
The MADP Toolbox: An Open-Source Library for
Planning and Learning in (Multi-)Agent Systems

Frans A. Oliehoek
University of Liverpool,

University of Amsterdam
fao@liverpool.ac.uk

Matthijs T. J. Spaan
Delft University of Technology

Delft, The Netherlands
m.t.j.spaan@tudelft.nl

Philipp Robbel
Media Lab, MIT

Cambridge, MA, USA
robbel@mit.edu

João Messias
University of Amsterdam

Amsterdam, The Netherlands
jmessias@uva.nl

Abstract
This article describes the MultiAgent Decision Process
(MADP) toolbox, a software library to support planning and
learning for intelligent agents and multiagent systems in un-
certain environments. Some of its key features are that it sup-
ports partially observable environments and stochastic tran-
sition models; has unified support for single- and multiagent
systems; provides a large number of models for decision-
theoretic decision making, including one-shot decision mak-
ing (e.g., Bayesian games) and sequential decision mak-
ing under various assumptions of observability and coopera-
tion, such as Dec-POMDPs and POSGs; provides tools and
parsers to quickly prototype new problems; provides an ex-
tensive range of planning and learning algorithms for single-
and multiagent systems; and is written in C++ and designed
to be extensible via the object-oriented paradigm.

Introduction
Decision making is a core topic of research in the fields
of artificial intelligence and machine learning. Especially
research on planning and learning in stochastic, partially
observable and/or multiagent settings (MASs) has received
much attention in the last decade, since these settings hold
great promise to deal with challenging decision making
problems encountered in the real world.

For instance, Markov decision processes (MDPs) can
be used for aircraft collision avoidance (Kochenderfer and
Chryssanthacopoulos 2011), partially observable MDPs
(POMDPs) may enable active perception and certain
robotics applications (Kaelbling, Littman, and Cassandra
1998; Spaan 2012; Hsu, Lee, and Rong 2008; Spaan, Veiga,
and Lima 2014), decentralized POMDPs (Dec-POMDPs)
(Bernstein, Zilberstein, and Immerman 2000; Oliehoek
2012) enable reasoning about the behavior of a team of
robots or other decision makers acting on local informa-
tion (Amato et al. 2015), and partially observable stochas-
tic games (POSGs) allow representing situations with self-
interested agents (Hansen, Bernstein, and Zilberstein 2004).

All these models are closely related and instances of
what we refer to as multiagent decision processes (MADPs).
While many software libraries are available for planning
or learning in specific sub-classes of MADPs—e.g., there
are many toolboxes focusing on single-agent, fully observ-
able reinforcement learning—no comprehensive libraries

are available that support the more complex partially ob-
servable multiagent settings. The MADP Toolbox aims to
fill this void by providing the building blocks for develop-
ing planning and learning algorithms for existing and novel
instances of MADPs.

Some important features of the MADP Toolbox are:

Toolkit and Library. It can be used in two ways: as a tool-
box of a number of planning and learning algorithms and as
a software library to develop one’s own models and algo-
rithms.

Modular design. It is object-oriented, making it easy to
extend to new problem classes, and to implement new plan-
ning and learning algorithms.

Flexible. It was inherently designed for multiagent prob-
lems, providing support for mixing different types of agents.
It is also very suitable for single-agent problems, which are
just a special case.

Feature rich. It includes many code-intensive features.
For instance, it has support for factored models (including
variable elimination and max-sum optimization), it supports
basic inference in partially observable settings, and provides
support for simulations of different communication scenar-
ios. Finally, MADP comes equipped with a large number of
state-of-the-art methods particularly for POMDPs and Dec-
POMDPs.

Connected. It reads a number of problem formats: Prob-
Model XML (Arias et al. 2012), .pomdp file format
(Cassandra 1998), .dpomdp file format, and exports
SPUDD (Hoey et al. 1999) format. It also includes (parts
of) the pomdp-solve library1.

Documented. It comes with fairly extensive user and
developer documentation. This is complemented by an API
reference, as well as a user email list.

