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Abstract 
We describe an experiment in using IBM’s Watson cogni-
tive system to teach about human-computer co-creativity in 
a Georgia Tech Spring 2015 class on computational crea-
tivity.  The project-based class used Watson to support bio-
logically inspired design, a design paradigm that uses bio-
logical systems as analogues for inventing technological 
systems. The twenty-four students in the class self-
organized into six teams of four students each, and devel-
oped semester-long projects that built on Watson to support 
biologically inspired design. In this paper, we describe this 
experiment in using Watson to teach about human-computer 
co-creativity, present one project in detail, and summarize 
the remaining five projects. We also draw lessons on build-
ing on Watson for (i) supporting biologically inspired de-
sign, and (ii) enhancing human-computer co-creativity. 

 Background, Motivations and Goals   
Creativity is one of humanity’s most special traits and re-

sources as well as goals and ideals. Humans are creative as 
individuals, as societies, and as a species. It is human crea-
tivity that leads to visual and performance arts, scientific 
discoveries and technological inventions, social and cultur-
al movements as well as political and economic revolu-
tions. Successful business organizations value creative 
people. While it was the increase in human productivity 
due to the use of the assembly line by Ford Motor Compa-
ny in the early twentieth century that was responsible for 
the production of the first commonly affordable automo-
biles, it was Henry Ford’s creativity that led to the intro-

duction of the assembly line in his eponymous company 
(Dasgupta 1996). All this naturally raises several questions 
for computational creativity: What is creativity? Can crea-
tivity be enhanced? Can creativity be taught? How might a 
computer aid human creativity? How might we enhance 
human-computer co-creativity where the creativity emerg-
es from interactions between humans and computers?  
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  Goel, the first author of this paper, conducts research on 
computational creativity. In late 2014, IBM gave him free 
access to a version of Watson (Brown et al. 2013; Ferruci 
et al. 2010) in the cloud called the Watson Engagement 
Advisor. In Spring 2015, he used Watson in the Georgia 
Tech CS4803/8803 class on Computational Creativity with 
Wiltgen as the teaching assistant. The project-based class 
used Watson to support biologically inspired design, a de-
sign paradigm that uses biological systems as analogues for 
inventing technological systems. The twenty-four students 
in the class self-organized into six teams of four students 
each, and developed semester-long projects that built on 
Watson to support biologically inspired design. In this pa-
per, we describe this experiment in using Watson to teach 
about human-computer co-creativity, present the project of 
one team, consisting of Creeden, Kumble, Salunke and 
Shetty, in some detail, and summarize the remaining five 
projects. We also draw some lessons about “best practices” 

for using Watson for (i) supporting biologically inspired 
design, and (ii) enhancing human-computer co-creativity.  

The Computational Creativity Class 
The Georgia Tech CS4803/8803 class on Computational 
Creativity in Spring 2015 consisted of 24 students, includ-
ing 21 graduate students and 3 undergraduate senior stu-
dents. 18 of the 21 graduate students and all 3 undergradu-
ate students were majoring in computer science. 

According to the course description handed out to the 
students at the start of the class, the learning goals were (1) 
To become familiar with the literature on computational 
creativity (concepts, methods, tasks), (2) To become famil-
iar with the state of art in computational creativity (sys-
tems, techniques, tools), (3) To learn about the processes of 
designing, developing and deploying interac-
tive/autonomous creative systems from ideation to realiza-
tion, (4) To acquire experience in designing an interactive 
creative tool, and (5) To become an independent thinker in 
computational creativity. The observable learning out-
comes were (i) To be able to analyze/critique developments 
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in computational creativity like an expert, (ii) To be able to 
identify problems in addressing creative tasks, and (iii) To 
be able to design, develop, and document creativity tools 
from ideation to realization for addressing creative tasks. 
The learning assessments were (a) Daily Quizzes, (b) Two 
class presentations (1 individual, 1 team), and (c) Design 
projects (4 deliverables that later became 6). Also, accord-
ing to the course description, the learning strategies con-
sisted of (1) Personalized learning (reading, analyzing, 
critiquing papers in computational creativity), (2) Collabo-
rative learning (presenting, discussing, critiquing papers on 
computational creativity), (3) Learning by example (case 
studies of computational creativity), (4), Learning by doing 
(small group exercises), (5) Project-based learning (collab-
orative project), (6) Peer-to-peer learning (sharing and cri-
tiquing work), and (7) Learning by reflection (documenting 
and critiquing own work).  
 Following research on computational creativity in our 
Design & Intelligence Laboratory (http://dilab.gatech.edu), 
most readings and discussions in the class focused on six 
themes: (1) Design Thinking is thinking about ill-
structured, open-ended problems with ill-defined goals and 
evaluation criteria; (2) Analogical Thinking is thinking 
about novel situations in terms of similar, familiar situa-
tions; (3) Meta-Thinking is thinking about one’s own 

