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Abstract

Issuing and following instructions is a common task in
many forms of both human-human and human-robot
collaboration. With two human participants, the accu-
racy of instruction following increases if the collabora-
tors can monitor the state of their partners and respond
to them through conversation (Clark and Krych 2004),
a process we call social feedback. Despite this benefit in
human-human interaction, current human-robot collab-
oration systems process instructions in non-incremental
batches, which can achieve good accuracy but does
not allow for reactive feedback (Tellex et al. 2011;
Matuszek et al. 2012; Tellex et al. 2012; Misra et al.
2014). In this paper, we show that giving a robot the
ability to ask the user questions results in responsive
conversations and allows the robot to quickly determine
the object that the user desires. This social feedback
loop between person and robot allows a person to cre-
ate an internal model for the robot’s mental state and
adapt their own behavior to better inform the robot. To
close the human-robot feedback loop, we employ a Par-
tially Observable Markov Decision Process (POMDP)
to produce a policy which will lead to the determina-
tion of the object in the shortest amount of time. To test
our approach, we perform user studies to measure our
robot’s ability to deliver common household items re-
quested by the participant. We compare delivery speed
and accuracy both with and without social feedback.

Introduction
When humans collaborate on a task—for example, repairing
a car, or cooking a meal—both participants continually sig-
nal back and forth, communicating their current understand-
ing of the task and the actions needed to achieve the goal.
Clark describes communication as a joint activity, similar to
playing a duet or performing a waltz (Clark 1996). In our
work, we call this back and forth signaling social feedback,
and the goal is to use social feedback to improve the speed
and accuracy of human-robot interactions.

Robotic research into establishing common ground is just
beginning, but has already shown promise. In (Chai et al.
2014), they developed a system to establish new names for
objects visible to the robot. (Williams 2015) describes an
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Figure 1: The human’s view when using our system to in-
teract with the robot. The user and the robot participate in
a conversation so that the robot can determine which of the
six objects the user desires. In counter-clockwise order the
objects are: the brown mug, the wooden bowl, the blue bowl,
the green spoon, the white spoon, and the white brush.

approach to understanding underlying semantics in human
dialog. There are natural areas for improvement since both
works rely on hand-coded rules or logical predicates, limit-
ing easy expansion to new domains.

We propose an approach that will estimate the human’s
state and choose actions in real time. Our system takes mul-
timodal observations as input, namely speech and gesture,
and responds with speech according to a policy generated by
solving a POMDP representation of the world. We use an ap-
proximate solving technique called Belief Sparse Sampling
(Kearns, Mansour, and Ng 2002). Performing inference is
expensive, so we must make optimizations to use the policy
in real time, both in the model structure and by caching the
policy with k-nearest neighbors (KNN).

Our research focuses on an important part of physical col-
laboration: object delivery. Object delivery is an essential ca-
pability for robots (Huang, Cakmak, and Mutlu 2015). Our
setup for object delivery is as follows: a human requests a
series of objects from the robot one at a time. The human
makes their request using speech and gesture (pointing). In
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previous work, the robot had only two actions, deliver the
object and wait. The robot collected information from the
human until its estimation of the desired object crossed a
threshold, then delivered the estimated object. This approach
was successful if the observations were unambiguous to the
robot, but if the robot was unsure, it was unable to commu-
nicate that fact to the human and could only wait passively
for more information. Our research provides a system that
not only interprets the speech and gesture of the human to
determine which object they desire, but also provides a flex-
ible, non-rule based approach to dynamically generate social
feedback.

Our model allows for incremental interpretation of speech
and gesture, as implemented in our prior work. However,
to circumvent practical issues in synchronizing human-robot
dialogue, the robot waits until the human has finished each
utterance before taking an action. Future work will focus
heavily on adjusting our approach to appropriately handle
barge-in by both human and robot.

To evaluate our proposed approach, we conducted a user
study where participants asked for objects from the robot.
We measured speed and accuracy and compared the differ-
ence between trials that use social feedback and trials that
do not.

Related Work
Work demonstrating the importance of social feedback in
human-human communication has been done in the field of
psycholinguistics. In (Clark and Krych 2004), one human
(labeled the builder) builds a Lego model according to in-
structions given by another human (labeled the director). In
the feedback-free trials, the director’s instructions were pre-
recorded, and the resulting models were very inaccurate (in
fact no model was completely correct). In the feedback tri-
als, errors were reduced by a factor of eight. Our goal is to
enable a robot to collaborate with a human in this way.

