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Abstract

This abstract is proposing a challenging problem: to in-
fer a human’s mental state – intent and belief – from
an observed RGBD video for human-robot interaction.
The task is to integrate symbolic reasoning, a field well-
studied within A.I. domains, with the uncertainty native
to computer vision strategies. Traditional A.I. strate-
gies for plan inference typically rely on first-order logic
and closed world assumptions which struggle to take
into account the inherent uncertainty of noisy observa-
tions within a scene. Computer vision relies on pattern-
recognition strategies that have difficulty accounting for
higher-level reasoning and abstract representation of
world knowledge. By combining these two approaches
in a principled way under a probabilistic programming
framework, we define new computer vision tasks such
as actor intent prediction and belief inference from an
observed video sequence. Through inferring a human’s
theory of mind, a robotic agent can automatically deter-
mine a human’s goals to collaborate with them.

Our work is largely motivated by the pioneering work
in Theory of Mind for a Humanoid Robot (Scassellati
2001) and a series of cognitive science studies by Baker
et al. (Baker, Tenenbaum, and Saxe 2006; Baker, Saxe,
and Tenenbaum 2009; Baker and Tenenbaum 2014) con-
cerning the Bayesian Theory of Mind (ToM), which sug-
gests an intentional agent’s behavior is based on the prin-
ciple of rationality: the expectation that agents will behave
rationally to efficiently achieve their goals given their be-
liefs about the world. Gergely et al. (Gergely et al. 1995;
Gergely, H., and Kirly 2002) showed that infants can infer
goals of varying complexity, again by interpreting an agent’s
behaviors as rational responses to environmental constraints.

Humans perform rational planning according to the
present context. There is a strong support for this interpre-
tation of causal inference being intimately related to how
humans infer goals and intentions (Baker and Tenenbaum
2014; Baker, Saxe, and Tenenbaum 2009; Baker, Tenen-
baum, and Saxe 2006). Inverse planning relies on the “prin-
ciple of rationality” to make claims about an intentional
agent’s motions and actions: if one assumes that all actions
are made with the goal of efficiently completing a goal, then

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

it is possible to infer that goal by observing the actions. De-
velopmental psychology studies show pre-verbal infants are
able to discern rational plans from unrelated sequences of
actions (Gergely et al. 1995) and other kinematic properties
of human actions (Gergely, H., and Kirly 2002).

Understanding scenes and events is not a simple classifi-
cation problem. As seen in several data sets (Schuldt, Laptev,
and Caputo 2004; Laptev et al. 2008), action understanding
algorithms in the field of computer vision have historically
been formulated as discriminative learning problems. How-
ever, these data-driven algorithms only work for specific ac-
tion categories with explicit visual patterns. We argue that
actions are fundamentally interventions or responses to a dy-
namic world. As suggested by Pearl (Pearl 2009), agency
and action may be intrinsically different from the underly-
ing assumptions of classification at the philosophical level;
a tree stump can become a chair if you sit on it. Action and
agency in many cases “change” the world, and computer vi-
sion and reasoning systems can potentially benefit greatly
by incorporating additional knowledge from rational plan-
ning and other traditional A.I. procedures.

In this abstract, we consider stochastic inverse action
planners as generative probabilistic programs (Goodman et
al. 2008; Mansinghka et al. 2013) following the generative
thinking of cognitive models (Goodman and Tenenbaum ;
Tenenbaum et al. 2011). By applying these methods to
highly uncertain computer vision tasks we hope to under-
stand scenes and events in a more holistic way than has pre-
viously been explored.

Ultimately this improved understanding is highly useful
for building interactive robotics systems capable of inter-
acting with humans on an intentional level. For example, a
robot would be able to infer that a human’s goal is to move
a heavy object. The robot can then provide assistance by
pulling on the object from the other side.

