Sequential Decision Making for Intelligent Agents
Papers from the AAAI 2015 Fall Symposium

Metaphysics of Planning Domain Descriptions

Siddharth Srivastava' and Stuart Russell> and Alessandro Pinto'
! United Technologies Research Center, Berkeley CA 94705
2 Computer Science Division, University of California, Berkeley CA 94709

Abstract

Domain models for sequential decision-making typically rep-
resent abstract versions of real-world systems. In practice,
such abstract representations are compact, easy to maintain,
and afford faster solution times. Unfortunately, as we show
in the paper, simple ways of abstracting solvable real-world
problems may lead to models whose solutions are incorrect
with respect to the real-world problem. There is some evi-
dence that such limitations have restricted the applicability of
sequential decision-making technology in the real world, as is
apparent in the case of task and motion planning in robotics.
We show that the situation can be ameliorated by a combi-
nation of increased expressive power—for example, allowing
angelic nondeterminism in action effects—and new kinds of
algorithmic approaches designed to produce correct solutions
from initially incorrect or non-Markovian abstract models.

1 Introduction

The need for using abstract models of systems for compu-
tational advantages is well appreciated in the literature on
sequential decision making. The benefit of hierarchical rep-
resentations is also well understood (Parr and Russell 1998;
Sutton, Precup, and Singh 1999; Dietterich 2000; Andre and
Russell 2002). Approaches for exploiting hierarchical struc-
tures typically utilize temporal abstractions, where multiple
actions, are grouped together into meaningful control struc-
tures or behaviors. On the other hand, state abstractions
group states together into abstract states. Unlike temporal
abstractions, state abstractions can preclude accurate repre-
sentations of the value function. Such state abstractions are
often implicit in discrete MDP/POMDP representations.

Consider a PR2 robot that needs to empty the dishwasher.
We may construct a POMDP model for this domain with
state variables for the current position of each dish us-
ing (x,y, z) coordinates in a discrete 3-dimensional grid.
Assuming cameras are mounted on the manipulators, we
may also construct a noisy observation function that mod-
els object identity and pose detectors. Uncertainty about the
robot’s localization and movement can be captured similarly.
When the available sensors and actuators permit, getting a
robot to empty the dishwasher with such a model seems to
be a matter of selecting the right reward function and allo-
cating sufficient time for computation. Unfortunately, this
hypothesis turns out to be false.

83

This is because such problem representations implicitly
ablate details such as the precise poses and geometries of the
dishes, dishwasher racks, and robot arms; kinematic con-
straints on the feasibility of being able to access each dish
from a given pose of the robot’s base. As a result, an optimal
policy for the stated POMDP model may attempt to pick up
a plate in a state where a spatula obstructs all motion plans
for grasping it. ! When such considerations are ignored,
even with perfect sensors and actuators, optimal high-level
policies may be unexecutable in practice.

At first glance this situation seems to be remediable:
decision-theoretic frameworks for sequential decision mak-
ing incorporate support for noisy sensors and actuators
which could potentially be used to capture the imprecision
arising from model abstraction. In the dishwasher scenario,
one may include the possibility that a pickup operation can
fail, by expressing the effects of an action in an abstract state
as a distribution over the set of all possible results under dif-
ferent settings of the ablated properties. However, this leads
to two problems. First, one would have to determine all
the truly possible result states in the abstract domain model.
This requires a significant amount of reasoning with the con-
tinuous version of the model (considering all the truly possi-
ble trajectories and speeds) if it it is available, or using real
world execution when it isn’t. Second, even if this is done,
one would end up dealing with all possible collections of
fragments of dishes scattering all over the kitchen every time
the robot moves its arm (the location, geometry, speed pro-
file, and the trajectory of movement are abstracted out and
all possibilities have to be considered). This is unfortunate
because in practice, discretizations of even two dimensional
problems that take into account object geometries and ma-
nipulator paths can result in state spaces that are too large
to express or solve (Srivastava et al. 2014a). In other words,
such techniques fail to achieve the underlying objective of
utilizing abstracted models for efficient reasoning.

These observations motivate the need for rigorous anal-
ysis of abstraction functions that may be employed while

!'The set of objects obstructing a pickup depends on several con-
tinuous variables including the poses of the robot’s base and the
target object, the geometries of the robot’s arm and the object, and
finally, action arguments including the grasping pose and the tra-
jectory to be used for a pickup; similar considerations are required
when determining the obstructions induced by a putdown action.

creating the model of an underlying system in a given math-
ematical language. For sequential decision making in par-
ticular, we would like such models to retain key properties
such as a Markovian transition system and executability of
the computed policies. Obviously, not all abstractions would
satisfy such properties. The interesting question then be-
comes, are desirable abstractions always possible? If not, is
there a way to exploit the benefits of hierarchical structure
in situations where the required or useful abstractions vio-
late some such properties? These questions about abstrac-
tion are particularly relevant today as advances in embedded
systems and robotics provide new opportunities for sequen-
tial decision making techniques. As noted in the example
above however, such systems typically require intractably
large or continuous state spaces to be modeled accurately.