Other work with collaborative robots exists, for example,
(Foster et al. 2012) have done research with a bar-tending
robot. This robot follows a rule-based state estimator, and
delivers drinks from fixed positions behind the bar to mul-
tiple users based on their speech and torso position. We ex-
pand the scope of the problem: we do not use a rule-based
state planner, our items are not in fixed positions, and our
gesture model uses pointing instead of torso position.

In (Bohus and Horvitz 2014), a robotic building guide di-
rects guests to find specific rooms. Our project addresses
a similar domain, requiring the interpretation of users’ re-
quests, but differs in the task and the type of communication
necessary to accomplish that task.

Other work involving robotic object delivery also ex-
ists. Some approaches have no social feedback and will ei-
ther deliver the wrong item or do nothing if given a re-
quest it does not understand (Tellex et al. 2011; Matuszek
et al. 2012; Tellex et al. 2012; Misra et al. 2014). Language
only feedback models also exist (Chai et al. 2014; MacMa-
hon, Stankiewicz, and Kuipers 2006; Tellex et al. 2011;
Matuszek et al. 2012; Guadarrama et al. 2014; Hewlett,
Walsh, and Cohen 2011; Misra et al. 2014), and several

gesture only models (Waldherr, Romero, and Thrun 2000;
Marge et al. 2011).

(Matuszek et al. 2014) shows promising work in fusing
language and complex gesture to understand references to
multiple objects at once. We build off this work by including
social feedback.

In the field of computational linguistics, previous work
exists in resolving referring expressions incrementally, such
as (Schlangen, Baumann, and Atterer 2009; Kruijff et al.
2007; Gieselmann 2004). Other work in that community also
incorporates gesture, and/or eye gaze (Kennington, Kou-
sidis, and Schlangen 2013; Kennington, Dia, and Schlangen
2015), but the given work does not incrementally update
gesture along with speech. (Chai, Prasov, and Qu 2011) pro-
vides work towards resolving referring expressions in a dif-
ferent domain, but does not address the task of acting on the
results of these referring expressions. In (Kruijff, Brenner,
and Hawes 2008), they propose a system for planning to ask
for clarifications, which covers a wide scope of knowledge
failures. In this work, we are interested only in a small sub-
set of these clarifications, and address the problem of how
and when these clarifications should be used in a concrete
human-robot collaboration task.

POMDP approaches to dialog (Young et al. 2013) are
quite common, but treat dialog as a discrete, turn-taking in-
teraction. The Dialog State Tracking Challenge (Williams
et al. 2013) a notable driving force for computer dialog un-
derstanding, treats dialog in this turn-based way. Although
the behavior of our system resembles turn-taking, our model
treats dialogue as an incremental process and future imple-
mentations will make use of this.

Alternative approaches to POMDPs include cognitive ar-
chitecutres such as SOAR (Laird 2012) or DIARC (Scher-
merhorn et al. 2006). By taking a probabilistic approach, we
can seemlessly fuse information from multiple sources and
explicitly reason about the robot’s uncertainty when choos-
ing actions.

Technical Approach
The goal of our work is to enable the robot to correctly de-
termine which object the human desires from their speech
and gesture.

The robot might misinterpret a person’s speech and ges-
ture; to recover from these failures, the robot chooses speech
actions of its own, which change the human’s belief about
what the robot knows, which in turn shapes the user’s subse-
quent speech and gesture. In actuality, we do not know how
the robot’s actions affect the human’s belief or how the hu-
man’s belief affects their subsequent actions. However, if we
make certain assumptions about how the robot’s actions af-
fect what we observe from the human, we can formulate the
model as a POMDP.