Problem Overview
As illustrated in Fig. 1, an actor’s belief about a scene is rep-
resented by a mental structure that tracks the location and
status of objects. We define the physical layout of a scene
as a Spatial Parse Tree (SPT), which describes the beliefs of
an agent within the scene. The SPT is a spatial organization
of the scene; for example, if a cup node is a child of a ta-
ble node, then the cup is physically supported by the table.
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Figure 1: (a) An illustration of the hierarchal theory of mind (Hi-TOM). The theory of mind, boxed in magenta, predicts
plans and synthesizes motion trajectories (dashed lines). The proposed algorithm evaluates the likelihood of the predicted
trajectory by comparing predicted motion trajectories with partially observed trajectories (solid lines). (b) Shows how the
hierarchical structure of intent is represented by a temporal parse tree. An intent “drink water” is stochastically factorized into
smaller plans by checking preconditions of the world as it progress through time. The terminal nodes of parse tree is called
operations, which result in the observable changes to the world state as shown in (c). As time progresses, the spatial parse
tree (i.e. actor’s beliefs) evolves, informing future decision-making in (b). As a result, the predicted plan encoded by (b) is
walkto(mug) → grasp(mug) → walkto(dispenser) → fetch(water) → drink(water), resulting in the transferring the mug from
the table to the hand at t2 and the filling of the mug with water at t3.

This semantic graph structure can be used to answer rela-
tional queries about the state of the scene, such as whether
or not a mug is reachable (as demonstrated in Fig.1(a)). The
observer is uncertain about the precise state of the scene due
to the inaccuracies in computer vision models, necessitating
the usage of a probabilistic model to describe the state of
the scene. For example the status of a cup has water, could
be unknown to the observer. A probabilistic program would
model this as a flip function with stochastic memoization
to define the actor’s belief.

A similar hierarchical representation, Temporal Parse
Tree (TPS), is used to model the actor’s intent as shown
in Fig.1(b). The temporal parse tree describes a hierarchi-
cal decomposition of events or actions that an actor takes
in order to accomplish a goal of drink water. This decom-
position process is described by a hierarchical task network
(HTN) (Erol, Hendler, and Nau 1994; Nguyen et al. 2007)
in this work, which specifies a network of preconditions that
must be satisfied in order for an action to be made. This task
network is assumed to be known to the robot a-priori, but
Gergeley et. al. suggest a similar model of causal relations
is learned by humans (Gergely et al. 1995). Actions are con-
structed out of composable probabilistic programs, as seen
in Fig. 1(b). Actions are thus probabilistic programs: given
an uncertain representation of the scene from a computer vi-
sion algorithm, the program must determine the action that
must be used in order to gain the desired effect.

The two main benefits of probabilistic programs are (a)

the ability to cleanly separate one’s model from one’s infer-
ence strategy and (b) the ability to represent arbitrarily com-
plex random variables that can then be inferred by an inde-
pendent model. These two features are crucial for modeling
and inferring plans, which are extremely complex and rely
on a variety of strategies. By separating out the inference
strategies, it is significantly easier to adapt to new scenarios
in which the previous strategy may no longer work. By be-
ing able to represent complex plans succinctly, it makes it
easier to express and infer plans from observations.

The problem formulation is thus to infer one aspect of the
theory of mind given the other two. For example, given the
beliefs and actions of an actor, it is possible to determine that
actor’s intent under the rational theory of mind; probabilistic
programs act as a bridge between the uncertain domain of
computer vision and the logical reasoning domain of A.I.
planners.

In order to reverse-engineer people’ rational planning, we
formulate action interpretation tasks in terms of sampling
and prediction (approximately) from the posterior distribu-
tion:

P (Y |Xobs) ∝ P (Y )δf(Y,B)(Xpred)P (Xobs|Xpred) (1)

In our model, we consider an actor’s beliefs and intentions
as generative probabilistic programs (Goodman et al. 2008;
Mansinghka et al. 2013) following the generative thinking of
cognitive models (Goodman and Tenenbaum ; Tenenbaum et
al. 2011).
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Hierarchical mental states Y (namely, a parse tree) are
defined on the grammar P (Y ). The grammar recursively de-
composes the parse tree into goals and sub-goals. Sampling
methods (such as rejection sampling) produce a sequence of
actions that satisfy the constraints specified in the grammar.

The relational planner (for example, an HTN) simulates
rational behaviors f(Y,B) → Xpred. The variable B repre-
sent the background collision map.

An approximate planner (based on the RRT* algorithm
(Karaman et al. 2011)) is used to generate approximate ra-
tional plans in a complex environment. These two programs
span the probabilistic space of all the possible actions.

