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Abstract

We present an approach geared toward estimating task exe-
cution confidence for robotic bin-picking applications. This
requires estimating execution confidence for all constituent
subtasks including part recognition and pose estimation, sin-
gulation, transport, and fine positioning. This paper is fo-
cussed on computing associated confidence parameters for
the part recognition and pose estimation subtask. In particu-
lar, our approach allows a robot to evaluate how good the part
recognition and pose estimation is, based on a confidence-
measure, and thereby determine whether to proceed with the
task execution (part singulation) or to request help from a hu-
man in order to resolve the associated failure. The value of
a mean-square distance metric at a local minimum where the
part matching solution is found is used as a surrogate for the
confidence parameter. Experiments with a Baxter robot are
used illustrate our approach.

Introduction
Currently deploying robots in industrial applications re-
quires the reliability of robotic task execution to be high.
This is accomplished by designing specialized hardware and
software. Extensive system testing is needed to ensure all
failure modes are well understood and contingency plans are
developed to handle them. Task execution failures typically
require the line to be shut down and human intervention to
clear the fault and restart the line. This type of intervention is
expensive and hence robots are not used on a task until high
level reliability can be achieved. Customized hardware and
software costs can only be justified if the production volume
is sufficiently high (e.g., automotive assembly lines).

Currently robots have no way of assessing their own ca-
pability to complete a task. Consider the following case. A
robot is capable of picking a part if it is presented to it at
a certain location. However, if the part has shifted from its
nominal location, the robot might not be able to pick it. The
robot does not simply know where the transition boundary
between task execution success and failure lies. As it at-
tempts to pick the part, it might bump into it and push it
further and jam the material handling system. This can in
turn trigger a system fault and shut down the system.
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Figure 1: Experimental setup used for the bin-picking task

In order to use robots in small production batch opera-
tions, we will need robots that are able to estimate the proba-
bility of task completion before beginning the task. This will
enable robots to assess their confidence in doing a task. If the
robot does not have a high confidence in completing a task,
then it can call for help. This will enable human operators to
provide the robot the needed assistance (e.g., better part pose
estimation, invoke a different grasping strategy) and prevent
major system faults that result from task execution failure.
Providing task assistance help to robots is cheaper than re-
covering from a system shutdown.

We will illustrate these concepts using robotic bin picking
example in this paper. Robotic bin-picking is an important
operation in many manufacturing and warehousing applica-
tions. Many research groups have addressed the problem of
enabling robots, guided by machine-vision and other sen-
sor modalities, to carry out bin-picking tasks (Kaipa et al.
2015b; Buchholz, Winkelbach, and Wahl 2010; Balakirsky
et al. 2012; Schyja, Hypki, and Kuhlenkotter 2012). We are
mainly interested in a class of bin-picking problems that
manifest in the form of a part-order specifying multiple
quantities of different parts to be singulated from a bin of
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Figure 2: Illustration of the singulation task: (a) Robot gripper in the initial approach posture. (b) Part grasped. (c) Part success-
fully singulated.

randomly scattered pile of parts and transported to a desti-
nation location as rapidly as possible. Achieving this over-
all goal entails overcoming important challenges at various
stages of task execution including part recognition and pose
estimation, singulation, transport, and fine positioning. Ac-
cordingly it is important to enable the robot to estimate a
level of confidence with which it can execute the overall
task before actually proceeding to perform it. The singula-
tion task, which involves picking only one part at a time is
illustrated in Fig. 7.

This paper is focussed on part recognition and pose esti-
mation. This problem is challenging and still not fully solved
due to severe conditions commonly found in factory envi-
ronments (Liu et al. 2012; Marvel et al. 2012). In particular,
unstructured bins present diverse scenarios affording vary-
ing degrees of part recognition accuracies: 1) Parts may as-
sume widely different postures, 2) parts may overlap with
other parts, and 3) parts may be either partially or com-
pletely occluded. The problem is compounded due to factors
like sensor noise, background clutter, shadows, complex re-
flectance properties of parts made of various materials, and
poorly lit conditions. All these factors result in part recogni-
tion and pose estimation uncertainties.

In this paper, we present an approach that allows a robot to
evaluate how good the part recognition and pose estimation
is, based on a computed confidence-measure, and thereby
determine whether to proceed with the task execution (part
singulation) or to request help from a human in order to re-
solve the associated failure. For this purpose, we have de-
veloped a part matching algorithm that performs recogni-
tion and 6 DOF pose estimation of a part in a cluttered scene
given a 3D point cloud of the scene and a CAD model of the
part to be identified. A possible definition of confidence is
a measure of how good a guess/decision is based on an es-
timate computed from the test data and the statistical mean
of the training data (Pronobis and Caputo 2007). In this pa-
per, the value of a mean-square distance metric (described

later) at a local minimum where the part matching solution
is found is used as a surrogate for the confidence parameter.

In another work (Kaipa et al. 2015b), we have developed
a preliminary remote user interface that allows effective in-
formation exchange between the human and the robot that is
geared toward solutions that minimize human operator time
in resolving the detected part recognition failures. In this pa-
per, we focus only on the automated part matching system
and how to assess its pose estimation results.