POMDP Overview
To solve a POMDP, an agent must perform state-estimation
and policy generation. The state estimator calculates a be-
lief state, which is a probability density function (pdf) over
all possible states, and the policy generator chooses an ac-
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Variable Explanation

s = 〈O, ω〉 A single state, which is made up of the given tuple
O = {x1, ..., xD} Set of all objects

ω ∈ O Object desired by user
S = {s1 . . . sN} Set of all states

x = {name, vocab, position} An object, defined by a name, vocabulary, and position
a A possible robot action. Speech and picking

A = {a1 . . . ak} Set of all robot actions
T (s, a, st+1) = p(st+1|st, at) Transition function, probability of entering new state given current state and action

o = 〈l, g,O〉 A single observation, made up of observed language, gesture, and objects
Ω = {o1 . . . oM} Set of all possible observations

O(ot+1) = p(ot+1|st+1, at) Observation function, probability of an observation given the state and previous action
R(s, a) ∈ R Reward function
γ ∈ [0, 1] Discount factor, discounts future rewards

Table 1: POMDP Variables.

tion that maximizes the agents expected cumulative reward
according to a given reward function.

State Estimator The state estimator assumes an initial be-
lief, and uses Bayesian mathematics to update its belief over
time. In order to perform this update, the state estimator has
a model of how the true state emits observations and how
actions affect the state. These two models are called the ob-
servation function and the transition function.

Policy Generator The policy generator chooses a set of
actions that maximizes the expected value of its reward over
time. The reward for a state-action pair is given by a reward
function.

POMDP Definition
We define our POMDP by the tuple {S,A, T,R,Ω, O}.

• S is the set of states. In this problem, a state is a tuple
of two items 〈O, ω〉. O is the is the set of objects avail-
able for the robot to deliver. Each element x ∈ O is an
object with a name, unigram vocabulary, and position. An
example value O could be the set of objects {redBowl,
greenSpoon}. An example x ∈ O for a red bowl would be
(redBowl, {red, bowl, plastic}, (1.0, 2.0, 0.0)). The object
the human desires is denoted ω ∈ O. While O is consid-
ered a known variable, ω is hidden, making our POMDP
a Mixed Observability MDP (Ong et al. 2010)

• A is the set of actions. The robot can deliver an object, do
nothing, or ask a question about a property of the desired
object.

• T = p(st+1|st, at) is the transition function. It calculates
the probability of transitioning from the current state to
the next state given the current state and current action.
We make the assumption that the human participant does

not change the object they desire unless their object is suc-
cessfully delivered.

• R is the reward function. The reward function takes as
input a state and action, and gives a real-valued reward.
The reward for delivering the correct object is 10 whereas
delivering the incorrect object yields a penalty of−80 be-
cause it can have negative side effects and is time con-
suming. Doing nothing yields −1 as a penalty for time
passing. Talking yields −4 to penalize bothering the user.
These values were chosen empirically and have a natural
interpretation when considered relative to the penalty for
time passing.

• Ω is the set of possible observations, 〈l, g,O〉 ∈ Ω. l is the
human’s speech, g is the human’s gesture,O is as defined
above.

• O = p(ot+1|st+1, at) is the observation function which
describes how states emit language and gesture from the
human.

a

ω ω

o

a

ω

o

a

r r r

t = 0 t = 1 t = 2

Figure 2: Graphical model of proposed POMDP over three
timesteps. Gray nodes are observable.
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A concise list of the POMDP variables is shown in Ta-
ble 1.

Observation Function The observation function calcu-
lates the probability of an observation given the state and
previous action.

O(ot+1, st+1, at) = p(ot+1|st+1, at) (1)
We can expand Equation 1.

O(ot+1) = p(Ot+1, lt+1, gt+1|Ot+1, ωt+1, at) (2)

The set of objects on the table is only dependent on itself,
so we can now factor Equation 1 to separate O.

O(ot+1) = p(Ot+1|Ot+1)p(lt+1, gt+1|Ot+1, ωt+1, at)
(3)

In our problem we assume no error in observingO. There-
fore the first term is equal to one. We can simplify and re-
move it from the equation.

O(ot+1) = p(lt+1, gt+1|Ot+1, ωt+1, at) (4)
If we assume conditional independence of speech and

gesture, we can factor Equation 4 one step further. Condi-
tional independence in this case means that, conditioned on
the object that the user desires, the speech and gesture ob-
servations are independent of each other.

O(ot+1) = p(lt+1|Ot+1, ωt+1, at)p(gt+1|Ot+1, ωt+1, at)
(5)

It may seem inaccurate to assume speech and gesture
are conditionally independent, but empirically, we observe
that when the true state is known, language and gesture
are largely but not completely independent. This assumption
simplifies our model and allows us to separate the observa-
tion function into a language model and a gesture model.

Language model In the language model, we observe two
types of speech: General speech is interpreted according to
a unigram model, while yes/no responses are handled sepa-
rately.

