
Exploring Affordances Using
Human-Guidance and Self-Exploration∗

Vivian Chu and Andrea L. Thomaz
School of Interactive Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0250
Email: vchu@gatech.edu, athomaz@cc.gatech.edu

Abstract

Our work is aimed at service robots deployed in hu-
man environments that will need many specialized ob-
ject manipulation skill. We believe robots should lever-
age end-users to quickly and efficiently learn the af-
fordances of objects in their environment. Prior work
has shown that this approach is promising because peo-
ple naturally focus on showing salient rare aspects of
the objects (Thomaz and Cakmak 2009). We replicate
these prior results and build on them to create a semi-
supervised combination of self and guided learning.
We compare three conditions: (1) learning through self-
exploration, (2) learning from demonstrations provided
by 10 naı̈ve users, and (3) self-exploration seeded with
the user demonstrations. Initial results suggests benefits
of a mixed initiative approach.

Introduction
Robots have begun the transition from factories to homes
and to deal with the uncertainties that the real world holds,
robots need to learn about the environment it is placed in.
Luckily, robots can draw on input and feedback from hu-
mans in these new social settings. This work explores how to
utilize human teachers to guide a robot’s exploration when
learning about the environment and how this guidance al-
lows the robot to learn more efficiently about the world.

To understand how to best make use of humans to help
teach robots about the environment, we look at representing
the world as affordances and consequently, we explore the
problem of affordance learning for robots. The term affor-
dance, was first introduced by J.J. Gibson in 1977 (Gibson
1977) and we use the ecological definition from (Chemero
2003) of “action possibilities” that appear between an agent
and the environment. More concretely, we represent affor-
dances as the relationship between effects and a set of ac-
tions performed by an agent on an object. This represen-
tation is commonly used in robotics (Şahin et al. 2007;
Montesano et al. 2008).

We present three strategies to tackle the affordance
learning problem (1) the traditional self-exploration strat-
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egy where robots exhaustively interact with the workspace
(2) human-guided exploration based on prior work
from (Thomaz and Cakmak 2009) where humans provide
examples interactions for the robot to learn from and (3) a
mixed approach that combines self-exploration with infor-
mation provided from human teachers. We compare these
three strategies by learning five affordances across four dif-
ferent objects.

Related Work
The research area for understanding how robots can explore
the world has been looked by a wide variety of researchers.
One specific area that relates directly to this work is the con-
cept of intrinsic motivation and curiosity driven exploration.
Some early work in this area (Oudeyer, Kaplan, and Hafner
2007; Vigorito and Barto 2010; Schmidhuber 1991) looked
at using rewards and expectations to guide the exploration
as opposed to any human-guidance.

More recently, (Ivaldi et al. 2014; 2012) and (Nguyen and
Oudeyer 2014) explored the idea of combining intrinsic ex-
ploration with human-guidance. The difference in this work
lies in the combination of social and self-exploration. Both
assume that there exists a reward signal that can be easily
characterized. However, such reward does not exist for com-
plex affordances such as the ones explored in this paper.

Finally, this work aims to build on the previous findings
from (Thomaz and Cakmak 2009). However, this work not
only applies human-guided affordance to more complex af-
fordances, but looks at the combination of human-guidance
and self-exploration, a task the prior work did not do.

Affordance Learning
To learn affordances, we need an agent to interact with the
environment and observe the effects of the interaction. From
these interactions and observations, the agent can then learn
about what the environment affords for it. In the simplest
case, if the agent’s actions are discrete, then it could just try
all the actions on all of the objects and model the outcomes.
However, with any real object manipulation skill, the space
of actions that the robot could try to perform on the object
becomes so large that we require a method for efficiently
sampling this space in order to build an accurate model.

In our approach, we assume the robot has a set of param-
eterized primitive actions (e.g. position of the end-effector
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(a) Bread box (b) Drawer (c) Pasta Jar (d) Lamp

Figure 1: Objects that Curi explored

Table 1: Affordances

Object Action Effect Affordance
Bread box Move Moves up open-able
Pasta jar Move Moves push-able
Drawer Move Moves push-able
Drawer Pick Pulls out open-able
Lamp Pick Pulls down turn-on-able

with respect to the object in a pick-up action). Then the ex-
ploration space is defined by this space of these continuous-
valued parameters on the primitive actions. We compare
three different approaches for efficiently sampling this space
to collect examples to build a model of particular action-
object affordances.