A predicted mental status Y sampled from the prob-
lem state according to P (Y ) could be translated into a se-
quence of actions Xpred by an HTN planner. This would
be extremely unlikely to exactly match the observed behav-
ior Xons. Instead of requiring exact matches, our formula-
tion relaxes the matching problem by a stochastic likelihood
P (Xobs|Xpred). We implement this by applying a Dynamic
Time Warping (DTW) algorithm (Vintsyuk 1968), which
measures the similarity between two temporal sequences
which may vary in time or speed. The DTW algorithm out-
puts the shortest mean distance as well as matching corre-
spondences between two matched sequences. The shortest
mean distance is fed to the stochastic likelihood function in
the form of a simple Gaussian function. The Gaussian vari-
ance controls the tolerance of the model. The output match-
ing correspondences provide the detailed parsing for each
frame of the observed sequence.

Consequences and Future Research
Modeling the theory of mind is inherently highly cross-
disciplinary, incorporating many aspects of computer vision,
planning, first order logic, linguistics, and many other fields.
The consequences of fully inferring the theory of mind of
an actor in a scene are immense: once one can reason about
an actor, it will be possible to understand people’s needs and
motivation, and thus assist human via natural interaction.

Many challenges must be met in order for this model to
succeed. While probabilistic programs offer great flexibility
in the representation of events, they lack the academic rigor
of more well-understood methods like propositional logic
and context-free grammars. This makes it difficult to make
claims about whether or not an inference algorithm is opti-
mal or correct.

The scope of the problem is potentially vast, making effi-
cient inference important. As the number of plans grows, the
number of potential explanations for a sequence of actions
grows quickly, especially if the actor is executing multiple
plans concurrently. Inferring interleaved plans and higher-
order plans remains an untouched problem with far-reaching
consequences for linguistics and computer vision.

Acknowledgement
This work is supported by grants from ONR MURI
N000141010933 and DARPA N66001-15-C-4035. Tao Gao
is supported by the Center for Brains, Minds and Machines
(CBMM), funded by NSF STC award CCF-1231216.

References
Baker, C., and Tenenbaum, J. 2014. Modeling human plan
recognition using bayesian theory of mind. In Sukthankar,
G.; Goldman, R.; Geib, C.; Pynadath, D.; and Bui, H., eds.,
Plan, Activity, and Intent Recognition. Elsevier.
Baker, C.; Saxe, R.; and Tenenbaum, J. 2009. Action under-
standing as inverse planning. Cognition. 2009 Dec 113:329–
349.
Baker, C.; Tenenbaum, J.; and Saxe, R. 2006. Bayesian
models of human action understanding. In NIPS, volume 18,
99–106.
Erol, K.; Hendler, J.; and Nau, D. 1994. Htn planning: Com-
plexity and expressivity. In AAAI.
Gergely, G.; Nfidasdy, Z.; Csibra, G.; and Br, S. 1995. Tak-
ing the intentional stance at 12 months of age. Cognition
56:165–193.
Gergely, G.; H., B.; and Kirly, I. 2002. Rational imitation in
preverbal infants. Nature 415:755.
Goodman, N. D., and Tenenbaum, J. B. Probabilistic Mod-
els of Cognition (electronic).
Goodman, N.; Mansinghka, V.; Roy, D.; Bonawitz, K.; and
Tenenbaum, J. 2008. Church: A language for generative
models. In UAI, 220–229.
Karaman, S.; Walter, M.; Perez, A.; Frazzoli, E.; and Teller,
S. 2011. Real-time motion planning using the RRT*. In
ICRA.
Laptev, I.; Marszalek, M.; Schmid, C.; and Rozenfeld, B.
2008. Learning realistic human actions from movies. In
CVPR.
Mansinghka, V.; Kulkarni, T.; Perov, Y.; and Tenenbaum,
J. 2013. Approximate bayesian image interpretation using
generative probabilistic graphics programs. In NIPS.
Nguyen, N. T.; Grzech, A.; Howlett, R.; and Jain, L. 2007.
Expressivity of strips-like and htn-like planning. In KES-
AMSTA, volume 4496 of Lecture Notes in Computer Sci-
ence, 121–130. Springer.
Pearl, J. 2009. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition.
Scassellati, B. M. 2001. Foundations for a Theory of Mind
for a Humanoid Robot. Ph.D. Dissertation, Massachusetts
Institute of Technology.
Schuldt, C.; Laptev, I.; and Caputo, B. 2004. Recognizing
human actions: A local svm approach. In ICPR.
Tenenbaum, J.; Kemp, C.; Griffiths, T. L.; and Goodman,
N. 2011. How to grow a mind: Statistics, structure, and
abstraction. Science 331 (6022):1279–1285.
Vintsyuk, T. K. 1968. Speech discrimination by dynamic
programming. Cybernetics 4:52–57.

160