For most speech input, we use a unigram model. For each
word in the observed speech, we calculate the probability
that, given the state, that word would have been used to de-
scribe the state. We assume here that O, the set of objects
available, does not affect which words the participant would
speak, though in practice, humans do tailor their speech in
response to different objects.

p(lt+1|Ot+1,ωt+1, at)

= p(lt+1|ωt+1, at)

= p(c|ωt+1, at)
∏

w∈lt+1

p(w|ωt+1, at)

Where p(c|ωt+1, at) describes the probability that the hu-
man chooses to communicate given the state and action. We
assume that this is independent of ω, and depends only on

the action; if the robot asks a question, the human is more
likely to respond:

p(c|at) =

0.8 if at is a question

0.2 otherwise
(6)

The probability of a particular word being used to de-
scribe a particular object is determined by consulting the
object’s vocabulary. Specifically,

p(w|ωt+1, at) =
Number of times w is used to describe ω

Total counts for words describing ω

If w is not part of the object’s vocabulary, we assign it a
small probability ε.

While a unigram model is rudimentary, it serves as a good
starting point for our work and produces adequately accurate
results. In the future, more sophisticated language models
will be considered.

The user may also say “yes” or “no” in response to a ques-
tion that the robot has asked, in which case we handle the ut-
terance differently. In the case where the robot has not asked
a question, the probability of the user answering “yes” or
“no” is assigned probability ε. If the robot has asked a ques-
tion,

p(lt+1 = “yes”|Ot+1, ωt+1, at)

= p(c|at)p(lt+1 = “yes”|ωt+1, at)

p(lt+1 = “yes”|ωt+1, at) =

1 if at.text ∈ ω.vocab

0 otherwise
(7)

p(lt+1 = “no”|Ot+1, ωt+1, at)

= p(c|at)p(lt+1 = “no”|ωt+1, at)

p(lt+1 = “no”|ωt+1, at) =

0 if at.text ∈ ω.vocab

1 otherwise
(8)

We assume that the probability the user says “yes” or “no”
is independent of O.

In addition, to account for the user not answering quickly
enough, the state includes the the last question asked by the
robot.

Gesture Model The gesture model operates on the vector
defined by the participant’s shoulder and hand, called vt. The
intersection of vt with the plane of the table is considered to
be the target of the pointing gesture, pt. We assume the par-
ticipant samples this point from a 2 dimensional Gaussian
distribution centered at the location of the object the partici-
pant is indicating, with a hand-chosen variance σ. Therefore,
the probability of a gesture given a state is as follows:
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p(gt+1|Ot+1,ωt+1, at) (9)

= p(gt+1|ωt+1) (10)
∝ N (µ = (ω.x, ω.y), σ)[(pt.x, pt.y)] (11)

Again we assume that the gesture the participant chooses
is independent of the other objects on the table and their
placement, though this is not the case in practice.

We also track an additional vector called ut,x defined by
the angle between the participant’s shoulder and an object
x ∈ O. For each x ∈ O, we calculate the angle between
vt and ut,x. If the smallest angle is over a certain threshold,
then no gesture was performed and the term is not factored
into the overall observation model.

Transition Function The transition function calculates
the probability of moving to a particular new state given the
current state and action.

T (st+1, st, at) = p(st+1|st, at) (12)

We substitute the corresponding variables into (12).

T (st+1) = p(Ot+1, ωt+1|Ot, ωt, at) (13)

The set of desired objects on the table and the desired
object only depend on themselves and the last action taken,
so we can factor (13).

T (st+1) = p(Ot+1|Ot, at)p(ωt+1|ωt, at) (14)

The two terms from (14) have simple stepwise functions
if at is not a pick action.

p(Ot+1|Ot, at) =

1 if Ot+1 = Ot

0 otherwise
(15)

p(ωt+1|ωt, at) =

1 if ωt+1 = ωt

0 otherwise
(16)

If at is a pick action, the transition model forO is defined
as follows:

p(Ot+1|Ot, at) =

1 if Ot+1 = Ot \ {at.object}

0 otherwise
(17)

If at is a pick action and the user’s desired object ω is
picked, ω transitions as follows.

p(ωt+1|ωt, at) =

0 if ωt+1 = ωt

1/|Ot+1| otherwise
(18)

Otherwise, it is the same as if some other action had been
taken.