knowledge and thinking; (4) Abductive Thinking is think-
ing about potential explanations for a set of data; (5) Visual 
Thinking is thinking about images and in images; and (6) 
Systems Thinking is thinking about complex phenomena 
consisting of multiple interacting components and causal 
processes. Further, following the research in the Design & 
Intelligence Laboratory, the two major creative domains of 
discussion in the class were (i) Engineering design and 
invention, and (ii) Scientific modeling and discovery. The 
class website provides details about the course 
(http://www.cc.gatech.edu/classes/AY2015/cs8803_spring) 

The Class Projects 

The class projects focused on biologically inspired design 

(also known as biomimicry or biomimetics). The paradigm 
of biologically inspired design views nature as a vast li-
brary of robust, efficient and multifunctional designs, and 
espouses the use of nature as an analogue for designing 
technological systems as well as a standard for evaluating 
technological designs (Benyus 1997; Vincent & Mann 
2002). This paradigm has inspired many famous designers 
in the history of design including Leonardo da Vinci, ap-
pears in a wide variety of design domains ranging from 
architecture to computing to engineering to systems. How-
ever, over the last generation the paradigm has become a 
movement in engineering and systems design, pulled in 
part by the growing need for environmentally sustainable 
development and pushed partly by the desire for creativity 
and innovation in design.  Thus, the study of biologically 

inspired design is attracting a rapidly growing literature, 
including publications, patents, and computational tech-
niques and tools (Goel, McAdams & Stone 2014). 
 Biologically inspired design covers at least three of the 
six core processes of creativity enumerated above. By def-
inition, biologically inspired design engages design think-
ing and systems thinking; also by definition, it engages 
cross-domain analogical transfer from biology to design. 
These core processes of creativity present major challenges 
for developing computational techniques and tools for sup-
porting biologically inspired design. For example, the 
cross-domain nature of analogies means that there are few 
experts in biologically inspired design: most designers are 
novices at biology and most biologists are naïve about de-
sign. Thus, a computational tool for supporting biological-
ly inspired design aimed at designers, for example, must 
enable them to navigate the unfamiliar domain of biology. 
 The general design process followed by the 6 design 
teams for using Watson to support biologically inspired 
design may be decomposed into two phases: an initial 
learning phase and a latter open-ended research phase. The 
initial learning phase proceeded roughly as follows. (1) 
The 6 teams selected a case study of biologically inspired 
design of their choice from a digital library called DSL 
(Goel et al. 2015). For each team, the selected case study 
became the use case. (2) The teams started seeding Watson 
with articles selected from a collection of around 200 biol-
ogy articles derived from Biologue.  Biologue is an interac-
tive system for retrieving biology articles relevant to a de-
sign query (Vattam & Goel 2013). (3) The teams generated 
about 600 questions relevant to their use cases. (4) The 
teams identified the best answers in their 200 biology arti-
cles for the 600 questions. (5) The teams trained Watson 
on the 600 question-answer pairs. (6) The 6 teams evaluat-
ed Watson for answering design questions related to their 
respective use cases. 

In the latter open-ended phase each of the 6 teams was 
free to conduct research as it wished. This led to several 
additional steps. (7) The 6 teams together grew the number 
of documents in Watson’s knowledgebase from 200 to 
about 500 and the number of questions from 600 to about 
1,200. (8) All 6 teams developed custom-made software 

for their projects. (9) All 6 teams evaluated aspects of their 

projects. (10) All 6 teams wrote reflective design reports 

and prepared short videos describing their projects 

(https://www.youtube.com/playlist?list=PL44rHkM-

p0hu5H7oS3OXYgK9qDkVajyqY).  