Approach to Estimate Confidence During Part
Recognition and Pose Estimation

Iterative closest point (ICP) (Besl and McKay 1992) is
a well-established method used to match a pair of point
clouds. ICP finds a match by performing transformations on
one of the point clouds until an appropriately chosen mean-
square distance metric is minimized. In our case, we deal
with bins that contain multiple parts, that contribute to noise
in the point cloud around the part we truly want to detect.
In such a scenario, ICP algorithm could get stuck in a local
minimum, thus returning a false match.

We address these issues by extracting features (e.g.,
edges) available in the sensed data and exploiting these
features in a manner that collapses the problem from a
search in 6D space to a 1D search along a finite number
of lines oriented in a 3D space. Feature extraction (We-
ber, Hahmann, and Hagen 2010; Demarsin et al. 2007;
Gumhold, Wang, and Macleod 2001) is one of the prepro-
cessing procedures used in many scene reconstruction tasks.
We use it for our problem of part recognition and pose esti-
mation in cluttered scenes. In particular, our approach con-
sists of first performing a neighborhood based normal es-
timation of each point in the point cloud. The normals are
then binned to recognize planes in the point cloud. Iterat-
ing over these planes, we find intersection of planes to pick
edges in the point cloud. The CAD model is rotated based
on the orientation of the edge found and also the normals
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of the planes forming the edge. The CAD model is then fil-
tered to contain only the points perceivable from the cam-
era for that orientation of the CAD model. This filtered
CAD model is iteratively moved over every edge found in
the point cloud and the translated version that minimizes
the mean square distance metric is declared as the desired
part. Let P = {pi : pi ∈ R3, i = 1, 2, . . . , N} be the
point cloud of the bin of parts captured from 3D sensor. Let
Q = {qi : qi ∈ R3, i = 1, 2, . . . ,M} be the point cloud
obtained by uniform surface sampling of the CAD model
of the part to be indentified. We first filter the P using z-
thresholding to get rid of points that belong to the base bin.
Next, we find 50-nearest neighbors of every point in P us-
ing a kd-Tree implementation, fit a plane to these points, and
estimate the normal to the plane as the normal at that point.

The planes in the scene are estimated using the normals
estimated in the previous step. For this purpose, the normals
at all points are projected onto a unit circle and collected into
a set of bins B = {bi} on a 2D mesh with a bin resolution of
(0.02, 0.02). From this set, we select a subset B′ of bins with
a value greater than a threshold τb and identify the normals
in these bins as potential plane normals in the point cloud (τb
was set to 17 in order to capture the smallest surface features
in the bin scenarios considered in this paper).

B′ = {bi ∈ B : |bi| > τb} (1)

Now, for each bi ∈ B′, we consider an infinite line Li along
the normal corresponding to the bin-center and project all
the points in the point cloud P onto Li. We bin these pro-
jections and select all bins that have a cardinality of 90 % of
that of the bin with maximum cardinality and group them
into Bp. This second binning procedure bifurcates all the
parallel planes in the point cloud. Each bp ∈ Bp represents
a set of projections whose corresponding points in the origi-
nal point cloud belong to a plane. Therefore, we iterate over
each point in P and compute the distance from the point to
the plane fit for each corresponding bp ∈ Bp. If the distance
is below a threshold value of 3mm, the point is considered
to belong to that plane.

Having all the planes in the previous step, we iterate
over all the planes and find planes that intersect at angles
greater than some threshold τθ. The line of intersection of
these planes is identified as an edge. As the plane estima-
tion method is bound to have multiple planes representing
the same plane, varying by small angles with respect to each
other, the intersection method might have edges that are re-
dundant. Therefore, averaging is carried out to obtain an
edge estimate. Having found the edges in the point cloud,
we first rotate the point cloud of the CAD modelQ to orient
it along each edge. We then use normal information of one of
the planes forming the edge to get the Q to orient exactly to
the object in the point cloud. We then filter the CAD model
in its current orientation to remove all the points that are not
visible from the point of view of the camera. This is done
in two stages. First, we use the concept of back-face culling
where we remove all the points whose normals make a neg-
ative or zero dot product with the camera to point vector.
Second, we project a ray from every point in Q toward the
camera. As we have information of faces while reading the

CAD model, we check if the ray hits any of these faces. If it
does hit a face, then it is an occluded point and we remove it
from Q.

At this point we have a filtered version of the point cloud
of the CAD model Qf oriented to the object in the point
cloud and docked on the edge that was detected. We now
move Qf along the edge it is docked on as a function of a
translation parameter s, and find the edge along which we
get the minimum point-to-point mean distance ρ from the
filtered CAD model to the point cloud from the sensor.

ρ = min
s

1

|Qf |

√√√√|Qf |∑
i=1

d(qi,P)2 (2)

where, d(qi,P) = min
j
||qi − pj ||, qi ∈ Qf , pj ∈ P

The parameter ρ acts as a surrogate measure for estimating
confidence during the part recognition and pose estimation
subtask. A low value of ρ implies high confidence and in-
creasing values of ρ indicate a decline in confidence.