Actions The robot must choose among the actions avail-
able to it. With social feedback enabled, these actions are:

• Pick up an object and deliver to the human

• Ask a question of the form “Would you like a 〈object
property〉 object?”

• Wait (do nothing)

With social feedback disabled as in the baseline, these ac-
tions are:

• Pick up an object and deliver it to the human

• Wait (do nothing)

Asking a question serves both as an information gathering
action (as it prompts the human to respond with additional
information) and also a means for the robot to express its un-
certainty about which object is desired. These questions di-
rectly mirror the unigram model of speech that we use to in-
terpret human language, i.e., each question asks about a one-
word property of the object, such as its color (e.g., blue), ma-
terial (e.g., wooden) , or noun description (e.g., cup). Asking
about a particular property allows the robot to reference all
objects with that property at the same time. An additional
benefit of using this simple question format is that if we as-
sume the human interprets speech with the same model as
the robot, its effect on its belief about the robot’s knowledge
is easy to predict. We will explore this in future work.

We also give the robot the action to do nothing for a given
timestep. This is important in preventing the robot from in-
undating the human with speech utterances.

Policy Generation
The optimal policy can be exactly calculated, but is in-
tractable due to the size of the state space. Fortunately, ap-
proximate solutions exist. Currently, a representation of this
POMDP has been specified with the Brown-UMBC Rein-
forcement Learning and Planning (BURLAP) library(Mac-
Glashan ), a learning and planning library that can solve
POMDPs. For a solver, we use Belief Sparse Sampling, a
finite horizon planning algorithm used on the POMDP’s be-
lief MDP that allows us to specify how deep to search and
the number of observations to sample at each timestep.

However, even using Belief Sparse Sampling, it was still
not fast enough to allow the robot to respond in real time. As
the number of objects grows, the number of states and the
number of actions needed to address those states grow. For
example, adding 1 additional object increases the number of
states by 1 but increases the number of actions from any-
where between 1 (1 additional pick action) to several dozen
(1 for each new unigram description of the object in its vo-
cabulary). Each of these contributes to the branching factor,
causing the the computation to quickly grow intractable even
with a limited search depth.

In big-O notation, the runtime of calculating the next de-
cision can be expressed as O((s ∗ a ∗ o)d), where s is the
number of states, a is the number of actions, o is the num-
ber of sampled observations, and d is the search depth. We
can rewrite a as a = s+ h ∗ s+ 1, because we have 1 pick
action per state, some constant number h property questions
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for each object, and one wait action. o and d are both chosen
as constants, which gives a big-O runtime of O((s2)d).

We combat this exponential growth by limiting the num-
ber of actions per object to 2 (which should be enough for
the robot to express which object it is referring to) as well
as condensing the pick actions into a single macro action.
This macro pick action allows the robot to pick the object
with the greatest belief, and saves it from considering pick
actions that are likely to be incorrect. Our new run time is
O((s ∗ a ∗ o)d) where a = 1 + 2s + 1 (1 macro pick ac-
tion, at most 2 question actions per state, and 1 wait action).
While the big-O runtime remains the same, the improvement
to constant factors is significant when adding new objects to
the domain.

Even with these measures to reduce the branching factor,
the system did not run fast enough for real time at the search
depth needed for meaningful decisions. In order to obtain
real time responses, we run a simulated environment of our
domain, with simulated object locations and simulated user
input. We cached the results of several thousand decisions
made by Belief Sparse Sampling, storing the belief state and
the action chosen. Then, at interaction time, we use these re-
sults to make a decision about which action to take. Specif-
ically, we perform a KNN classification where the feature
vector is composed of the belief values of the POMDP’s be-
lief state and the class label is the chosen action. At runtime,
we are given an input vector of the current belief state, which
we classify and then perform the action given by the class la-
bel. This allows for nearly instantaneous responses, enabling
us to make real time decisions.

Making these optimizations is not ideal. For example,
adding or changing the set of objects on the table requires
rebuilding the KNN cache. In the future we will likely move
to alternative POMDP solvers which should give better per-
formance.

Evaluation
We evaluated the POMDP with social feedback against a
baseline system which is unable to speak and only able to
listen. Each system was evaluated by six users. We report
four metrics: the number of picks that delivered the correct
object (picks correct), the number of total attempted picks,
the average time from the end of the first utterance refer-
ring to an object until the end of the delivery of that object
(EUED time), and the fractional amount of time spent deliv-
ering an incorrect object (IOD time).