In this paper, we make three main contributions. First, we
study abstraction functions and derive the conditions under
which they satisfy certain desirable properties for sequential
decision making. Second, we show that in many domains
of interest these properties are violated for a large class of
abstraction functions that are used implicitly by domain de-
signers. Finally, we discuss how, in situations where the ab-
straction is not Markovian and does not preserve executabil-
ity, knowledge of the abstraction function can be utilized to
make the computation of solutions more efficient. Our work
also sheds light on conditions under which the abstraction
of a deterministic model may result in a model that is non-
deterministic.

In order to study these core problems, we focus on situ-
ations where the underlying system is fully observable and
deterministic. We ground our discussion to STRIPS like lan-
guages (SLLs), e.g., PDDL, SAS, STRIPS etc. SLLs ex-
press transition systems in a functional form by defining the
changes on state variables that would result if the action was
applied on a state that satisfied its preconditions. A number
of extensions of such logic-based languages have been pro-
posed for the efficient expression of decision-theoretic mod-
els (Sanner and Boutilier 2009; Sanner and Kersting 2010;
Srivastava et al. 2014b).

We consider two main abstraction operations: removing
predicates and removing action arguments (Sec.2). These
operations capture transformations required for expressing
a broad range of problems in SLLs, including tasks in
robotics. We identify the conditions under which such ab-
stractions satisfy fundamental, desirable properties such as
the Markov property (Sec. 2.1). In order to correctly express
abstract models, we draw upon two concepts from hierar-
chical planning (Marthi, Russell, and Wolfe 2007): angelic
non-determinism in action effects (Sec. 3), and the expres-
sion of super-sets or sub-sets of the truly possible action ef-
fects (Sec 3.2). Finally, we show that by using information
about the abstraction process together with representations
that are imprecise (but not incorrect), we can develop an ap-
proach for solving problems that don’t have correct abstrac-
tions in SLLs (Sec4).

2 Abstraction Framework

We focus on deterministic problems in this paper, and use
a compact representation of conditional effects that can be

84

a) “Original” specification:
pickup(b1, 1, d):

empty(gripper) — in_gripper(b).
equals(d, left), gripper-at(d,li), — —free(bs,left).
at(b17 ll)! empty(gripper),

free(by,left)

equals(d, right),gripper-at(d, l1),
at(b1, 1), empty(gripper),
free(b1, right)

— — free(by, right).

place(b, (1, d):
in_gripper(b1)
equals(d, left)
equals(d, right)

— at(b1,11), — in_gripper(b1).
— gripper-at(left,i1).
— gripper_at(right, [1).

b) If the abstraction drops in_gripper in (a) we get a non-
deterministic, pseudo-Markovian definition for the place ac-
tion:
place(b1, 1, d):
T —>ND{at(b1, ll); @}
equals(d, left) — gripper-at(left, 1)
equals(d, right) — gripper_at(right, l1)

¢) If the abstraction drops equals in (a) we get an operator
with angelic choice:
pickup(b1, 11, d):
empty(gripper)
AngelicND{
gripper-at(d, l1), at(b, 1),
empty(gripper), free(bs, left)
gripper-at(d, l1), at(b1, 1),
empty(gripper)free(b:, right)

— in_gripper(b1).

— - free(bs, left);

— - free(by, right)}

place(b, (1, d):
in_gripper(b1) — at(bi, 1), - in_gripper(b1),
T — AngelicND{gripper_at(left, l1);
gripper_at(right, 1)}

Figure 1: Effects of abstraction on a model specification

compiled into SLLs. Let ¢ and e be conjunctions of atoms.
The conditional effect ¢ — e indicates that if ¢ holds in
the state where the action is applied, positive literals in e are
added to the state and negative literals in e are removed from
it. Quantifiers can be used to compactly express conjunc-
tions in this representation. The conditional effect T — e is
written as e. We illustrate our notation and the key ideas of
abstraction using a running example.

Example 1 We illustrate the effects of abstraction on a sim-
ple model that is assumed to be accurate (Fig. 1(a)). We use
the variables b;, [; and d to denote a block, a location, and a
direction (left or right), respectively. In this problem, pickup
and place actions require a direction of approach as an ar-
gument. In a state where both sides of a block are free, if it
is picked up from the left, it’s right portion remains free af-
ter the pickup and vice versa. Similarly, if a block is placed
at a location [from the left, the gripper ends up at the left
of [;. Suppose the original specification (a) is accurate. If
an abstraction process drops the in_gripper predicate, we
get the representation (b), where the most accurate descrip-
tion of place(by, [1, d) depends on whether or not it followed

pickup(b1): the place action affects a block’s location iff it
is followed by a pickup action on that block. In this way,
this level of abstraction is not truly Markovian (Eg.2 pro-
vides a more formal description using Def. 1). The descrip-
tion in Fig. 1(b) uses non-determinism to describe all pos-
sible effects of place. The operator ND(7; ...; ;) denotes
the non-deterministic selection one of the conditional effects
7n;. However this can make the model incomplete w.r.t. the
existence of a contingent solution since no operation is guar-
anteed to change the location of a block.