Experiments
The robotic set up used in the experiments is shown in Fig.
1. First, we consider a simple bin scenario as shown in Fig.
4(a). Figure 4(b) shows the corresponding point cloud ob-
tained from an Ensenso 3D camera. Figures 4(c) - 4(h) illus-
trate the working of the part matching algorithm. The confi-
dence level in the pose estimation of the target part is very
high as indicated by a very low value of ρ (3 mm). Therefore,
the robot decides to go ahead and execute the part singula-
tion as shown in Fig. 7.

For calibration purpose, we considered a cuboid as shown
in Fig. 5(a). We placed the cuboid in such a way that three
planes of it were exposed to the 3D camera. We then regis-
tered a filtered CAD model of the cuboid with the acquired
point cloud. The corresponding match is shown in Fig. 5(b).
The ρ value for this match was found to be 1.66 mm. We
computed the angle between planes that we had captured in
the point cloud and found offsets from the ideal orthogonal
value as all the planes are perpendicular to each other in the
cuboid. The offsets were 0.62o (between P1 and P2), 0.086
o (between P2 and P3), and 0.65o (between P1 and P3), re-
spectively. These offsets imply that if we were to match one
plane from the CAD to its corresponding plane in the point
cloud, we end up having the other plane off by some angle.
Thereby these offsets contribute to a small non-zero point-
to-point distance in the match. Also, by matching a single
plane we found ρ to be 0.5 mm and with the multiple plane
case as we expect the ρ for each plane to accumulate, leading
to a larger value of ρ (1.66 mm). Owing to all these possi-
ble noise in a match, we kept a threshold of 3 mm in our
experiments.

Figure 6 shows the matching results by running the algo-
rithm on some representative bin scenarios. In particular, this
experiment reveals how the matching performance (ρ value)
changes as a function of bin complexity−parts of same type
not touching with each other (Fig. 6(a, b)), parts of same
type overlapping with each other (Fig. 6(c, d)), and parts of
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Figure 3: Inputs to the pose estimation algorithm: (a) CAD model of the part to be singulated. (b, c) Raw image and the
corresponding 3D point cloud obtained from the Ensenso 3D camera.

Figure 4: Example illustrating the various stages of the auto-
mated perception algorithm: (a) 3D plot showing estimated
normals of a down-sampled point cloud. (b) Gauss map used
to detect planes. (c) Edge extracted from intersection of two
planes. (d) Initial docking of the CAD model along an ori-
ented edge. (e) Final match obtained by translation of the
CAD model along the oriented edge. (f) Plot of mean square
distance as a function of number of iterations.

Figure 5: (a) Object used for calibration. (b) Match obtained
between the point cloud of the scene and the filtered CAD
model

Figure 6: Representative bin scenarios and corresponding
matches: (a, b) Multiple parts of same type not touching
with each other. (c, d) Multiple parts of same type overlap-
ping with each other. (e, f) Multiple parts of different type
overlapping with each other.
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Figure 7: Robot using the pose estimated by the system to
proceed with the part singulation task.

Figure 8: Bin scenario that results in a part matching failure.
The high value of point-to-point distance (12 mm) captures
this information and enables the robot to halt and request for
human’s help.

different type overlapping with each other (Fig. 6(e, f)). Fig-
ure 8 illustrates a bin scenario that results in a part matching
failure. The high value of ρ (12 mm) captures this informa-
tion and enables the robot to halt and request for human’s
help. Figure 9(a) shows an example where the part match-
ing fails resulting in the robot invoking a Skype call to the
human Fig. 9(b) requesting help. Figure 9(c) shows a snap-
shot of the user interface used by a remote human to resolve
the part recognition and pose estimation failure. Figure 10
shows the robot performing part singulation using the pose
estimation help provided by the human.

Conclusions
Object picking is a crucial capability to have for robots
whether they are used for bin-picking tasks in a factory set-
ting, packaging tasks in a warehouse, or handling utensils
in a kitchen. Assessing their own capability of achieving
this task enables them to either reliably perform the task
or request a human for assistance rather than doing so af-
ter the damage is made. This requires estimating execu-
tion confidence for all constituent subtasks including part
recognition and pose estimation, singulation, transport, and
fine positioning. This paper presented a method geared to-
ward estimating associated confidence parameters for the
part recognition and pose estimation subtask. Integration be-
tween the automated perception system presented here, a
singulation method (Kaipa et al. 2015a), a human-aided per-
ception system (Kaipa et al. 2015b), and a fine-positioning
method (Kaipa, Kumbla, and Gupta 2015) is currently un-
der progress. In our previous work, we have developed
other modules including ontology for task partitioning in
human-robot collaboration for kitting operations (Baner-

jee et al. 2015), sequence planning for complex assemblies
(Morato, Kaipa, and Gupta 2013), instruction generation
for human operations (Kaipa et al. 2012), ensuring human
safety (Morato et al. 2014b), and a framework for replan-
ning to recover from errors (Morato et al. 2014a). Future
work consists of investigating how to integrate them in or-
der to realize hybrid work cells where humans and robots
collaborate to carry out industrial tasks.
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