User Study Protocol
Participants for this user study were acquired through con-
venience sampling by inviting volunteers from the Brown
University CIT building and the campus area surrounding it.
We gathered 6 participants. Each participant contributed two
trials, a baseline trial and a social feedback trial. During the
baseline trials, all feedback from the robot was excluded.
During the social feedback trials, the robot communicated
with the participants through voice and animated eye gaze
which indicated the directions of the objects. The order of
these two trials was randomly assigned to each participant.

The participants interacted with a modified Baxter robot
to perform a pick and place task with six everyday objects:
a brown mug, a wooden bowl, a blue bowl, a green spoon, a
white spoon, and a white brush. The six objects were placed
on a large table, behind which the robot was stationary. The
six objects and their starting locations stayed unchanged for
all participants.

At the beginning of each study, the user was given a
headset microphone, calibrated the Kinect, and faced Bax-
ter (Figure 1). The headset microphone left their arms free
to gesture. They were instructed to choose an object on
one side of the table and then to indicate the desired ob-
ject through a combination of pointing and natural language
instructions. They were told to continue indicating until the
desired object had been delivered. If the robot delivered an
incorrect object, the user continued interacting until the cor-
rect object was delivered. Next they were instructed to do
the same for an object on the other side of the table. Once
the second object was delivered, the user was finished with
the first half of the study.

Each participant first completed the above study with so-
cial feedback either disabled (baseline) or enabled. The par-
ticipants were then given a follow up survey to record their
subjective reactions towards the robot. The survey measured
the participants’ impressions on the robot concerning its
level of friendliness, reliability, capability, communication
skills and their perception of safety. After the survey, the
participant completed a second study with social feedback
either enabled or disabled, so that after the second study the
participant had completed the trial once with feedback on
and once with feedback off. Half the participants tried with
feedback first. After the second trial, the user was dismissed.
There were no trials where the first object delivery left no
objects on the opposite side.

We expect to continue the survey as part of ongoing re-
search to support our exploration of human-robot interac-
tion. The detailed results and analysis of this survey will be
included in our future studies.

Results
The results of our user studies are summarized in Table 2.
When using social feedback we observed a four second av-
erage decrease in the EUED time but we incurred one ad-
ditional incorrect pick. Since we performed a statistically
small number of trials, we view these results more as a proof
of concept than as a rigorous evaluation.

Discussion
Social feedback enables logical conversations between hu-
man and robot which allow the robot to quickly determine
the user’s object of choice (Table 3). In the first example,
the user indicates that they want a spoon. This is an ambigu-
ous statement because there are two spoons, one of them
white and the other green. The model can capture the fact
that asking about the color of the spoon will determine the
object. The robot asks if the user wants a white object, and
when the user indicates that they do not, the robot knows that
the object in question is the green spoon. Similarly, want-
ing a bowl is ambiguous because there is a blue bowl and a
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Metric No Feedback Feedback

Picks Correct 12/13 12/14
EUED Time 17.33s 13.33s
IOD Time 2.59% 3.18%

Table 2: Experimental Results. EUED time is time from the
end of the first utterance in the request until the end of deliv-
ery of the desired object and IOD time is time spent deliver-
ing incorrect objects.

Human Robot

I want a spoon.
Would you like a white object?

No.
(Picks the green spoon.)

I want a bowl.
Would you like a blue object?

Yes.
(Picks the blue bowl.)

(Points ambiguously at
the wooden bowl
and brown mug.)

Do you want the cup?
No.

(Picks the wooden bowl.)

Table 3: Example dialogue from interactions with our sys-
tem. The robot chooses to ask more informative questions
because the search depth of the planner is three rather than
two.

wooden bowl, so the robot asks about the color of the object,
determining that the user wants the blue bowl. This type of
inference is not limited to speech: ambiguous gestures can
be resolved by asking about one of the candidate objects, as
in the case of the wooden bowl and brown mug.

By asking questions, the agent divides and conquers the
belief space. Constructing a POMDP for an arbitrary set of
objects is easier than specifying search rules in multimodal
interaction spaces with complicated relationships between
objects. Solving a POMDP allows those rules to be discov-
ered rather than specified, and the burden is transferred from
the modeler to the solver.