On the other hand, if the abstraction process drops equals
(Fig. 1(c)), the agent can choose arguments to place so as to
satisfy the premise of either conditional effect in the real ac-
tion specification. This can be expressed using angelic non-
determinism (the operator AngelicND) with syntax similar to
the ND operator). In contrast to demonic non-determinism
in action effects, where the environment “chooses” an out-
come (and thus the agent must plan for all possible out-
comes), angelic non-determinism over a set of possible out-
comes is used to express actions for which the agent may use
an appropriate implementation of an action, to select any of
the desired outcomes.

The use of angelic non-determinism is discussed in
Sec.3.1.

Formally, we consider abstractions defined by a surjective
abstraction function f that maps concrete states to abstract
states. As aresult, each abstract state s can be written as [x] s
for any state x such that f(x) = s; the sets of concrete states
corresponding to distinct abstract states are disjoint. We de-
note the set of states represented by an abstract state s using
the notation y4(s). For brevity, we abbreviate ¢ € v¢(s) as
¢ € s when the abstraction function is clear from context.
We denote the abstract state space constructed by applying
f on a set of states X as [X];. Predicate abstraction is a
special case where the function f projects out some proposi-
tions/predicates from the state. The substitution abstraction,
where a formula, whenever true in a state, is replaced with a
term, is also a special case of this abstraction.

Let T be a transition system defined over a set of states
S and a set of actions A specified in some language. Let
[T']; be an abstraction of 7', obtained using a state abstrac-
tion f as follows. For any set of states C, let [C]; be
the smallest set of abstract states capturing all of C. For
each a; € A, let [a;]; be the abstract representation of
a;: for any abstract state s, [a;](s) := [{ai(c) : ¢ €
s}]. We define [] for sequences of actions in the same
way, and abbreviate the composition of abstract actions,
[a1](... ([ak](s))...) as [a1] ... [ak](s). [T]y is the transi-
tion system over states {[c] : ¢ is a concrete state in 7'} and
actions {[a] : aisanactioninT}. We will drop the sub-
script f unless it is required for clarity.

Intuitively, an abstraction f is Markovian iff the abstract
effect of an abstract action on an abstract state doesn’t
depend on the path through which the abstract state was
reached.

Definition 1 An abstraction f is a Markovian abstrac-
tion of a transition system 7' defined over a set of states
S and a set of actions A iff for every sequence of instan-

85

tiated actions ay,...,a; € A, and abstract state s € [S]y,
[a1 e ak]f(s) = [al]f e [ak]f(s).

Example 2 Returning to the example in Fig. 1, the se-
quence of actions pickup(by,l1,dy);place(by,ls,ds) has
the unique effects at(by, ls) and gripper_at(ds, l2). Hence,
this composition of actions can be specified as follows in an
abstraction that drops the in-gripper predicate:
[pickup[(b1, 11, d1); place(b, Iz, d2)]:
equals(dz,left) — at(bi,l2), gripper_at(left,l2)

equals(dz, right) — at(bi,l2), gripper-at(right, l2)
[pickup(by, l1, d1)] has the same description as pickup in
Fig. 1(a), except for the absence of the atom in_gripper(b;).
On any abstract state s, application of the abstraction
action [pickup(bs,l1,d;)] followed by applicaton of the
abstract action [place(by,ls,ds)] (defined in Fig. 1(b)),
results in two possible outcomes corresponding to the
non-deterministic effects for the second action: either the
block was not in the gripper and it remains at [y, or it
was in the gripper and moves to [». This is because the
abstract state after picking up b; does not indicate whether
or not b; is in the gripper. Thus, we have a situation where
the composition of abstract actions is different from the
abstraction of their composition, which implies that the
abstraction that drops in_gripper is not Markovian.

2.1

A particularly desirable type of abstraction is one where ev-
ery concrete member of s witnesses every abstract transition
caused by [a] from s.

Markovian Abstractions

Definition 2 An abstraction is a forall-exists abstraction
iff for every s’ € [a1](s), for every ¢ € ~(s), there exists a
¢ € ay(c) such that ¢’ € v(s').

