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Abstract
In this paper, we present the conceptual model of a real-
world application of Markov Decision Processes to dam
management. The idea is to demonstrate that it is possi-
ble to efficiently automate the construction of operation
policies by modelling the problem as a sequential deci-
sion problem that can be easily solved using stochastic
dynamic programming. We will explain the problem do-
main and provide an analysis of the resulting value and
policy functions. We will also present a useful discus-
sion about the issues that will appear when the concep-
tual model to be extended into a real-world application.

1 Introduction
The construction of operation policies for dam management
is a complex and time-consuming task that requires multi-
disciplinary expert knowledge. Usually, a group conformed
of specialists such as meteorologists, hydrologists, civil en-
gineers, and others are encouraged of performing this task.
However, one of the main challenges is how to represent the
uncertainty of the rain behavior to change the water level of
the big storage container and the significance of keeping the
dam safe.

A reservoir used solely for hydropower or water supply
is better able to meet its objectives when it is full of water,
rather than when it is empty. On the other hand, a reservoir
used solely for downstream flood control is best left empty,
until the flood comes of course. A single reservoir serving
all three purposes introduces conflicts over how much water
to store in it and how it should be operated. In basins where
diversion demands exceed the available supplies, conflicts
will exist over water allocations. Finding the best way to
manage, if not resolve, these conflicts that occur over time
and space are other reasons for planning.

In general, water resources planning and management ac-
tivities are usually motivated by the realization that there are
both problems to solve and opportunities to obtain increased
benefits from the use of water and related land resources.
However, the uncertain and intermittent nature of this re-
sources make them hard to solve.

Among the most traditional techniques to deal with a
planning and decision making problems under uncertainty
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the decision trees approach (Quinlan 1986) can be found.
A decision tree represents a problem in such a way that all
the options and consequences can be reviewed. They allow
to quantify the costs of all possible results before making a
decision. They also quantify the probability of occurrence
of each event. The problem with this technique is that it
only can be applicable when the number of actions is small
and not all combinations of them are not possible. Other ap-
proaches such as influence diagrams or decision networks
(Howard and Matheson 1984; Pearl 1988) allow represent-
ing a situation with many variables involved, identifying the
source of the information required to make a decision, and
modelling dynamic decisions in time. A limitation with this
technique is that it exploits spatial and temporally as the
problem grows up. The approaches based on classical plan-
ners like DRIPS (Haddawy and Suwandy 1994), WEAVER
(Veloso et al. 1995) or MAXPLAN (Majercik and Littman
1998) introduce a non-deterministic representation of ac-
tions, represent conditional planning to estimate the maxi-
mum utility of a plan, explicitly represent exogenous events,
or profit the main concepts under decision-theory and con-
straint logic programming. The problem with this techniques
is that given that each planner solves different parts of the
planning problem and that each one visualizes the problem
from a different perspective, their integration results hard to
implement.

Due to its compactness, ability to exploit the domain
structure, and feasibility to integrate the features of other
logic-based planners, the factored Markov Decision Pro-
cesses (MDP) approach (Boutilier, Dean, and Hanks 1999)
is used in this work. This approach introduces a series of
methods under the concept of intentional (or factored) rep-
resentations through which a combinational problem can
be solved to make tractable a planning under uncertainty
problem computationally speaking. Another feature is that
it concentrates the main features of other planners in just
one. Some related work to deal with a water resources man-
agement and planning problems be found in (Feinberg and
Shwartz 2002; Loucks and van Beek 2005).

This paper is organized as follows: Section 2 presents
a formalization of a simplified dam management problem.
Section 3 provides a brief background about factored MDPs.
Section 4 formalizes the dam problem in terms of a sequen-
tial decision problem represented as a factored MDP. Sec-
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Figure 1: Simplified hydroelectric system.

tion 5 provides an analysis of the resulting value and policy
functions for to test scenarios. Finally, conclusion and future
directions are established in section 6.

2 Problem domain
Consider the problem of creating the best operation policies
for the hydroelectric system described in Figure 1.