Without social feedback, users must resort to repeating in-
structions with no idea whether their input is received by the
robot or whether it is interpreted correctly. This might lead
to frustration and a lower long term tolerance of the system.
When the robot can reason about and issue social feedback
and tell the user what it believes, the user and the robot can

engage in a natural dialogue which quickly determines the
item of choice. We predict that because the interaction is
more like a human-human interaction, users will be able to
engage with the system for longer periods of time with less
frustration.

Conclusion
Social feedback is key to human-human interaction. This re-
search hopes to give robots the ability to participate in social
feedback, making human-robot interaction easier, faster, and
more accurate. Our approach uses a POMDP that takes input
from a human in the form of speech and gesture, estimates
the human’s mental state, and chooses social feedback ac-
tions to facilitate the determination of the desired object. Our
results suggest that by incorporating social feedback we can
expect a decrease in response time, but more experimenta-
tion is required.

Future Work
We plan to expand our current approach by implementing
robotic gesture as an additional feedback action the robot
can take. This will add to the the number of actions and
make planning more expensive, but by implementing robotic
speech and gesture as collapsed actions similarly to our pick
action, we should maintain computational tractability. Mov-
ing beyond a unigram speech model would allow more so-
phisticated references involving multiple objects, such as
“the bowl behind the spoon.” Finally, a placement action
would allow us to support more complex collaborative tasks.

In addition, we would like to explore the potential for
richer communication by having the robot track the human’s
belief about its current state. Adding this additional state
variable would greatly increase the computational complex-
ity of this task, but also allow it to make decisions that con-
sider how its actions are perceived by the human.
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to thank Dr. Claudia B. Rébola, associate professor at the
Rhode Island School of Design, for organizing this collabo-
ration and providing valuable guidance in designing the user
experience and conducting user studies.

This work was in part supported by the National Sci-
ence Foundation under “NRI: Collaborative: Jointly Learn-
ing Language and Affordances,” grant # ISS-1426452.
It was also supported by the Army Robotics CTA un-
der “Robotics CTA: Perception, Human-Robot Interaction,”
grant # 40228388.

References
Bohus, D., and Horvitz, E. 2014. Managing human-robot
engagement with forecasts and... um... hesitations. In Pro-
ceedings of the 16th International Conference on Multi-
modal Interaction, ICMI ’14, 2–9. New York, NY, USA:
ACM.

156



Chai, J. Y.; She, L.; Fang, R.; Ottarson, S.; Littley, C.; Liu,
C.; and Hanson, K. 2014. Collaborative effort towards
common ground in situated human-robot dialogue. In Pro-
ceedings of the 2014 ACM/IEEE international conference
on Human-robot interaction, 33–40. ACM.
Chai, J. Y.; Prasov, Z.; and Qu, S. 2011. Cognitive principles
in robust multimodal interpretation. CoRR abs/1109.6361.
Clark, H. H., and Krych, M. A. 2004. Speaking while moni-
toring addressees for understanding. Journal of Memory and
Language 50(1):62–81.
Clark, H. H. 1996. Using Language. Cambridge University
Press.
Foster, M. E.; Gaschler, A.; Giuliani, M.; Isard, A.; Pateraki,
M.; and Petrick, R. P. A. 2012. Two people walk into a bar:
dynamic multi-party social interaction with a robot agent. In
International Conference on Multimodal Interaction, ICMI
’12, Santa Monica, CA, USA, October 22-26, 2012, 3–10.
Gieselmann, P. 2004. Reference resolution mechanisms in
dialogue management.
Guadarrama, S.; Rodner, E.; Saenko, K.; Zhang, N.; Farrell,
R.; Donahue, J.; and Darrell, T. 2014. Open-vocabulary
object retrieval. In Robotics: Science and Systems.
Hewlett, D.; Walsh, T. J.; and Cohen, P. 2011. Teaching
and executing verb phrases. In Development and Learning
(ICDL), 2011 IEEE International Conference on, volume 2,
1–6. IEEE.
Huang, C.-M.; Cakmak, M.; and Mutlu, B. 2015. Adap-
tive coordination strategies for human-robot handovers. In
Proceedings of Robotics: Science and Systems.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large markov
decision processes. Machine Learning 49(2-3):193–208.
Kennington, C.; Dia, L.; and Schlangen, D. 2015. A discrim-
inative model for perceptually-grounded incremental refer-
ence resolution. In Proceedings of the 11th International
Conference on Computational Semantics, 195–205. Lon-
don, UK: Association for Computational Linguistics.
Kennington, C.; Kousidis, S.; and Schlangen, D. 2013. In-
terpreting situated dialogue utterances: an update model that
uses speech, gaze, and gesture information. In Proceedings
of the SIGDIAL 2013 Conference, 173–182. Metz, France:
Association for Computational Linguistics.
Kruijff, G.-J.; Lison, P.; Benjamin, T.; Jacobsson, H.; and
Hawes, N. 2007. Incremental, multi-level processing for
comprehending situated dialogue in human-robot interac-
tion. In Language and Robots: Proceedings from the Sym-
posium (LangRo’2007). University of Aveiro.
Kruijff, G.; Brenner, M.; and Hawes, N. 2008. Contin-
ual planning for cross-modal situated clarification in human-
robot interaction. In Robot and Human Interactive Commu-
nication, 2008. RO-MAN 2008. The 17th IEEE International
Symposium on, 592–597.
Laird, J. 2012. The Soar cognitive architecture. MIT Press.
MacGlashan, J. Brown UMBC Reinforcement Learning and
Planning Library. http://burlap.cs.brown.edu/.