In other words, the concretization of the abstract action’s
result always has something in common with the action’s
result on a concretization: y([a1](s)) N a1 (y(s)) # 0. con-
sider such abstractions for the case of atomic state repre-
sentations. In this paper we focus on predicate abstractions
that result in forall-exists abstractions, and the relationship
of these abstractions with Markovian abstractions. Forall-
exists abstractions can also be seen as simulation relations.
A relation R C S x S is a simulation relation iff for all
(s,¢) € R, for all @ € A, and for all s’ € S such that
s € a(s’), there exists a ¢ € S such that ¢ € a(c’) and
(s',c) € R.

Theorem 1 Forall-exists abstractions are simulation rela-
tions.

PROOF Define the transition system 7”(S, A) where S is
the union of the abstract states and the concrete states. The
set of actions A only contains the set of concrete action sym-
bols. Foreach a € A, and abstract state s, a(s) := [a](s) Let
R C S x S be defined as follows: (s,¢) € Riff ¢ € y(s).
The result then follows from the definition of forall-exists
abstractions and simulation relations. O

Theorem 2 Forall-exists abstractions are Markovian.

PROOF We need to show that

[a1] ... [ak](s).

[a1...ak](s) =

By the forall-exists property, in every sequence of ab-
stract states generated by [ai1][az]...[ax](s) has a wit-
ness thread of concrete transitions. Thus, for every re-
sult state in [a1]...[ag](s), there is at least one concrete
member reachable from an element of v(s) via aj ... ak.
Thus, [a1...ak](s) = [a1...ax(v(s))] must include all
result states in [a1]...[ax](s). The other direction al-
ways holds because [a1] ... [ax](s) cannot be smaller than
[a1...ak](s). O

We now show that a special class of predicate abstractions
generate forall-exists abstractions.

Definition 3 A predicate abstraction is precondition pre-
serving if it doesn’t drop any predicate that is used in the
precondition of an action.

Lemma 1 Every precondition-preserving abstraction of a
deterministic transition system will be deterministic.

PROOF Consider the application of an action on each mem-
ber of an abstract state. They all satisfy the same set of
preconditions, so the effects of the concrete action add and
delete the same sets of predicates on each, even when there
are conditional effects. The subsequent abstraction retains
only the abstraction predicates which will be the same on
all states because the same deltas were applied on the same
initial set of abstracted predicates. Thus the set of abstract
states capturing the result will be a singleton. O

Theorem 3 Every precondition-preserving abstraction is a
forall-exists abstraction.

PROOF Since the abstraction is precondition preserving,
a1’s preconditions do or do not hold in all members of s.
In either case, all members represented by the initial state
get carried to the same result states. O

As a corollary, all precondition-preserving abstractions
are Markovian.

2.2 Non-Markovian Abstractions

In this section we present conditions under which an abstrac-
tion will be non-Markovian. A non-Markovian residue con-
stitutes in some sense, the evidence for an abstraction’s be-
ing non-Markovian. It is a set of states that does not reach
any member of an abstract state that the abstract transition
system “'thinks” should be included in the result of an action
application.

Definition 4 Let X be a set of states, f be an abstraction
function, s1,s2 € [X]y, and @ be an action in a transition
system 7" defined using X such that sy € [a](s1). The set
Csy sna,r,m = {¢ 1 ¢ € s1 Na(e) Nyp(s2) = 0} is the
non-Markovian residue of sq, s3, a, fand T.

The non-Markovian residue C' therefore includes states
that have no post-image under « in the abstract result state

s2 € [al(s1): a(Cls, 5,0,57) N5 (52) = 0.
Definition 5 A non-Markovian residue Cf, s, a7 1is

reachable iff there is an abstract state s and a sequence of
concrete actions « such that a(y(s)) € Cs, s5,a,f,7-

86

Lemma 2 Ifan NMR C,, s, o 11 is reachable, the abstrac-
tion f is not Markovian.

PROOF Let a(y(s)) = Cs; sparr- |ala(y(s)))] <
[a(Cs, s,a,,r)] does not include sy but [a][a(s)] =
[a][Cs, s2,a,7,7] = [a](s1) includes ss. O

We now show that non-Markovian abstractions have a
non-Markovian residue.

Theorem 4 If an abstraction [for a state space X is not
Markovian, then there is a sequence of actions o and an
abstract state s1 € [X] such that a(v(s)) N y(s1) is an
NMR.

PROOF Suppose the abstraction is
Let ai,...,ar be the smallest sequence
[0, .., agl(s) # ar)(.. . (law)(s)).

Thus, there must exist an s, such that s & [ay ... ag](s)
but so € [a1]...[ax](s). (Note that any abstract state con-
tained in [a; . . . ag](s) will be contained in [a1] ... [ak](s),
because the abstraction can only add additional states to the
result of an action application on an abstract state).