 It is noteworthy that all 6 projects significantly evolved 
from the initial learning phase to the latter open-ended re-
search phase. In particular, in the initial phase, the 6 pro-
jects tended to view Watson as an interactive tool for aid-
ing human creativity. However, in the latter open-ended 
phase, each of the 6 projects at least to some degree 
evolved into interactive tools for enhancing human com-
puter co-creativity. For example, the Erasmus project de-
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scribed below augmented Watson with another tool called 
AlchemyAPI as well as custom-made context-specific pre- 
and post-semantic processing for iteratively asking and 
answering questions. Thus, the creativity did not reside 
solely in the human user of Watson; instead creativity 
emerged out of interactions between the user and Watson.  

The Erasmus Project  
The Erasmus system both supports human creativity by 

affording access to snippets from biology articles relevant 
to a design-related question and enhances human-computer 
co-creativity by enabling designers to generate new ques-
tions. Erasmus takes advantage of Watson’s natural lan-
guage information retrieval abilities to significantly reduce 
the amount of time designers spend acquiring the founda-
tional knowledge necessary to determine whether a biolog-
ical design concept might contain insights into a particular 
design problem. It provides researchers with a quickly di-
gestible visual map of the concepts relevant to a query and 
the degree to which they are relevant. It also expands the 
scope of the query to display the concepts contained in a 
broader set of documents, enabling designers to identify 
interesting avenues for further inquiry. 

Architecture 
Figure 1 illustrates Erasmus’ architecture implemented  
within a browser-based, server-client application. Watson, 
at the core of the architecture, provides a natural language 
front-end to a powerful information retrieval service. Al-

chemyAPI, also an IBM technology, performs information 
extraction on the relevant text produced by Watson, identi-
fying concepts that encapsulate the topics addressed in 
each document (Turian 2013). Erasmus packages and pre-
sents this information to the user in a simple front-end. 

Watson’s strengths lie in its ability to accept a natural 
language question from its user and accurately identify 
responsive spans of text from documents within its corpus. 
The answer returned, however, depends on the documents 
to which Watson has access, the way in which those doc-
uments are annotated and formatted, the questions used to 
train the instance of Watson being used, and the phrasing 
of the question asked by the user. The accuracy of this an-
swer varies widely and, from the perspective of a user un-
familiar with Watson’s mechanics, in surprising ways. 

Erasmus attempts to alleviate some of Watson’s opacity 
and to complement its strengths toward the particular needs 
of biologically inspired design researchers by mediating 
interactions between Watson and the user. It integrates 
multiple components, as outlined in Figure 1: a front end 
that accepts a question from the user, a variant generator 
that creates multiple variants of the question, Watson—

which uses the query to perform a lookup on its document 
corpus—AlchemyAPI—which extracts the major concepts 
from each responsive document—a term frequency inverse 
document frequency (TFIDF) filter to eliminate highly 
similar spans of text, and a comparison system that scores 
conceptual relevancy between question variants and an-
swers. The system then returns the most relevant docu-
ments, along with their matching concepts and weighted 
relevancy, to the front-end. 

Process 
A query begins when a user enters their question into a text 
field in the Erasmus front-end. The string is then passed to 
a Python script hosted on a private server, which uses the 
natural language toolkit (NLTK) to generate ten grammati-
cally acceptable variants on the user’s query. The script 

separates the word tokens by their grammatical function 
(e.g., subject, verb, object) and then re-fits existing tokens 
into new configurations using grammatical templates. 
While it is possible to request that Watson’s API return 

multiple responses to a user query—rather than the single 
answer in which Watson is most confident—we are able to 
further expand the scope of the resulting concept space by 
generating small variations on verbiage and word order, 
which forces Watson to include documents from its corpus 
that it might have considered irrelevant. While this level of 
filtering is desirable when a Watson user is seeking a sin-
gle, direct answer to a question, the creative nature of de-
sign research benefits from responses that contain less-
relevant material (Thudt, Hinrichs & Carpendale 2015). 
This allows the user to perceive new concepts for further 
exploration.  