The system consists of: a reservoir; an inflow conduit, reg-
ulated by V0, which can either be a river or a spillway from
another dam; and two spillways for outflow: the first pen-
stock, V1, which is connected to the turbine and thus gen-
erates electricity, and the second penstock, V2, allowing di-
rect water evacuation without electricity generation. In this
way the reservoir has two inflow sources coming either from
the inflow conduit or the rainfall and two outflow sources
namely the two spillways. We quantize all flows to a unit of
flow, L, and consider them as multiples of this unit. We con-
sider the four reservoir levels MinOperL, MaxOperL, Max-
ExtL and Top and consider the transition from one level to
the other above the bottom of the reservoir.

The unit L is the required amount of displaced water re-
quired to move from one level in the reservoir to another one
and it is defined by

L =
Q

S
∆t , (1)

where Q = [m3/s] is a unit of flow, S = [m2] is the surface
of the reservoir and ∆t = [s] is a unit of time. Therefore the
rainfall, LL, and the inflow and outflows are multiples of L,

LL = nLLL , (2)
Qi = niL , (3)

where the subindex i = 0, 1, 2 and Q0 is the inflow at V0
and Q1 and Q2 are the outflows at V1 and V2 and nLL, ni ∈
(0, N). Given this, we classify the rainfall as follows

LL =

{ No rain; LL = 0 ,
Moderate rain; LL = L ,

Heavy rain; LL ≥ L .
(4)

The aim of the optimization process is to control V0, V1
and V2 such that the water volume in the reservoir is as much
as possible in the optimum level, namely the MaxOperL
level, given the rainfall conditions. This optimization pro-
cess creates the optimal operation conditions of the dam and

becomes a decision maker depending on the meteorological
and hydrological conditions of the site.

With the idea of having four interconnected dams, now
the system is modeled by the interconnection of the previous
set-up and three more copies as shown in Figure 2.

This process is more complex since the decision maker
takes into account the inflows and outflows of each dam, the
rainfall conditions, which may be different from one dam to
another because they are located at different sites, in addition
to keep consulting the operation policies of each of them to
maintain the four dams as close as possible to the MaxOperL
levels.

3 Factored Markov decision processes
A Markov decision process (MDP) (Puterman 1994) mod-
els a sequential decision problem, in which a system evolves
over time and is controlled by an agent. At discrete time in-
tervals the agent observes the state of the system and chooses
an action. The system dynamics are governed by a proba-
bilistic transition function Φ that maps states S and actions
A (both at time t) to new states S’ (at time t + 1). At each
time, an agent receives a scalar reward signalR that depends
on the current state s and the applied action a. The perfor-
mance criterion that the agent should maximize considers
the discounted sum of expected future rewards, or value V :
E[

∑∞
t=0 γ

tR(st)], where 0 ≤ γ < 1 is a discount rate. The
main problem is to find a control strategy or policy π that
maximizes the expected reward V over time.

For the discounted infinite-horizon case with any given
discount factor γ, there is a policy π∗ that is optimal re-
gardless of the starting state and that satisfies the Bellman
equation (Bellman 1957):

V ∗(s) = maxa{R(s, a) + γ
∑
s∈S

Φ(a, s, s′)V ∗(s′)} (5)

Two methods for solving this equation and finding an
optimal policy for an MDP are: (a) dynamic program-
ming (Puterman 1994) and (b) linear programming.

In a factored MDP, the set of states is described via a set of
random variables S = {X1, ..., Xn}, where each Xi takes on
values in some finite domain Dom(Xi). A state x defines a
value xi ∈ Dom(Xi) for each variableXi. Thus, as the set of
states S = Dom(Xi) is exponentially large, it results imprac-
tical to represent the transition model explicitly as matrices.
Fortunately, the framework of dynamic Bayesian networks
(DBN) (Dean and Kanazawa 1989; Darwiche and M. 1994)
gives us the tools to describe the transition model concisely.
In these representations, the post-action nodes (at the time
t+1) contain smaller matrices with the probabilities of their
values given their parents’ values under the effects of an ac-
tion. For a more detailed description of factored MDPs see
(Boutilier, Dean, and Hanks 1999).

4 Factored MDP Problem specification
The MDP problem specification consists in establishing the
set of states, set of actions, immediate reward function,
and an state transition function. A simplified space state
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Figure 2: Multiple dam system.

is composed of the possible values for the variables rain
intensity (Rain) and dam level (Level). The variable Rain
can take three different nominal values: Null, Moderate
and Intense, and Level can take eight values MinOperL1,
MinOperL2, MaxOperL1, MaxOperL2, MaxExtL1, Max-
ExtL2, Top1 and Top2. As a consequence, the state space
dimension will be 24 (31 * 81 ) with the values combination
shown in Table 1.