Let s; be a member of [as]. .. [ag](s) such that [a1](s1)
includes sz, and let C1 = ag...ar(y(s)). Since a; ...ax
is the smallest non-Markovian sequence, [as .. .ax](s) =

non-Markovian.
such that

[az] ... Jak](s). Thus, s1 € J[az...ag](s). Since
[ag...ag](s) = [az...ar(y(s))] by definition, this implies
that s; € [Ol]

Now a1 (C1) does not contain any member of so. If it did,
[a1...ag)(s) = [a1...ax(y(s))] would contain sy and we
get a contradiction. Let R = v(s1) N Cy. R is non empty
because s; € [C1]. Now a; (R) does not intersect with y(s2)
and R is a subset of (s). Therefore R is a non-Markovian
residue. O

3 Syntactic Transformations for Abstraction

The preceding sections were focused on abstraction in ex-
plicitly specified transition systems. However, in general it
is not feasible to express planning problems as explicit tran-
sition systems. In this section, we study abstractions of tran-
sition systems expressed implicitly using SLLs. Since the
operation of dropping action arguments necessitates drop-
ping predicates, we focus on abstractions that drop predi-
cates. To simplify the presentation we make the following
assumptions without loss of generality: each predicate oc-
curs with the same arguments in the action description. Dif-
ferent argument versions are considered to be different pred-
icates for the purpose of the transformation. This imposition
of uniformity effectively allows us to treat each occurrence
of a predicate in the operator specification as a proposition.

Suppose the predicate p is dropped in the abstraction.
Then, for each conditional effect of an action, consider the
following transformations:

T-ND1 if p occurs in the precondition or in the premise of
a conditional effect, the effect e is replaced by the non-
deterministic effect N D{e, ()}, denoting that the operator
may or may not take effect depending on the value of the
dropped predicate.

T-ND2 if p occurs in the effect e, e is replaced by ¢’ that has
only the non-p components of e.

The resulting action specification captures the abstracted
action in the sense that a(y(s)) C v([a(s)]). This is easy to
verify since the abstract transition system only loses infor-
mation w.r.t p, and each abstract state without p represents
sets of concrete states with each grounding of p set to true
or false. This leads to the disjunction in action effects in
T-ND1.

3.1 Angelic Non-Determinism

The transformations listed above use non-determinism to
capture sets of reachable states. The conventional (de-
monic) semantics of non-determinism, however, are some-
times incorrect for such abstractions. Consider the exam-
ple in Fig. 1. Using the syntactic transformation rules state
above, dropping the equals predicate in the original specifi-
cation (Fig. 1(a)) would result in:
placeND(b1, 11, d):
in_gripper(b1) — at(by, 1), ~in_gripper(b1).
T — ND{gripper_at(left,11);0},
ND{gripper_at(right, 1);0}.

In this formulation, no contingent plan can be guaranteed
to achieve the goal at(by,11) A gripper_at(left, ;) because
gripper_at is provided only by placeND in the model. This
results in an incorrect model because the goal is achievable
even in the abstract transition system: regardless of the state
in which place is applied, the agent can choose the argu-
ment d so as to achieve the desired version of gripper.at.
In order to express imprecision without making the model
incorrect, we can use angelic non-determinism operators
to capture such abstractions. Angelic non-determinism in
an action effect specifies the variations that are necessarily
achievable by the agent as opposed to those that are not in
the agent’s control. The following illustration is reproduced
from Fig. 1(c):
place(b1, 1, d):

in_gripper(b1) — at(b1,l1), — in_gripper(b1).
T — AngelicND{ gripper_at(left, [1);
gripper_at(right,l1)}

We formalize this transformation as follows. Recall that
we rename predicates if necessary, to ensure each predicate
occurs in the set of conditional effect rules of an operator
with a unique set and ordering of variables. Suppose a pred-
icate p(Z) occurs in a set of conditional effect rules E. Let
Yz_u be the set of all instantiations of the variables in &
to objects U. We then define the syntactic abstraction of E
w.r.t. p, a set of states .S, and U as follows:

[El(p(z),8,0) = AngelicND{ND{E[o,pls : s € S} : 0 € ¥zu}

where E[o, p|s is the version of E where o is applied and
all occurrences of p in the conditional premises are replaced
by their truth values in s. In the rest of the paper we omit the
arguments Z from the subscript unless required for clarity.
This leads to the following syntactic rule:

T-Angelic When S and U are known, replace the set of ef-
fects E with [E] ¢, 5,0

The angelic operator appears because the substitution o
is in the agent’s control. This transformation expresses a

87

tighter abstraction of reachable states than T-ND1 and T-
ND2. T-Angelic generalizes the transformations T-ND1 and
T-ND2. Indeed, T-ND1 and T-ND2 are obtained when An-
gelicND in the definition of [E], g 1) is replaced by the less
precise ND and {E|[o,p]s : s € S} is replaced by the set of
all versions of F obtained by substituting all possible evalu-
ations of p in the premises of conditional rules in £. We can
now define the transformation of the transition system that
results from predicate abstraction.