Figure 1: The Erasmus architecture. 
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Once the NLTK script has generated ten variants on the 
user’s question, it passes this set to our Watson instance, 

which is hosted remotely by IBM. Each request is transmit-
ted in a separate POST call and returned in JSON format. 
For each of the ten questions posed to Watson, Erasmus 
extracts the top ten answer candidates, ordered by Wat-
son’s confidence that they are the correct response to the 
question posed. 
 Because Erasmus passes multiple requests to Watson 
using slight variations on query language, Watson’s inter-

nal de-duplication methods are thwarted. We clean the 
resulting answer set of duplicates by converting each an-
swer string into TFIDF vectors, then calculate the cosine 
similarity among Watson’s top ten answer candidates. If 

multiple answers are highly similar, we retain the answer 
that provides the most detail. 

Once Erasmus has matched its ten question variants with 
Watson’s ten best answer candidates for each, we pass 
each set to AlchemyAPI for concept extraction. Alche-
myAPI returns a set of concepts for each question and an-
swer candidate, along with a relevance score between 0 
and 1, where a score of 1 indicates maximum relevancy to 
the document. 

With this information, Erasmus can score each answer 
for its conceptual overlap with the question, a process de-
picted in Figure 2. Erasmus calculates this score by deter-
mining the degree of similarity between a question’s con-

cept set and the concept set of its answers. Common con-
cepts are then weighted by each concept’s relevance score 
and aggregated into a single value that represents the de-
gree of similarity in the question-answer pair. Erasmus 

then ranks answers by their score, eliminating all but the 
top five responses. This limits the scope of the concepts 
presented to the user, but makes their relationship to each 
of the questions more easily digestible in a treemap. 

Erasmus’s visualization of the resulting concepts and 

their relationship to each question attempts to honor Shnei-
derman’s information visualization task taxonomy: over-

view, zoom, filter, details-on-demand, relate, history, ex-
tract (Shneiderman 1996). In the initial display, users are 
shown all concepts generated by their query. The display 
area occupied by each concept is determined by that con-
cept’s share of the aggregate relevance score. Within each 
concept, colored blocks represent the share of that concept 
accounted for by each of the five answers. Users can click 
to expand each concept, which then shifts the display to 
represent only those answer blocks relevant to the selected 
concept alongside the relevant text. This is depicted in Fig-
ure 3. By zooming in and out of a particular concept space, 

 
Figure 3: An Erasmus treemap, zoomed to display each answer’s share of a concept and the related text. 

 
Figure 2: Erasmus’s answer scoring process. 
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users can locate concepts that appear relevant to their re-
search, diving into an area of interest and reading the span 
of text that Watson has identified as germane. 

In the absence of a structured ontology of biological sys-
tems, Watson’s information retrieval capabilities were es-

sential to creating a functional prototype. In addition to 
extracting text from PDF-formatted research papers, we 
contributed the HTML of 382 Wikipedia articles related to 
a narrow domain: the desalination of water. We were care-
ful to select literature that specifically covered natural de-
salination systems (e.g., seabirds, mangroves). We gave 
Watson no explicit metadata that might have allowed it to 
identify the desalination processes that were the focus of 
our searches, but it performed adequately with only the 
loosely structured header markup of the Wikipedia files to 
guide it. 

We selected and extracted HTML from the relevant arti-
cles using Scrapy (http://www.scrapy.org), a Python li-
brary for generating custom web crawlers. We instructed 
our spider to begin at the Wikipedia article for desalination 
and crawl to a link depth of two, which produced a diverse 
selection of technical and non-technical information. 

Illustrative Example 
To compare Erasmus’ user experience with Watson’s—

unaided by AlchemyAPI and our filtering processes—we 
ran a query in both systems from the fictional perspective 
of a biomimetic researcher intent on learning more about 
how seabirds desalinate the water that they drink. Our user 
began their search with a generic query: “How do sea birds 

drink water?” 
 Our instance of Watson responded with seventy-seven 
answers, of which only the top five are accessible from the 
Watson UI, as depicted in Figure 4. Users must scroll 
through the single text field to read all of the material pre-
sented, which—even with only five answers at an average 
of 671 words per answer—is a daunting task. 
 While Erasmus does not address Watson’s full seventy-
seven-document result set, it expands its scope from the 
top five answers to the top ten, as scored by Watson’s con-

fidence metric. Erasmus displays the embodied concept 
neighborhood in a treemap, as depicted in Figure 5. In this 
case, the treemap is composed of twenty-six concept 
blocks, each made of anywhere from one to four answer 
blocks. The relative size of each concept block and each 
answer block represents our scoring mechanism’s estima-

tion of its importance to the concept neighborhood. 
 Users can click on any of the concept blocks to zoom 
into that block. In this instance, we have selected “secre-

tion.” Once zoomed, the treemap displays the concept 
block alongside the answer text associated with secretion, 
as depicted in Figure 3. This allows users to more easily 
visualize the full concept neighborhood and to investigate 
topics of interest without engaging in the onerous task of 
reading the full response set. 

