
Nested Value Iteration for Partially Satisfiable Co-Safe LTL Specifications
(Extended Abstract)

Bruno Lacerda, David Parker and Nick Hawes
School of Computer Science, University of Birmingham

Birmingham, United Kingdom
{b.lacerda, d.a.parker, n.a.hawes}@cs.bham.ac.uk

Overview We describe our recent work (Lacerda, Parker,
and Hawes 2015) on cost-optimal policy generation, for co-
safe linear temporal logic (LTL) specifications that are not
satisfiable with probability one in a Markov decision pro-
cess (MDP) model. We provide an overview of the approach
to pose the problem as the optimisation of three standard
objectives in a trimmed product MDP. Furthermore, we in-
troduce a new approach for optimising the three objectives,
in a decreasing order of priority, based on a “nested” value
iteration, where one value table is kept for each objective.

The overall goal of our work is to generate policies that
maximise the probability of success and minimise the undis-
counted expected cumulative cost to achieve a task speci-
fied in the co-safe fragment of LTL (i.e., a task that can be
completed in a finite horizon). Furthermore, we tackle the
question of what to do when the task becomes unsatisfiable
during execution. In many cases, even if the probability of
satisfying the overall task is zero, it is still possible to ful-
fil part of it. An illustrative example is a robot that needs
to navigate to every office in a building to perform secu-
rity checks. During execution some doors might be closed,
making offices inaccessible. This will make the overall task
unsatisfiable, yet we still want the robot to check as many
offices as it can. We formalise this notion as a progression
reward defined over the LTL automaton.

Given an MDP and a co-safe LTL specification, we show
that the problems of (i) maximising the probability of sat-
isfying a co-safe LTL formula; (ii) maximising the progres-
sion reward (i.e., fulfilling as much of the formula as possi-
ble); and (iii) minimising a cost function while performing
(i) and (ii) can be solved independently by standard tech-
niques in a trimmed product MDP. The main steps of the
construction of this MDP are depicted in Fig. 1.

The problems above are conflicting. In (Lacerda, Parker,
and Hawes 2015), we implement objective prioritisation by
using multi-objective model checking techniques. However,
the use of such queries is quite inefficient: in our experi-
ments, the calculation of the optimal policy for a problem
where the trimmed product MDP has approximately 20,000
states and 100,000 transitions took ~9 minutes, in a standard
laptop computer. Hence, here we introduce a new, more effi-
cient, approach, based on a nested version of value iteration.

Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

co-safe LTL specification 'MDP M

DFA A'⌦

Product MDP M' Progression metric p'

1

Trimmed product MDP M
r'
'

Figure 1: Diagram of the approach for the problem reduc-
tion, with our contributions represented by green arrows.

A Metric for Task Progression Co-safe LTL formulas ϕ
over atomic propositions AP are defined by:
ϕ ∶∶= true ∣ p ∣ ¬p ∣ ϕ ∧ ϕ ∣ Xϕ ∣ Fϕ ∣ ϕUϕ, where p ∈ AP.
The temporal operators X, F, and U, read “next”, “eventu-
ally”, and “until”, respectively, allow for the specification of
more general goals than the usual state reachability goals.

It is known (Kupferman and Vardi 2001) that for
any co-safe LTL formula ϕ written over AP , we can
build a deterministic finite automaton (DFA) Aϕ =
⟨Q, q,QF ,2AP , δAϕ⟩, where:Q is a finite set of states; q ∈ Q
is the initial state;QF ⊆ Q is the set of accepting states; 2AP
is the alphabet; and δAϕ ∶ Q× 2AP → Q is a transition func-
tion. Aϕ accepts exactly the sequences satisfying ϕ.

We propose a notion of task progression overAϕ, defined
from a distance metric dϕ ∶ Q → Q≥0 that maps each state
of Aϕ to a value representing how close we are to reaching
an accepting state. Let Sucq ⊆ Q be the set of successors of
state q, and ∣δq,q′ ∣ ∈ {0, ...,2∣AP ∣} be the number of transi-
tions from q to q′. We define dF (qF ) = 0 for qF ∈ QF , and
dF (q) = minq′∈Sucq {dϕ(q′) + 1

∣δq,q′ ∣
} for q /∈ QF such that

there is a sequence of transitions in Aϕ that leads it from
state q to state in QF . Furthermore, if there is no path from
q to QF , we set dϕ(q) to the maximum value ∣Q∣.

This distance metric represents the number of states that
need to be visited, starting in q, to reach a state in QF , bal-
anced by the number of transitions between these states. It
allows us to define the progression pϕ ∶ Q × Q → Q≥0 be-
tween two successive states ofAϕ as a measure of how much
the distance is reduced by moving between q and q′:

pϕ(q, q′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max{0, dϕ(q) − dϕ(q′)} if q′ ∈ Sucq and
q′ /→∗ q

0 otherwise

Sequential Decision Making for Intelligent Agents 
Papers from the AAAI 2015 Fall Symposium

54



To guarantee convergence of infinite sums of values of pϕ,
we require that the progression metric is non-negative, and
that there are no cycles in the DFA with non-zero values.