Definition 6 Let P be a planning problem with a set of ob-
jects U; C be its state space; f be an abstraction that drops
the predicate p and [C] s be the abstract state space produced
by applying f on C. Let a be an action with the effect de-
scription E then Vs € [C], we define the angelic represen-
tation of [a(s)] as [E] . (s),0)-

The angelic abstraction [a], ... ,, of an action a produced
by dropping an ordered set of predicates pq, ..., py is de-
fined by treating the angelic abstraction of each predicate
as a distinct abstraction function and composing the result-
ing transformations in order [...[a(s)]p, - . .|p,. Where s is
a state in the abstract state space without pq,...,pi. The
computation of optimal orderings of abstractions is beyond
the scope of this paper and is left for future work. Note that
the representation in Def. 6 may not be the most accurate
possible representation of the abstract transition system, but
it guaranteed to be an over-approximation: Ve € s,a(c) €
Y([al(s)py....o0)-

The definition of [E](,, g7y implies that when p is a static
fluent, then p[o] has the same truth value in all states and T-
Angelic is independent of S. This is precisely what occurs in
Fig. 1(c). To see this, note that AngelicND{p — ¢ A w,p —
g A v} is equivalent to p — g A AngelicND{w, v}. We for-
malize the arguments above as follows.

Theorem 5 If the predicate p is a static fluent w.rt. S, then
[E](p,s,u) introduces necessarily angelic non-determinism.

The premise of this result is a sufficient, but not necessary
condition for obtaining purely angelic non-determinism. We
say that a predicate p occurring in the premises of condi-
tional effects for an action «a is in the agent’s control in a
w.r.t. a set of states S if in every s € S, for every literal
form of p used in a conditional premise in a, there exists an
assignment of the arguments of a which makes that literal
form true. In other words, in every state action arguments
can be chosen to satisfy the form of p used in the premise
of any desired conditional rule. In such cases also the ef-
fect of dropping p can be expressed as an angelic choice
among the possible effects obtained for each evaluation of
p because the agent can achieve each evaluation in every
state. However, the form of F, s) written above doesn’t
directly produce such a purely angelic effect. This is in-
dicative of non-trivial distributive properties of angelic and
demonic non-deterministic operators.

In concluding this section, we note that dropping a pred-
icate can make some action arguments unnecessary. For in-
stance, the d argument in place can be removed after drop-
ping equals because it plays no role in the transformed de-
scription.

3.2 When Angelic Representations are Infeasible

In some situations abstraction can result in too many angelic
choices corresponding to different combinations of truth val-
ues for the dropped predicates. For such cases, we need an
intermediate representation that is not as intractable to com-
pute as the one generated by T-Angelic, but avoids the in-
correctness resulting from a demonic non-determinismistic
operator. Consider a more realistic model where the descrip-
tion of the act of placing an object uses a geometric predicate
to determine whether or not an obstruction is introduced:
pickup-clear(b1, 1, d):
at(bl, ll), —

empty(gripper),
(Vbe—obstructs(bz, b1, d))

in_gripper(b1), —at(bi, I1),
Vba, d—0obstructs(b, b, d).

place-clear(b:, 11, 01):
in_gripper(b1), open(l1) —

at(by, 1),
—in_gripper(b1),
—open(ly).
obstructs(b, b2, d).

in_gripper(b1), open(li), —
shape_obstructs(b1, l1, 01, be, l2),
relative_direction(l1, 2, d)

Note that pickup-clear requires a block to be unob-
structed. This specification uses new variables: by de-
notes an arbitrary block; and /5 denotes an arbitrary lo-
cation for a block. Unbound variables denote an im-
plicit conjunction of the rules in which they occur, over
all of their possible instantiations. The geometric predicate
shape_obstructs(by, l1, 01, ba, I2) is true iff placing by at [y
in the orientation o; will obstruct the gripper from picking
bs at [from the direction of [;. Expressing states with such
predicates would require expensive geometric computations
for all possible groundings, and it is therefore desirable to
abstract such predicates away. Angelic non-determinism
could be used to express the possible combinations of ob-
structs predicates introduced when shape_obstructs and
relative_direction are dropped. However, in order to do so,
one must compute the truth values of these predicates for
every choice of by, I; and l2, which can be computation-
ally expensive (and infeasible when [y or [, range over high-
dimensional poses in the configuration space of a real robot).
On the other hand, a non-deterministic representation would
have no contingent solutions due to cyclic obstructions re-
sulting from non-deterministic choices.