Evaluation 
Although the particulars of Watson’s operation remain a 

trade secret, we can infer some broad principles and make 
a few educated guesses. Watson appears to operate by 
chunking the documents in its corpus into sub-documents, 
delineating them by their HTML header tags and then scor-
ing the sub-documents for relevance. Scoring seems to 
work by matching word tokens between the query and an-
swer candidates, accounting for frequency.  

The corpus attached to our Watson instance contains a 
broad set of knowledge relating to biological desalination 
systems, but the unstructured nature of the text made it 
difficult for Watson to identify spans containing the details 
of specific desalination processes. As we demonstrated in 
our example, we asked Watson how seabirds desalinate 
water, but its top answer related to reptiles. In our tests, 
Watson’s full answer set often contained the span of text 

that we had hoped to retrieve, but it was frequently buried 
beneath irrelevant results. We ran several tests in which we 
manually selected a document for its high degree of topi-
cality, but we were rarely able to coax Watson into produc-
ing our target at or near the top of its answer set. 

Watson’s precision and recall when retrieving Wikipedia 
articles was noticeably superior to its ability to find correct 
answers from research publications. Part of its trouble was 
likely due to the lack of structure: all of the research doc-
uments in our corpus were originally contained in .pdf 
files, which required us to extract their text with PDFMiner 
(http://www.unixuser.org/~euske/python/pdfminer/) and 
then manually review the result for errors. This strategy is 
not scalable, but a team with access to an advanced optical 
character recognition tool might be able to automatically 
add markup to research texts, which should at least match 

Figure 4: The Watson UI's response. The answer in which 
Watson has the most confidence, which is not topical in this 

case, is displayed first. 
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Watson’s performance on the similarly encoded Wikipedia 

HTML. 
We were entirely thwarted by information encoded in 

graphs and figures, which Watson had no way to compre-
hend. These images were both common and critical to un-
derstanding the core findings in nearly every topical re-
search paper. 

Best Practices 
Given our experience with Watson, it seems wise to seed 
the system with a large and diverse corpus of structured 
and semi-structured documents in a marked-up format that 
supports Watson’s chunking strategy. The most obvious 

source for pre-formatted documents is Wikipedia. By ex-
tracting the HTML source of relevant Wikipedia pages, we 
achieved a significant jump in performance. Other docu-
ment types—such as .pdf and .doc files—should be en-
riched to delineate sub-sections. Watson often returned 
sub-documents that were too large to be useful, so some 
automated means of chunking the already-structured Wik-
ipedia input might further improve Watson’s output. 

When training Watson, question-answer pairs should be 
chosen carefully. Watson seems to benefit from training 
examples that cover a breadth of topics both within and 
around the target domain. Watson also seems to benefit 
from “bridge” questions, which link the responsive text 
from existing questions to each other. With these links 
established in its corpus, Watson can more easily locate 
similar questions when faced with a previously unseen 
query. Depending on how thoroughly an instance has been 
trained, Watson can be unexpectedly sensitive to the pres-
ence of keywords in a query string or certain styles of 
grammatical construction. Users who experiment with 
synonyms for potential keywords and variations in query 
grammar are likely to receive greater precision and recall. 

The Remaining Five Projects 
As previously mentioned, there were 6 team projects in the 
Georgia Tech Computational Creativity class in Spring 
2015.  We have just described the Erasmus project in de-
tail.  Now we briefly summarize the remaining 5 projects.  
We also highlight some best practices of using Watson 
identified by the 5 teams.  

Watson BioMaterial 
This project focused on materials in the context of biologi-
cally inspired design.  Specifically, this project is an An-
droid app that allows a human user to search for materials 
relevant to her.   This can be done in two ways.  (1) A user 
can submit an unstructured search query that allows the 
user to search for a material based on a feature. (2) A user 
can submit a structured search query that allows the user to 
search for materials based on two or more features and also 
based on a related material. 