Construction of the Trimmed Product Let M =
⟨S, s,A, δM,AP,Lab⟩ be an MDP, where: S is a finite set
of states; s ∈ S is the initial state; A is a finite set of actions;
δM ∶ S × A × S → [0,1] is a probabilistic transition func-
tion, where ∑s′∈S δM(s, a, s′) ∈ {0,1} for all s ∈ S, a ∈ A;
AP is a set of atomic propositions; and Lab ∶ S → 2AP is a
labelling function, such that p ∈ Lab(s) iff p is true in s ∈ S,
and c ∶ S×A→ R>0 be a cost structure overM. Given a DFA
Aϕ = ⟨Q, q,QF ,2AP , δAϕ⟩, one can build the cross-product
Mϕ = M⊗Aϕ = ⟨S ×Q,sϕ,A, δMϕ ,AP,Labϕ⟩, and ex-
tend the cost structure c to Mϕ as cϕ((s, q), a) = c(s, a).
Mϕ behaves like the original MDP M, but is augmented
with information about the satisfaction of ϕ. Once a path
of Mϕ reaches an accepting state (i.e., a state of the form
(s, qF )), it satisfies ϕ. The construction of the product MDP
is well known and is such thatMϕ preserves the probabili-
ties of paths fromM (see, e.g., (Baier and Katoen 2008)).

However, given that the probability of reaching an accept-
ing state in Mϕ is not one, the calculation of the minimal
expected cost in this structure does not converge. In order to
tackle this issue, we start by encoding pϕ as a reward struc-
ture rϕ ∶ (S ×Q) ×A→ Q≥0:

rϕ((s, q), a) = ∑
(s′,q′)∈S×Q

δMϕ((s, q), a, (s′, q′))pϕ(q, q′)

The main insight for building the trimmed product MDP
Mrϕ

ϕ is noticing that the progression metric is built in such
a way that any infinite run of Mϕ will eventually reach a
state where no more progression reward can be gathered.
This is due to the system reaching an accepting state, or a
state where no more can be done towards the formula sat-
isfaction. Thus, the trimming operation simply removes all
states for which (i) the probability of gathering more pro-
gression reward is 0; and (ii) are not a successor of one such
state. All transitions to these states are also removed from
the structure. By doing this, we guarantee convergence of
the calculation of the cumulative cost, because we removed
all end components in the model with a positive cost.

Thus, our three objectives can be posed as standard prob-
lems in the trimmed product: (i) maximising the probability
of satisfying ϕ can be reduced to maximising the probability
of reaching an accepting state; (ii) maximising progression
can be reduced to the infinite-horizon maximisation of the
cumulative value of rϕ; and (iii) minimising the cost to reach
a state where no more progression can be accumulated can
be reduced to the infinite-horizon minimisation of the cumu-
lative value of cϕ.

Nested Value Iteration Since the above problems are con-
flicting, we optimise them in decreasing order of priority.

Algorithm 1 keeps track of a value table per objective,
and only uses the lower level priority objectives to decide
which action to execute when the value for a pair of actions
is the same for the higher-priority objective(s). Its termina-
tion is guaranteed due to the structure of the progression

Algorithm 1 NESTED VALUE ITERATION

Input: Trimmed productMrϕ
ϕ , cost cϕ, progression reward rϕ

Output: Optimal policy π ∶ S ×Q→ A

1: for all sϕ ∈ S ×Q do

2: Vp(sϕ) ← { 1 if sϕ = (s, qF ),where qF ∈ QF

0 otherwise
3: Vr(sϕ) ← 0
4: Vc(sϕ) ← 0
5: end for
6: while Vp or Vr or Vc have not converged do
7: for all sϕ ∈ S ×Q do
8: for all a ∈ A(sϕ) do
9: vp ← ∑

s′ϕ∈S×Q
δMrϕ

ϕ
(sϕ, a, s′ϕ)Vp(s′ϕ)

10: vr ← rϕ(sϕ, a) + ∑
s′ϕ∈S×Q

δMrϕ
ϕ
(sϕ, a, s′ϕ)Vr(s′ϕ)

11: vc ← cϕ(sϕ, a) + ∑
s′ϕ∈S×Q

δMrϕ
ϕ
(sϕ, a, s′ϕ)Vc(s′ϕ)

12: if vp > Vp(sϕ) then
13: Vp(sϕ) ← vp
14: Vr(sϕ) ← vr
15: Vc(sϕ) ← vc
16: π(sϕ) ← a
17: else if vp = Vp(sϕ) ∧ vr > Vr(sϕ) then
18: Vr(sϕ) ← vr
19: Vc(sϕ) ← vc
20: π(sϕ) ← a
21: else if vp = Vp(sϕ)∧vr = Vr(sϕ)∧vc < Vc(sϕ) then
22: Vc(sϕ) ← vc
23: π(sϕ) ← a
24: end if
25: end for
26: end for
27: end while

metric. It has similarities with (Teichteil-Königsbuch 2012;
Kolobov, Mausam, and Weld 2012), which tackle a similar
problem. However, they just take into account single state
reachability, while we use co-safe LTL goals, which are
more general, and introduce the notion of task progression.

This approach greatly improves the efficiency of policy
generation for our problem, when compared with our previ-
ous approach based on contrained multi-objective queries. It
solves our illustrative problem, that before took ~9 minutes,
in ~10 seconds.

Acknowledgement This work has received funding from
EU FP7 under grant agreement No 600623, STRANDS.

References
Baier, C., and Katoen, J.-P. 2008. Principles of Model Checking.
Kolobov, A.; Mausam; and Weld, D. 2012. A theory of goal-
oriented MDPs with dead ends. In Proc. of UAI ’12.
Kupferman, O., and Vardi, M. 2001. Model checking of safety
properties. Formal Methods in System Design 19(3).
Lacerda, B.; Parker, D.; and Hawes, N. 2015. Optimal policy gen-
eration for partially satisfiable co-safe LTL specifications. In Proc.
of IJCAI ’15.
Teichteil-Königsbuch, F. 2012. Stochastic safest and shortest path
problems. In Proc. of AAAI ’12.

55