We therefore need an intermediate representation that is
not as intractable to compute as the one generated by T-
Angelic, that remains imprecise but is not incorrect. This
can be achieved by indicating that the effects of an abstract
action on certain predicates are deterministic, but undeter-
mined in the current abstraction:
place-clear-un(bi,11):

in_gripper(b1), —
open(ly)

at(bs,l1), __ —in_gripper(bi),
—open(l1), +{obstructs}.

The ¥ indicates that this action may add some obstructs
facts. Retaining this information is useful: since the unde-
termined effects are annotated and are deterministic, custom
reasoning tools can be used to determine the exact effects.
Such an action model is sound in the sense of theorem prov-
ing: the portion outside F asserts only the properties that are

88

guaranteed to be achieved by the action.

4 Planning Modulo Abstractions

We now consider the problem of planning in the presence of
abstractions. Early work in this direction (Sacerdoti 1974;
Knoblock 1991) addresses special cases of this problem,
where abstraction hierarchies can be assumed to satisfy cer-
tain properties that aid reasoning algorithms. More recent
approaches use abstractions in heuristics for guiding search
algorithms that operate on transition systems described in
SLLs (e.g., (Helmert, Haslum, and Hoffmann 2007)).

In order to develop general algorithms for planning across
a pair of accurate and abstract models, we can draw upon the
literature on SAT modulo theories (SMT), which deals with
the similar problem of pairing SAT solvers with reasoning
engines for theories whose translations into SAT would be
intractable or impossible. The input formula for an SMT
solver can include literals that represent atoms from a theory
(e.g. a() +2 < b() is an atom that belongs to the theory of
arithmetic). The basic DPLL(T) algorithm (Nieuwenhuis,
Oliveras, and Tinelli 2006) used by modern SMT solvers
proceeds as follows. A SAT solver is used to search for a sat-
isfying model of the input formula without any constraints
on the atoms that are actually constrained by 7. If no model
is found, the formula is unsatisfiable. If a model M is found,
a decision procedure for 7' (T-solver) is used to decide if M
is T'-consistent. If it is, the problem is solved. Otherwise, T'-
solver provides a lemma precluding M, which is then added
to the theory. The process is then repeated until the SAT
solver finds a T’-consistent model or proves unsatisfiability.
Nieuwenhuis et al. describe several variations and methods
for optimizing this basic procedure, which can be adapted to
our setting.

For any time horizon H, the problem of planning using
the accurate and the abstracted models can be reduced to
the SMT problem using translations such as those carried
out in SATPLAN (Kautz and Selman 1992). However, the
general principles of SMT can be adapted to use any pair
of reasoning processes in place of the SAT solver and the
theory solver. In particular, a search algorithm that uses the
abstract model representation to generate high-level plans
(partial models) can play the role of the SAT solver. Let
each action take the form a(Z,y), where y are the argu-
ments to be dropped, and P be the predicates that are ab-
stracted. Each high-level plan produced by the search al-
gorithm corresponds to a formula of the form 3y, - @0 A
a1 (01,71, 1)A@s, A. . Ay (0,) APgoat,, » Where the last
action-arguments are timesteps, ¢; are the dropped action ar-
guments, o; are instantiations of constants to the remaining
arguments, and ¢, are formulas representing intermediate
states and assignments for predicates in P, and @404, is @
formula asserting that the goal is achieved at time n.

Any algorithm that determines low-level feasibility of
such plans and produces high-level lemmas in case of in-
feasibility can be used in place of the T-solver to mimic the
SMT process. A few practical considerations make it diffi-
cult to apply this exact process: (a) low-level theory solvers
may be only probabilistically complete, as in the case of
motion planning; (b) the number of possible truth values for

abstracted predicates can be intractable; (c) heuristic meth-
ods may be required for instantiation of abstracted action ar-
guments; and finally, (d) incorporating lemmas in the high-
level theory of planning can be difficult if a non-SAT planner
is used.

Several approaches are possible for addressing these as-
pects. (a) and (c) can be addressed by daisy chaining the
search for instantiations of dropped action arguments with
increasing computation towards the determination of low-
level feasibility. We conjecture that the resulting solver
will be probabilistically complete if the space of feasible in-
stantiations for every feasible high-level plan is of non-zero
measure under a probabilistic instantiation process, and the
low-level reasoner is probabilistically complete. (b) can be
addressed by developing search algorithms that utilize the
structure of abstract representations, e.g., by optimistically
choosing preconditions that have to be true. (d) can be ad-
dressed by starting distinct threads for each instantiation and
using revised models in each.

We already have evidence of viability for this paradigm in
situations where the abstraction process is known, and leads
to imprecise action models. (Gregory et al. 2012) develop a
planning-modulo-theories approach that factors models into
pieces that come from specific theories and uses callouts to
low-level theories during search. (Erdem et al. 2011) ex-
plore various implementations of SMT style architectures,
while using an ASP solver for high-level reasoning with
a discretized space of possible action arguments. The ap-
proach presented by (Srivastava et al. 2014a) is also similar
to the SMT design outlined above; they identify a class of
abstracted, imprecise models where high-level plans can be
computed efficiently using classical planners.