Twenty Questions1 
This team developed an interactive website modeled after 
the game 20 Questions.  As in the 20 Questions game, the 
user’s interaction with the website is structured in rounds.  
For each round, the user asks questions to the system, and 
the system returns snippets from the top five articles re-
trieved by Watson as answers.  The user can then select the 
article that she finds most relevant and decide whether or 
not to continue.  If the user decides to continue, the system 
will then suggest a set of keywords that the user can use for 
future searches.  Then another round starts, and so on.  The 
system leverages both the questions and its tracking of the 
context (such as user feedback about its responses) to drive 
the user towards a desirable document. 

Ask Jill 
This team made Jill, an interactive website that supports 
researchers conducting literature reviews.  A user can go to 
the Jill website and write her research paper within its in-
terface.  As she does so, she can highlight text and use that 
text as a query to Watson.  The site will return paper snip-
pets from relevant papers in Watson’s corpus.  The user 
can then select a retrieved paper to add to her research pa-
per. The Jill project builds on the Watson-powered retriev-
al by leveraging the site’s ongoing context with the user.  

Jill records both the queries and the results returned by 
Watson, and it allows a user to favorite retrieved papers.  
Both of these features allow the user to store and conven-
iently retrieve the context of his or her work. 

 

                                                 
1 We have simplified this project’s name. 

 
Figure 5: The concept neighborhood treemap, Erasmus’s initial 

response to a user question. 
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SustArch 
The SustArch project is both a research tool and a commu-
nity space for sustainable architecture, specifically as that 
field relates to biologically inspired designs for passive 
temperature control.  SustArch, an Android app, allows a 
user to research this topic using a Watson-powered search 
engine.  The authors describe an interesting hierarchical 
question-linking strategy that they used to train Watson, 
which they propose could allow Watson to potentially re-
turn multiple biological systems for a given high-level 
search. The team has also designed and mocked up a 
community space that they call the “Marketplace.”  In the 

Marketplace, a user would be able to browse, buy, sell and 
discuss designs created by herself or other users. 

Watsabi 
Although they started with biologically inspired design in 
mind, the Watsabi team wound up developing an interac-
tive website to help people answer agricultural questions.  
A human user can go to the site, ask a Watson-based en-
gine questions about agriculture, and the site will attempt 
to retrieve an answer.  Similar to Jill, the Watsabi site will 
also record these ongoing interactions and allow the user to 
identify meaningful responses.  If the Watson part of the 
site fails to retrieve a good enough answer, the user can 
then go to a forum where she can conduct question ask-
ing/answering with other users.  Alongside this, the Watsa-
bi team designed a way in which the forum aspect of their 
site could drive additional training of Watson.  If an an-
swer in the forum receives enough “upvotes,” it will auto-
matically be used to train Watson and be removed from the 
forum.  Unfortunately, the team was unable to implement 
this because we lacked access to a training API to Watson, 
but this design nevertheless addresses how one might sus-
tainably train Watson to support a user base. 

Best Practices 
Most of the final project reports from these five teams ex-
plicitly wrote a section on best practices for Watson.  Here, 
we highlight some of what was mentioned. 

(1) Well annotated (or structured) data—either the 
need for it or how time-consuming it is to produce—was a 
common topic among the projects.  In particular, the 
Watsabi team mentions exploring automation to address 
the time needed, and they suggest that their crowd-
sourcing approach may help overcome it. 

(2) Training Watson is another topic that appeared in 
more than one report.  As previously mentioned, the 
Watsabi team proposed a crowd-sourced approach to train-
ing.  The Watson BioMaterials team proposed a similar 
feedback loop, but there the app developers were in charge 
of improving the knowledgebase.  The Jill team proposes a 
strategy to training that we summarize here in three steps: 
(i) train Watson on all possible questions that the corpus 
papers can answer; (ii) train Watson on alternative versions 

of those questions; and (iii) if the first two steps prove in-
sufficient after testing, add additional papers to the corpus 
and train on those papers. 