1http://pomdp.org

Sequential Decision Making for Intelligent Agents 
Papers from the AAAI 2015 Fall Symposium

59



agents: 2
discount: 1
values: reward
states: tiger-left tiger-right
start:
uniform

actions:
listen open-left open-right
listen open-left open-right

observations:
hear-left hear-right
hear-left hear-right

T: * :
uniform
T: listen listen :
identity

O: * :
uniform
O: listen listen : tiger-left : hear-left hear-left : 0.7225
O: listen listen : tiger-left : hear-left hear-right : 0.1275
.
.
.
O: listen listen : tiger-right : hear-left hear-left : 0.0225

R: listen listen: * : * : * : -2
R: open-left open-left : tiger-left : * : * : -50
.
.
.
R: open-left listen: tiger-right : * : * : 9

Figure 1: The Dec-Tiger problem as a.dpomdp file (partial
listing).

In the remainder of this document we provide a concise
formalization of what we mean by a multiagent decision
process (MADP), and how the toolbox provides support for
these, discuss technical details and related software.

A Brief Overview: Planning & Learning in
(Multi-)Agent Systems

An MADP is a decision problem for one or more agents,
considered for a particular number h of discrete time steps,
or stages t = 0, 1, 2, ..., h−2, h−1. The basic idea is that at
each stage the agents will take an action as a result of which
the environment changes, and agents are provided with new
feedback. MADP models are defined over (typically discrete
and finite) sets of states, actions and observations. State tran-
sitions are governed by a Markovian transition model that
depends on the current state and the action of each agent.
In the canonical case, the environment is only partially ob-
servable and each agent receives its own individual obser-
vations, drawn from a probabilistic observation model. At
each time step, an agent receives a scalar reward signal and
its objective is to optimize the (discounted) sum of rewards
it will receive. In the cooperative case, known as a Dec-
POMDP, agents share the same reward function, while in the
non-cooperative case, a POSG, each agent possesses its own
reward function. POMDPs (Kaelbling, Littman, and Cas-
sandra 1998) are the special case of having a single agent,
while a multiagent MDP (Boutilier 1996) is the special case
where the state is fully observable by all agents. The tradi-
tional MDP is the special case that combines these special
cases. Finally, one-shot problems, such as strategic games

Figure 2: The Firefighting Graph problem in OpenMarkov.

or Bayesian games (Osborne and Rubinstein 1994), can be
interpreted as special cases with a single stage.

These frameworks have in common the assumption that
each agent will try and optimize its behavior in order to max-
imize the (sum of) reward(s) assigned to it. As such, the re-
ward functions have the role of specifying the task and the
agents’ behavior results from a form of (potentially strate-
gic) optimization.

Roughly speaking, MADPs can be approached in two
manners. In the first, one assumes that the model is given
and that the task is to find behavior that is optimal (‘plan-
ning’) or rational according to some definition (‘solving a
game’). In the second approach, one assumes that the model
is not known in advance, but that agents learn to interact dur-
ing simulations (‘multiagent reinforcement learning’). This
means that core functionality required for supporting MADP
research is the ability to specify models for and performing
simulations of MADPs.

As such, a key functionality that MADP provides is the
ability to conveniently specify MADPs. Three main meth-
ods are supported currently: 1) using Anthony Cassandra’s
plain text .pomdp file format or a multiagent .dpomdp
extension of that (see Figure 1 for an example), 2) in the
graphical OpenMarkov2 editor for ProbModelXML files
(see Figure 2), or 3) by writing your own class that imple-
ments the appropriate interface.

Finally, the aim of the toolbox is not only to facilitate
specification, but also to provide existing algorithms for
planning and learning, as well as the building blocks to eas-
ily develop new such algorithms. To this end, various types
of classes are provided by the toolbox:

• Classes that represent different models (i.e., different in-
stances of MADPs). Currently interface classes are de-
fined for all mentioned models above (POSGs, Dec-
POMDPs, MMDPs, Bayesian Games etc.), and a num-
ber of benchmark problems (e.g., Dec-Tiger, factored fire-
fighting, etc.) are available.

• A collection of support classes that represent histories, be-
liefs, value functions, and policies, etc., as well as some
algorithms to perform belief updating and approximate in-
ference.