The possible actions are given in terms of the operations
permitted on the control elements (valves or gates) V0, V1
and V2. V0 is the inflow conduit valve, V1 is the spillway
to the hydraulic turbine, and V2 is the direct evacuation gate
or turbine bypass valve (see section 2 for details.). For this
simple example, the actions could be close or open a con-
trol element. The possible actions combination are shown in
Table 2.

In order to set a reward function for this problem, con-
sider that keeping a dam level of MaxOperL1 or MaxOp-
erL2 represents 100 economic units (best case). If the level
is MaxExtL1 or MaxExtL2 the immediate reward value is
-0 (irrelevant), if the level is Top1 or Top2 the reward value
is -100 (worst case), and finally if the level is MinOperL the
reward received is -50 (bad). In general terms, the dam lev-
els around the MaxOperL value are awared while the levels
nearby the top limits are penalized significantly. Notice that
the reward rate is independent of the rainfall intensity. The
decision tree of Figure 3 shows graphically the reward dis-
tribution as a function of the dam levels.

The transition model is represented using a two steps dy-
namic bayesian network for each action. Figure 4 shows the
action A1 in three different scenarios. In all three scanarios
the level of the dam is established in the MaxOperL level
(red mark on interval 3-4). In the left case, Rain is instan-
tiated in Null value (blue mark in interval 1). In this sce-
nario, the level of tha dam has no change. Level 1 is main-
tained in interval 3-4 (orange mark). In the center scenario,
Rain is Moderate (interval 1-2) and the dam level incre-

ments to reach interval 4-5 with 80% probability. Finally, in
the rigth scenario, the Rain is intense (interval 2-3) and the
dam level is incremented to interval 5-6 with 80% probabil-
ity. The model and the inferences are visualized using the
Hugin package (Andersen et al. 1989).

5 Experimental results
Given the reward and transition functions, we solved the fac-
tored MDP to obtain the policy and expected utility func-
tions. As factored MDP solver we used the SPI ( Planning
under Uncertainty System in spanish) tool which managed
to estimate 14 different values with a value iteration im-
plementation. The minimum value obtained for this MDP
model was 136.5961 and the maximum value was 771.2321.
These values are represented with labels and colors in Fig-
ure 5 (left). The utility values for each state are shaded with
light green color when the value is optimal and with darker
colors as the value decreases. In the same figure, we show
the resulting policy (recommended action) using labels with
the action id. In all cases we used a discount value=1.

For example, the effect of the action A1, framed with red
in Figure 5 (left) and represented by the symbol ⊕ (pointed
with a red asterisk) in Figure 5 (right), means that the policy
effect on the level is null due that the recommended action
will keep the level. This is because the rain has no influence
on the system. In the case of having a low level of the dam,
independently of the rain condition, the policy function will
recommend action A5 with the effect of increasing the level
↑. In this case, the influence of the rain could increase the
level in one step or two depending on the rain intensity. In
the opposite case when the dam has a high level the action
effect of A4 will decrease ↓↓ the level of the dam according
to the rain intensity. The policy effects on the dam level are
shown in table 3.

In order to show the system behavior, we followed the rec-
ommended actions from an random initial state until achiev-
ing the goal state under two different scenarios: 1-dam pro-
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Table 1: State space for a single-dam system. The description is in terms of the values for the Level and Rain variables.

State Description State Description State Description
ID ID ID
1 MinOperL1, Null 9 MinOperL1, Moderate 17 MinOperL1, Intense
2 MinOperL2, Null 10 MinOperL2, Moderate 18 MinOperL2, Intense
3 MaxOperL1, Null 11 MaxOperL1, Moderate 19 MaxOperL1, Intense
4 MaxOperL2, Null 12 MaxOperL2, Moderate 20 MaxOperL2, Intense
5 MaxExtL1, Null 13 MaxExtL1, Moderate 21 MaxExtL1, Intense
6 MaxExtL2, Null 14 MaxExtL2, Moderate 22 MaxExtL2, Intense
7 Top1, Null 15 Top1, Moderate 23 Top1, Intense
8 Top2, Null 16 Top2, Moderate 24 Top2, Intense

Figure 3: Reward function.