5 Related Work and Conclusions

Physical systems such as those involving robots form a sig-
nificant source of motivation for sequential decision making.
Since such modeling such systems typically leads to large
MDPs and POMDPs, the topic of utilizing hierarchies for
computational efficiency has received significant attention.
With few exceptions, most of the hierarchies used in such
methods are temporal abstractions (Parr and Russell 1998;
Sutton, Precup, and Singh 1999) or require that the abstrac-
tion does not project out any variables that are relevant for
accurately expressing the value function (Dietterich 2000;
Andre and Russell 2002). However, as we note above, sev-
eral commonly used abstractions violate this condition. In
particular, task and motion planning problems typically in-
volve lossy state abstractions under which policy expres-
sions suffer not just in terms of optimality but also in terms
of basic executability.

The DRIPS framework (Haddawy, Doan, and Goodwin
1995) is perhaps the closest in spirit to the problems ad-
dressed in this paper. In that work, action abstractions are
considered by merging together different conditional effects.
Abstraction actions are represented using upper and lower
bounds on the probabilities of different effects. However,
state abstractions, which are the focus of the current pa-
per, are not considered. Konidaris et al. (2014) propose

89

an approach for computing a factored propositional transi-
tion model given an input continuous state space and sub-
goal option models. Such an approach could be combined
with the abstraction techniques presented in this paper to ob-
tain trade-offs between the computational cost of construct-
ing high-level representations and the level of abstraction of
the resulting transition model.

The methods developed in this paper could be extended
to the stochastic setting by derive DRIPS-style probabil-
ity ranges for abstract actions that are induced by state
abstractions. An alternative approach would be to com-
pute marginalizations w.r.t. the variables that are projected
out. Our analysis of abstractions also presents several direc-
tions for future work, including refinement of the planning
paradigm. The abstraction functions we studied can be used
to construct a search space of abstract representations and
automatically compute useful abstract models for a given
objective.

In conclusion, we presented an analysis of representa-
tional abstractions for planning problem specifications and
proved several results categorizing abstraction mechanisms
that exhibit desirable properties such as the Markov prop-
erty. We showed that expressing a large class of solvable
real-world problems in SLLs results in unsolvable or incor-
rect models, and presented methods for overcoming these
limitations. We also showed that together with information
about the abstraction process, such models can be utilized
in a paradigm for solving an entirely new class of problems
that were not expressible in SLLs.

References

Andre, D., and Russell, S. J. 2002. State abstraction for
programmable reinforcement learning agents. In AAAI/IAAI,
119-125.

Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of
Artificial Intelligence Research 13:227-303.

Erdem, E.; Haspalamutgil, K.; Palaz, C.; Patoglu, V.; and
Uras, T. 2011. Combining high-level causal reasoning
with low-level geometric reasoning and motion planning for
robotic manipulation. In ICRA, 4575-4581.

Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
ICAPS.

Haddawy, P.; Doan, A.; and Goodwin, R. 1995. Efficient
decision-theoretic planning: Techniques and empirical anal-
ysis. In Proceedings of the Eleventh Conference on Uncer-
tainty in Artificial Intelligence, UAT’95.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176-183.

Kautz, H., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proc. of the 10th European Conference on Artificial
intelligence, 359-363.

Knoblock, C. A. 1991. Search reduction in hierarchical
problem solving. In Proc. of the 9th National Conference on
Artificial Intelligence, 686—691.

Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2014.
Constructing symbolic representations for high-level plan-
ning. In Proc. AAAL

Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic seman-
tics for high-level actions. In Proc. ICAPS.

Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solv-
ing SAT and SAT modulo theories: From an abstract Davis—
Putnam-Logemann-Loveland procedure to DPLL(T). Jour-
nal of the ACM (JACM) 53(6):937-977.

Parr, R., and Russell, S. 1998. Reinforcement learning with
hierarchies of machines. In Proceedings of the 1997 Confer-

ence on Advances in Neural Information Processing Systems
10, NIPS ’97.

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial intelligence 5(2):115-135.

Sanner, S., and Boutilier, C. 2009. Practical solution tech-
niques for first-order MDPs. Artificial Intelligence 173(5-
6):748-788.

Sanner, S., and Kersting, K. 2010. Symbolic dynamic pro-
gramming for first-order POMDPs. In Proc. AAAL
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014a. Combined task and motion planning
through an extensible planner-independent interface layer.
In Proc. ICRA.

Srivastava, S.; Russell, S.; Ruan, P.; and Cheng, X. 2014b.
First-order open-universe POMDPs. Proc. UAI-14.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal ab-

straction in reinforcement learning. Artificial intelligence
112(1):181-211.

90