2http://www.openmarkov.org

60



Name Type MAS PO Language URL
APPL planning −

√
C++ http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

BURLAP planning/RL
√

− Java http://burlap.cs.brown.edu
AI-Toolbox planning/RL −

√
C++ https://github.com/Svalorzen/AI-Toolbox

RLlib RL − − C++ https://github.com/HerveFrezza-Buet/RLlib
RLPy RL − − Python https://bitbucket.org/rlpy/rlpy
MARL
Toolbox

RL
√

− Matlab http://busoniu.net/repository.php

PyBrain ML/RL − − Python http://pybrain.org
markov
decision
making

robot
planning

√ √
ROS http://wiki.ros.org/markov decision making

Table 1: Comparison to closely related software and toolboxes.

• Classes that represent different planning algorithms for
different models. These specify interfaces, such as an in-
terface to support planning for Dec-POMDPs, as well
as complete planning methods, including: value itera-
tion, Perseus (Spaan and Vlassis 2005), Monahan’s al-
gorithm (Monahan 1982), Incremental Pruning (Cas-
sandra, Littman, and Zhang 1997), JESP (Nair et al.
2003), DP-LPC (Boularias and Chaib-draa 2008), (Gen-
eralized) Multiagent A* (GMAA) and variants (Szer,
Charpillet, and Zilberstein 2005; Oliehoek, Whiteson,
and Spaan 2009; Spaan, Oliehoek, and Amato 2011;
Oliehoek et al. 2013), GMAA-ELSI for factored Dec-
POMDPs (Oliehoek et al. 2008).

• Classes that represent types of agents that can be em-
ployed (individually or in a team) in a simulation to facil-
itate learning algorithms. Again, these include interfaces,
such as an interface for agents with full observability or
agents that share observations via communication, as well
as fully specified agent behaviors, such as a Q-learner
agent, or an agent performing on-line MDP planning.

For more detailed information, we refer to the included de-
veloper documentation.

Technical Details
The MADP Toolbox can be used in two ways: as a toolbox
and as a software library. The fact that MADP can be used as
a library also means that it can support the deployment and
real-time execution of decision-theoretic control policies for
autonomous agents (such as the markov decision making
ROS package mentioned below). Since MADP has been
implemented in C++ and is organized according to object-
oriented paradigm, it is easy to extend. Since MADP aims
to support the core planning tasks, C++ provides the addi-
tional advantage that it is very fast for such computationally
expensive routines.

The toolbox can be downloaded at https://github.com/
MADPToolbox/MADP and is developed under Debian
GNU/Linux and has been tested under various recent Linux
distributions. It also has (experimental) Mac OSX support.
MADP 0.3.1 adheres to the C++98 standard and is relatively
self-contained: required Boost header files and required li-
braries and the like are included. MADP comes with exten-

sive documentation both in form of a user/developer manual,
as well as API documentation (also available online).

Related Software
Many toolboxes exists for decision making, but few deal
with MASs or partially observable settings. The most
closely related software and toolboxes for planning, rein-
forcement learning (RL) and machine learning (ML) appli-
cations are shown in Table 1. Marked in the MAS and PO
columns are whether the respective toolbox includes algo-
rithms for multiagent or partially-observable settings. Clos-
est to MADP’s scope is BURLAP, which currently does not
support partially-observable multiagent settings.

The MADP software distribution uses functionality from,
and therefore includes, versions of POMDP-solve3 and lib-
DAI (Mooij 2008). The MADP Toolbox is the back-end a
number of solution methods on the Thinc lab solver page4.
It is also used in the markov decision making ROS pack-
age5 in order to parse model files and query agent policies
in real time.

Acknowledgments
We are grateful to Abdeslam Boularias for the basis of his
DP-LPC code, Anthony Cassandra for allowing us to in-
clude POMDP-solve, Joris Mooij for allowing to include
libDAI, and many others that made contributions to the
MADP Toolbox.

The MADP Toolbox has been developed over the course
of many years, and has thus been supported by various fund-
ing agencies including: The Dutch Ministry of Economic
Affairs, AFOSR, NWO, FP7 Marie Curie, FCT. F.O. is cur-
rently supported by NWO Innovational Research Incentives
Scheme Veni #639.021.336.