Table 2: Action space. The recommended actions are open
or close the valves V0, V1 or V2.

Action V0 V1 V2
ID
A1 Close Valve Close Valve Close Valve
A2 Close Valve Close Valve Open Valve
A3 Close Valve Open Valve Close Valve
A4 Close Valve Open Valve Open Valve
A5 Open Valve Close Valve Close Valve
A6 Open Valve Close Valve Open Valve
A7 Open Valve Open Valve Close Valve
A8 Open Valve Open Valve Open Valve

cess and 4-dam process. In this demonstration we obtained
each next state from the transition state function with the
maximum probability of occurrence.

In the first case, one dam was set up under the mini-
mum operation level (level=MinOperL) and with no rain
(rain=Null). The policy was applied for a time horizon of
twenty steps to observe the utility trend through the states
transited. Figure 6 (up) shows how the dam starts with a
minimum operation level with an expected utility=427.68
units, in the next step the system reaches a state with util-
ity=588.30 units, and in a third step it reaches the maximum
utility value =771.23 units.

In a second case, we initialized multiple dams at the con-
ditions shown in Table 4, the algorithm is executed to check
the optimization twenty executions.

As shown in Figure 6 (down) the Dam1 (blue line), which
started with a low level, reached the optimum value in 3
steps. The Dam2 (green line) started in a goal state (optimal
value) and remains. The Dam3 (red line), which started with

Figure 4: Transition model for action A1.

Table 3: Policy effects on the dam level according to the rain
condition.

ID Rain = Null Rain = moderate Rain = intense
A1 ⊕ ↑ ↑↑
A2 ↓↓ ↓ ⊕
A3 ↓ ⊕ ↑
A4 ↓↓↓ ↓↓ ↓
A5 ↑ ↑↑ ↑↑↑
A6 ↓ ⊕ ↑
A7 ⊕ ↑ ↑↑
A8 ↓↓ ↓ ⊕

max extraordinary level , and it achieves the maximum util-
ity in 2 state transitions. Finally, the Dam4 (light blue line)
that was initialized with a high level got its optimal value in
3 steps.

6 Discussion and future work
In this paper, we showed the conceptual model of a real-
world application of Markov Decision Processes to dam
management. The idea was to demonstrate that it is possible
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Figure 5: (left) Value and utility functions . Dark colors rep-
resent low expected utility values and light colors represent
high utility values. (right) Effects of the policy on the dam
level at different rain conditions. Refer table 3 for symbols
interpretation.

Table 4: Initial states and expected utility values for a multi-
ple dam system. The states variables are Level and Rain.

Dam Level Rain Utility
1 MinOperL1 Null 427.68
2 MaxOperL2 Moderate 771.23
3 MinOperL2 Intense 621.23
4 MaxExtL2 Intense 542.20

to efficiently automate the construction of operation policies
by modelling the problem as a sequential decision problem
that can be easily solved using stochastic dynamic program-
ming. We provided an analysis of the resulting value and
policy functions in a conceptual hydroelectric process and
showed how a single-dam system or a multiple-dam system
can easily achieve an optimal operation state.

Due that this is a demonstration of the feasibility to use
the framework of factored MDPs to solve problems in a hy-
droelectric domain and that several assumptions were made,
there are still many challenges to face, particularly when the
problem grows to a real-world application. Some open ques-
tions that could lead to new directions towards the solution
of the water planning and management problems stated here
are:

• How useful could result the use of problem abstractions
or domain transforms in combination with the use of com-
pact representations from the AI community?

• How to optimize jointly a multiple-dam system without
losing compactness in the representation (remind that here
we have solved four dams in an isolated way).

• Would it be possible to jointly optimize a set of n dams

Figure 6: Utility plot. (up) Utility for a single-dam system.
(down) Utility for multiple dams

using local optimizations?

• Could reinforcement learning algorithms based on past
experiences improve the trade-off exploration vs exploita-
tion in this problem?

• What benefits can be obtained formulating this problem
in terms of a decentralized MDP?

We are currently involved in a project for the Grijalva
hydroelectric system in Mexico where we have started fac-
ing these and other challenges. Answering these questions
would help us give steps a-head towards a very efficient AI
approach to deal with water management problems and re-
lated domains.
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