even postulate that the human does not explicitly
reason about time during the interaction either. The evolu-
tion of the interaction and behavior of the agents is instead
entirely driven by cues and the internal rules driving the two
agents. Being unable to find the representation of time in
either agent, one might suggest that it is rather the entire
coupled system which is keeping track of things temporally,
to synchronize the interaction. We hold that such a fram-
ing is so far removed from any normal take on the meaning
of “representation” or “reasoning” that it does not detract
from our conclusions. Indeed, this is exactly the view we
wish to endorse — that “reasoning” and “representations”
always happen at the level of the entire coupled system, and
so things are best viewed from that standpoint.
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