References
Amato, C.; Konidaris, G. D.; Cruz, G.; Maynor, C. A.; How,
J. P.; and Kaelbling, L. P. 2015. Planning for decentralized
control of multiple robots under uncertainty. In Proceedings

3http://www.pomdp.org/code/
4http://lhotse.cs.uga.edu/pomdp/
5http://wiki.ros.org/markov decision making

61



of the International Conference on Robotics and Automa-
tion.
Arias, M.; Dı́ez, F. J.; Palacios-Alonso, M. A.; Yebra, M.;
and Fernández, J. 2012. POMDPs in OpenMarkov and Prob-
ModelXML. In Multiagent Sequential Decision-Making
Under Uncertainty. Workshop at AAMAS12.
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The complexity of decentralized control of Markov decision
processes. In Proc. of Uncertainty in Artificial Intelligence,
32–37.
Boularias, A., and Chaib-draa, B. 2008. Exact dynamic pro-
gramming for decentralized POMDPs with lossless policy
compression. In Proc. of the International Conference on
Automated Planning and Scheduling.
Boutilier, C. 1996. Planning, learning and coordination in
multiagent decision processes. In Proc. of the 6th Confer-
ence on Theoretical Aspects of Rationality and Knowledge,
195–210.
Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997. In-
cremental pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proc. of Uncer-
tainty in Artificial Intelligence, 54–61. Morgan Kaufmann.
Cassandra, A. R. 1998. Exact and approximate algorithms
for partially observable Markov decision processes. Ph.D.
Dissertation, Brown University.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In Proc. of the National Conference on Artificial
Intelligence, 709–715.
Hoey, J.; St-Aubin, R.; Hu, A. J.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proc. of Uncertainty in Artificial Intelligence, 279–288.
Hsu, D.; Lee, W. S.; and Rong, N. 2008. A point-based
POMDP planner for target tracking. In Proceedings of
the International Conference on Robotics and Automation,
2644–2650.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1-2):99–134.
Kochenderfer, M. J., and Chryssanthacopoulos, J. P. 2011.
Collision avoidance using partially controlled markov deci-
sion processes. In Proc. of the International Conference on
Agents and Artificial Intelligence, 86–100.
Monahan, G. E. 1982. A survey of partially observable
Markov decision processes: theory, models and algorithms.
Management Science 28(1).
Mooij, J. M. 2008. libDAI: library for discrete approximate
inference.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D. V.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In Proc. of the International Joint Conference on Artificial
Intelligence, 705–711.
Oliehoek, F. A.; Spaan, M. T. J.; Whiteson, S.; and Vlassis,
N. 2008. Exploiting locality of interaction in factored Dec-
POMDPs. In Proceedings of the Seventh Joint International

Conference on Autonomous Agents and Multiagent Systems,
517–524.
Oliehoek, F. A.; Spaan, M. T. J.; Amato, C.; and Whiteson,
S. 2013. Incremental clustering and expansion for faster
optimal planning in decentralized POMDPs. Journal of Ar-
tificial Intelligence Research 46:449–509.
Oliehoek, F. A.; Whiteson, S.; and Spaan, M. T. J. 2009.
Lossless clustering of histories in decentralized POMDPs.
In Proceedings of the Eighth International Conference on
Autonomous Agents and Multiagent Systems, 577–584.
Oliehoek, F. A. 2012. Decentralized POMDPs. In Wier-
ing, M., and van Otterlo, M., eds., Reinforcement Learning:
State of the Art, volume 12 of Adaptation, Learning, and
Optimization. Berlin, Germany: Springer Berlin Heidelberg.
471–503.
Osborne, M. J., and Rubinstein, A. 1994. A Course in Game
Theory. The MIT Press.
Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Random-
ized point-based value iteration for POMDPs. Journal of AI
Research 24:195–220.
Spaan, M. T. J.; Oliehoek, F. A.; and Amato, C. 2011. Scal-
ing up optimal heuristic search in Dec-POMDPs via incre-
mental expansion. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence,
2027–2032.
Spaan, M. T. J.; Veiga, T. S.; and Lima, P. U. 2014. Decision-
theoretic planning under uncertainty with information re-
wards for active cooperative perception. Journal of Au-
tonomous Agents and Multi-Agent Systems.
Spaan, M. T. J. 2012. Partially observable Markov deci-
sion processes. In Wiering, M., and van Otterlo, M., eds.,
Reinforcement Learning: State of the Art. Springer Verlag.
387–414.
Szer, D.; Charpillet, F.; and Zilberstein, S. 2005. MAA*:
A heuristic search algorithm for solving decentralized
POMDPs. In Proc. of Uncertainty in Artificial Intelligence,
576–583.

62