Objects and Actions
For this work, we selected four household objects for the
robot to interact with and can be seen in Fig. 1. Each of
these objects are tracked using the RGB-D sensor and vi-
sual object information commonly used in affordance learn-
ing (Thomaz and Cakmak 2009; Montesano et al. 2008)
were recorded throughout the entire interaction, but con-
verted to 3D space rather than 2D images. Specifically, we
record the object point cloud centroid (relative to the robot
torso), color, orientation, volume of the bounding box, the
dimensions of the bounding box (x,y,z), and the squareness
of the object (the ratio of the number of points in the object
to the area of the bounding box). We also store information
from the 6-axis F/T sensor in the wrist (Fx, Fy, Fz, Tx, Ty, Tz)
and the robot end-effector (EEF) relative to the robot torso.

The robot can perform two parameterized action primi-
tives: move and pick. Each action is composed of a sequence
of robot end-effector (EEF) poses relative to the centroid
of the object point cloud. An EEF pose describes the po-
sition and orientation of the robot hand for all 6 degrees-of-
freedom (DOF). A move action is comprised of two poses,
the start and end pose of the EEF. The pick action has three
poses: a start pose, a pose where the robot should close its
hand, and an end pose. For both primitives, the resulting tra-
jectory of the EEF is created by performing a quintic spline
between the poses with an average velocity of 1 cm/second.

Affordances
This paper explores five specific affordances summarized in
Table 1. The affordances selected, range from simpler af-
fordances (push-able) to affordances that are more complex
(turn-on-able). We define complex in terms of the action re-

quired to find the affordance. For “simple” affordances, the
affordance can be found in a larger part of the space during
exploration whereas a “complex” affordance requires move-
ment or sampling along a specific portion of the space. For
example, there are many directions to move relative to the
object to find the “simple” affordance of push-able. How-
ever, to discover that the drawer is “open-able”, the robot
must pull in a specific direction to find the affordance.

Affordance Representation
To model the affordances, we selected Hidden Markov Mod-
els (HMMs) (Rabiner and Juang 1986). We chose this repre-
sentation because of the ability to capture time varying infor-
mation of the various affordances. For example, pulling the
drawer requires specific forces to be felt throughout the in-
teraction. Furthermore, HMMs allow us to develop a model
of affordances that we can later sample from to generate new
interactions with novel objects. The HMMs state-space con-
tains the visual and haptic features described in the prior sec-
tions.

Exploration Strategies
The main question we ask is how to best navigate this search
space and interact with objects to learn affordances. One of
the major challenges of learning the affordances of an object
rests largely on how to efficiently explore an object to pro-
duce the interesting effects. We present three strategies: self-
exploration, human-guided exploration, and human-seeded
self-exploration.

Self-Exploration
The self-exploration strategy exhaustively searches the
workspace with little knowledge about where to search aside
from knowing that it should perform actions around the ob-
ject. This is the typical strategy taken for learning affor-
dances (Fitzpatrick et al. 2003; Stoytchev 2005; Hermans
et al. 2013) and the main decisions needed to discretize the
workspace relate to (1) what range the robot should explore
around the object and (2) the resolution (step-size) for each
interaction.

To perform a simple exploration in all six dimensions of
the EEF, quickly results in an exploration size that is prac-
tically infeasible. To reduce the search space, we provided
starting points for self-exploration provided by an expert
(one of the authors) as well as selecting the best orienta-
tion that would find the affordance. This is a reasonable as-
sumption because many state-of-the-art algorithms focus at
determining the best grasp points or points in which a robot
EEF should interact with on the object (e.g. the handle on
the bread box or the ball on the chain for the lamp). With
these two assumptions, we now exhaustively explore only in
the end position (x,y,z) of the action. However, exploration
in these three dimensions can easily explode if the resolution
of the search space is small enough and so we also limit the
number of total explorations to 100 interactions per object.

Note, that to even to make the self-exploration tractable,
we have to provide some human knowledge about the object
and scene. Specifically, we provided the start position and
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Table 2: Total Number of Interactions Per Strategy

Object Action Self Humans Guided
Bread box Move 100 57 31
Pasta jar Move 100 49 30
Drawer Move 100 39 31
Drawer Pick 100 45 31
Lamp Pick 100 49 31

orientation of the EEF as well as the maximum distance that
the EEF has to explore to find the affordance.

Human-Guided Self-Exploration
The next approach looks at how people can guide the explo-
ration of objects to sample this space of affordances. Specifi-
cally, we look at the types of interactions naive users provide
as examples of affordances in objects.

In order for naive users to control the robot, users were
given the same action primitives (move and pick) that the
robot had access to during self-exploration. Users gener-
ated these primitives by kinesthetically showing the robot
the poses of each action (i.e. start, end, close hand pose).
We conducted a user study with 10 naive users (5 male, 5
female). The participants were instructed to teach the robot
about the 5 affordances over the 4 objects described in Ta-
ble 1. For each object, they were told the specific action
(move or pick) to use and the effect to show the robot. At the
beginning of each session, the participants were instructed
briefly on the definition of affordances. They also were given
a brief training time with the robot on how to verbally com-
mand and move the robot for kinesthetic teaching. For prac-
tice, they taught two actions on two separate objects. These
affordances were not included in the experiment.