Discussion and Conclusions  
The 6 projects on using Watson for supporting human-
computer co-creativity were quite diverse. While all 6 pro-
jects started with analyzing use cases in biologically in-
spired design, one (Watsabi) ended up with agriculture as 
the task domain. Within biologically inspired design, 2 
projects targeted specific domains (resilient materials for 
BioMaterials and built architecture for SustArch), while 
the other 3 were domain independent. While one project 
(Erasmus) integrated Watson with another cognitive tool 
called AlchemyAPI, another project (Twenty Questions) 
was inspired by a game. While all 6 projects supported 
human-computer interaction, 2 of the projects (Watsabi 
and SustArch) also explicitly supported human-human 
interaction. While all 6 projects were Internet-enabled ap-
plications, 2 (BioMaterials amd SustArch) were mobile 
apps running on the Android smart phone operating sys-
tem. The variety of these projects indicates both the range 
of potential applications of Watson as well as the range of 
opportunities available for using Watson as an educational 
tool. 
 A common theme that emerged from the 6 projects was 
the use of Watson as an intelligent research assistant for 
realizing human-computer co-creativity. While the original 
Jeopardy-playing Watson system answered a series of 
questions, the questions were largely independent of one 
another.  However, as scientists, we know that insight rare-
ly arises out of a single question or answer.  Instead, sci-
ence typically reaches deep insights only through sustained 
systematic research engaging a series of questions and an-
swers. The power of this research process depends on the 
quality of questions scientists generate in a given context 
and the insights the answers provide into the problems of 
interest. The two factors are highly related: the insightful-
ness of the answers depends in part on the quality of ques-
tions, and the quality of (subsequent) questions depends 
partly on the insights of the (preceding) answers. Thus, the 
issue in using Watson as an intelligent research assistant 
becomes how can we enable people to converse with Wat-
son to develop deep insights into a situation or a problem? 
This requires adding both semantic processing to Watson 
and context to the human interaction with it. The 6 projects 
explored different ways of adding context and semantics to 
user interactions with Watson.  
 This brings us to some of the limitations of Watson, and 
in particular to the limitations of the Watson Engagement 
Advisor. It is important to note that using Watson requires 
significant knowledge engineering. First, Watson needs to 
be seeded with natural language articles. Second, the natu-
ral language articles need to be well structured and/or an-
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notated by semantic tags. Third, a developer needs to train 
Watson, which consists of (a) developing a taxonomy of 
questions of potential interest and (b) pairing the best an-
swers to questions in the taxonomy.  While the students in 
the Computational Creativity class found these knowledge 
engineering tasks manageable, they were quite frustrated 
that while the Watson Engagement Advisor provided a 
“dashboard” to ask questions and get answers from Wat-
son, it did not provide any insights into the internal work-
ings of Watson behind the dashboard. This limited stu-
dents’ understanding and use of Watson. We recommend 

that IBM consider releasing a more transparent and acces-
sible version of Watson for education. On the other hand, 
most students in the class also found working with Watson 
a unique learning experience that was simultaneously mo-
tivating and engaging, productive and creative, and suc-
cessful and satisfying.  
 While in this experiment we used Watson as an intelli-
gent research assistant to support teaching and learning 
about biologically inspired design and computational crea-
tivity, we believe that Watson can be used in a large num-
ber of educational settings. Wolloski (2014) and Zadrozny 
et al. (2015) describe two other experiments with using 
Watson in a classroom. We are presently exploring the use 
of Watson as a cognitive system for answering frequently 
asked questions in an online class. Goel, the first author of 
this paper, teaches an online course CS 7637 Knowledge-
Based AI: Cognitive Systems (KBAI for short; Goel & 
Joyner 2015) as part of Georgia Tech’s Online MS in CS 

program (http://www.omscs.gatech.edu/). The online 
course uses Piazza (https://piazza.com) as the forum for 
online class discussions. The classroom discussions on the 
Piazza forum in the KBAI course tend to be both extensive 
and intensive, attracting about ~6950 and ~11,000 messag-
es from ~170 and ~240 students in the Fall 2014 and the 
Spring 2015 classes, respectively. We believe that the large 
numbers of messages in the discussion forums are indica-
tive of the strong motivation and deep engagement of the 
students in the KBAI classes. Nevertheless, these large 
numbers also make for significant additional work for the 
teaching team that needs to monitor all messages and an-
swer a good subset of them. Thus, using the questions and 
answers from the Fall 2014 and Spring 2015 KBAI classes, 
we are developing a new Watson-powered technology to 
automatically answer frequently asked questions in future 
offerings of the online KBAI class. 
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