MacMahon, M.; Stankiewicz, B.; and Kuipers, B. 2006.
Walk the talk: connecting language, knowledge, and action
in route instructions. In Proceedings of the 21st National
Conference on Artificial Intelligence, 1475–1482. AAAI
Press.
Marge, M.; Powers, A.; Brookshire, J.; Jay, T.; Jenkins,
O. C.; and Geyer, C. 2011. Comparing heads-up, hands-
free operation of ground robots to teleoperation. Robotics:
Science and Systems VII.
Matuszek, C.; Herbst, E.; Zettlemoyer, L.; and Fox, D. 2012.
Learning to parse natural language commands to a robot
control system. In Proc. of the 13th Intl Symposium on Ex-
perimental Robotics (ISER).
Matuszek, C.; Bo, L.; Zettlemoyer, L.; and Fox, D. 2014.
Learning from unscripted deictic gesture and language for
human-robot interactions.
Misra, D.; Sung, J.; Lee, K.; Saxena, A.; Sung, J.; Selman,
B.; Saxena, A.; Sung, J.; Ponce, C.; Selman, B.; et al. 2014.
Tell me dave: Context-sensitive grounding of natural lan-
guage to mobile manipulation instructions. In Robotics: Sci-
ence and Systems, RSS.
Ong, S. C. W.; Png, S. W.; Hsu, D.; and Lee, W. S. 2010.
Planning under uncertainty for robotic tasks with mixed ob-
servability. Int. J. Rob. Res. 29(8):1053–1068.
Schermerhorn, P. W.; Kramer, J. F.; Middendorff, C.; and
Scheutz, M. 2006. Diarc: A testbed for natural human-robot
interaction. In AAAI, 1972–1973.
Schlangen, D.; Baumann, T.; and Atterer, M. 2009. In-
cremental reference resolution: The task, metrics for eval-
uation, and a Bayesian filtering model that is sensitive to
disfluencies. In Proceedings of the SIGDIAL 2009 Confer-
ence, 30–37. London, UK: Association for Computational
Linguistics.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M. R.; Baner-
jee, A.; Teller, S.; and Roy, N. 2011. Understanding natural
language commands for robotic navigation and mobile ma-
nipulation. In Proceedings of the AAAI.
Tellex, S.; Thaker, P.; Deits, R.; Kollar, T.; and Roy, N. 2012.
Toward information theoretic human-robot dialog.
Waldherr, S.; Romero, R.; and Thrun, S. 2000. A gesture
based interface for human-robot interaction. Autonomous
Robots 9(2):151–173.
Williams, J.; Raux, A.; Ramachandran, D.; and Black, A.
2013. The dialog state tracking challenge. In Proceedings
of the SIGDIAL 2013 Conference, 404–413.
Williams, T. 2015. Toward more natural human-robot dia-
logue. In Proceedings of the Tenth Annual ACM/IEEE Inter-
national Conference on Human-Robot Interaction Extended
Abstracts, HRI’15 Extended Abstracts, 201–202. New York,
NY, USA: ACM.
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