For the “complex” affordances (i.e. bread box, open-able
drawer, and lamp), users were given 10 minutes to explore
the object and for the “simple” affordances (pasta jar and
push-able drawer), users were given 5 minutes. At the end
of the experiment, participants answered a survey question
about their teaching strategy. The total number of interac-
tions aggregated across all 10 users can be seen in Table 2.

Human-Seeded Self-Exploration
Our final strategy looks at a combination of the self and
guided approaches. While users provide directed exploration
strategies, it is cumbersome to have people provide an ex-
haustive set of interactions for each affordance. During self-
exploration, the robot can easily generate an exhaustive area
to search, but has no concept of where the exploration should
be focused. Combining the strengths of both approaches
should yield the best of both worlds.

For Human-Seeded Self-Exploration (HSSE), we use hu-
man demonstrations to constrain the search space during
self-exploration. On a high-level, we used the variance of all
user demonstrations to generate a set of explorations from
the original demos. We do this by taking the first demon-
stration from each user for each affordance and compute
the mean and standard deviation of this set. Specifically, for

Figure 2: Number of total and positive examples for each affor-
dance

each affordance (e.g., breadboxMove, drawerPick), there ex-
ists a mean (µbreadboxMove and variance σ2

breadboxMove) of the
EEF relative to the object.

During self-exploration, we searched in a circular range
around the start/close position of each affordance. Dur-
ing HSSE, we instead search around the µa f f ordance, with
σ2

a f f ordance as the step size. For each affordance, we have 27
search locations and use the same EEF orientation that was
used during self-exploration. This search allows the robot to
explore dimensions (x,y,z) that do not matter (higher vari-
ance) and focus on the axes that are highly constrained (low
variance).

Furthermore, to focus the exploration on the direction of
change during each demonstration, we do a second search
of the area where the EEF explores this dimension. To keep
things fair, the step-size for this search is selected based on
the resolution during self-exploration.

Initial Results and Discussion
We used all three strategies to collect interactions with all 5
affordances. The number of interactions per object per ap-
proach can be seen in Table 2. Each interaction was hand
labeled with the ground truth label of “Success” and “Fail-
ure” depending on if the interaction successfully found the
affordance. The number of successful interactions vs. failed
interactions can be seen in Figure 2.

The first thing that we noticed while collecting the data
was the shear magnitude of explorations required to fully
explore an area when no initial information is given. This
is clearly seen in Table 2 where self-exploration requires
nearly double the amount of explorations as the aggregate
exploration for all 10 users. This suggests that human guid-
ance can provide crucial information for robot exploration.

We then looked at the quality of explorations for each
search method. We used a rough metric of the number of
successes vs. failures. This can be seen in Figure 2. The
graph shows the number of positive interactions for each af-
fordance and each method. For self-exploration, less than
half of the interactions resulted in the robot finding the af-
fordance. This percentage drastically goes up during human-
guidance and carries over to HSSE.
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Figure 3: Exploration space of EEF relative to the drawer during
the action move.

We also looked that physical space that the EEF explored.
To visualize this space, we plotted the position of the EEF
during successful and failed interactions relative to the ob-
ject. One example can be seen in Figure 3. Interestingly,
we can see that the successful interactions with the object
have a high dependency on the y-axis. We can also see
that self-exploration looks at a much larger area of the ob-
ject space for both successful and failed interactions. The
human-guided exploration has far more positive examples
over a larger area than failed interactions. Finally, HSSE is
highly concentrated and focused on the boundary between
success and failure.

To verify that the increase of exploration space improves
the affordance models, we trained two separate HMMs (one
for the failed interactions and one for the successful interac-
tions). We build two models because it allows us to use the
relative likelihood to compare if an interaction successfully
found the affordance without fine-tuning a threshold. This
also emphasizes the importance of covering the entire task
space of the affordance rather than focus on just the positive
examples. To evaluate the models we performed cross val-
idation on the collected interactions from each exploration
method and compared them to each other. Initial results are
positive and suggest that there is a direct relationship be-
tween the quality of model to the coverage of the task space.

In conclusion, the initial results show that there is much
to be learned from human input to guide robot exploration
for affordances. Future work will focus on obtaining preci-
sion and recall scores during cross validation to evaluate the
quality of the learned models and their direct relation to the
amount of task space coverage.
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