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Abstract

The theory of mind is an important human capability
that allows us to understand and predict the goals, in-
tents, and beliefs of other individuals. We present an
approach to designing intelligent communicative agents
based on modeling theories of mind. This can be tricky
because other agents may also have their own theories
of mind of the first agent, meaning that these mental
models are naturally nested in layers. So, to look for in-
tuitive communicative acts, we recursively apply a plan-
ning algorithm in each of these nested layers, looking
for possible plans of action as well as their hypotheti-
cal consequences, which include the reactions of other
agents; we propose that truly intelligent communica-
tive acts are the ones which produce a state of maxi-
mum decision theoretic utility according to the entire
theory of mind. We implement these ideas using Java
and OpenCyc in an attempt to create an assistive Al we
call MARTHA. We demonstrate MARTHA’s capabili-
ties with two motivating examples: helping the user buy
a sandwich and helping the user search for an activity.
We see that, in addition to being a personal assistant,
MARTHA can be extended to other assistive fields, such
as finance, research, and government.

1 Introduction

Apple’s Siri and Google Now are both highly sophisticated
intelligent personal assistants, but they seem to lack the abil-
ity to converse intuitively; their responses appear to be trig-
gered by user commands and requests. Our ambition is to
forward the abilities of communicative agents by incorpo-
rating ideas in cognitive science and decision theory which
we believe are needed to create truly intelligent interactive
systems.

The idea of mental models, world models, and knowledge
bases are firmly established in Al systems, particularly in de-
signing agents that interact with the world. Mental models,
or mental states, are representations of an agent’s beliefs,
goals, and intentions. They can include facts about the envi-
ronment, such as weather, traffic, sandwich prices, games
and activities, etc. But, in order to act rationally, mental
models must also be able to keep track of and predict the
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beliefs, goals, and intentions of other agents — this ability is
called a theory of mind. Indeed, for an agent to have a theory
of mind, it must acknowledge that other agents act according
to their own, usually unobservable, mental models. Most im-
portantly, it means that agents must account for false beliefs
or hidden intentions in other agents.

An intelligent personal assistant using a theory of mind
must be able to track the user’s mental model in terms of
beliefs and desires, using knowledge to support the user in
pursuit of his goals. Frequently, the assistant may find that
the user may have incomplete or false beliefs. For instance,
the assistant may have access to cloud databases which it
knows the user does not, so if the user believes the price of
a sandwich in Chicago to be an incorrect amount, the as-
sistant should supply the user with correct information. At
the same time, telling the user something he already knows
is (usually) useless, so the assistant should stop itself from
being redundant.

Additionally, an assistive Al must realize that telling the
user everything it knows that the user does not know is use-
less, too; a user located in Chicago is generally not con-
cerned about the weather in Florida, even if his beliefs about
it are incorrect (unless he’s planning a trip to the Sunshine
State, an exception the assistant must identify). In this way,
a theory of mind can be used to prune a huge list of possible
communicative acts to a few truly helpful options.

In fact, it becomes evident that a theory of mind is essen-
tial for intelligent social behavior in general. Just as existing
agents must model the state of the inanimate environment to
better navigate through those spaces, an agent must model
theories of mind to interact rationally with the nuances of
human society.

This can be difficult to accomplish as some modes of in-
teraction require deeply nested theories of mind. Consider
the act of telling your friend Jim that you know John’s phone
number. Why did you find it useful to tell him this? The rea-
son is that your model of Jim shows that he incorrectly be-
lieves that you do not know John’s phone number — telling
him corrects this, and now you both know the correct infor-
mation. This is already a three-layer model. Going deeper,
consider the act of telling Jim that you don’t know John’s
phone number, but you know that Sally does. Here, you’ve
used the fact that you know that Jim thinks you know John’s
number — a three-layer model — concurrently with the fact



that you know that Jim believes what you know about Sally
is correct — a four-layer model!

According to numerous cleverly designed psychological
experiments, it is known that humans can operate on four
nested levels of modeling, but tend to lose track of informa-
tion nested on deeper levels (Ohtsubo and Rapoport 2006).
One can thus suppose that whatever skill humans exhibit in
social interaction uses theories of mind nested at five or six
levels at most.

The objective of the line of research reported here is de-
signing artificial agents that can match these capabilities. In
order to do so, we need a general framework of processing
information in nested theories of mind. We propose that a
nested decision theoretic process should be used for this pur-
pose. The key is to assign quantifiable values to an agent’s
desires and plans using utility functions. If anything about
the world, or about other agents, is uncertain, the expected
utility is the guide to optimal (and intelligent) ways to inter-
act.

The central tenet to our approach is this: since commu-
nicative acts alter the other agent’s mental state (which is re-
flected in the first agent’s theory of mind), the optimal com-
municative act is the one which changes the theory of mind
in the most optimal way. Since actions (e.g., doing some-
thing) and mental states (e.g., believing something) can both
have utility values, the change in utility can be determined
by the total utility contributed by actions and states in a plan.

These plans should not necessarily be triggered by user
prompts. This is possible by detaching the planning process
from user input so that plans are constantly being generated
and evaluated with respect to the immediate state. Thus, if
an act is useful at any time, it can and should be executed
without necessitating a user request, just as humans do not
always need to be prompted to volunteer information. Still,
this does not preclude responding to a direct request for help.

In the remainder of this paper we detail an implementa-
tion of the ideas presented above. We used OpenCyc™! to
apply the world model and theory of mind of a user in two
simple scenarios. We call this implementation the Mental
state—Aware Real-time THinking Assistant, or MARTHA 2
with the goal of creating a knowledge assistant capable of
understanding what it is the user wants to know. We include
an example run that results in Martha computing the optimal
communicative act to be executed, given what is known. We
also walk through a theoretical assistive search application.
Finally, we conclude with our thoughts about future work.

2 Background & Related Work

There are two leading theories on the origin of theory of
mind: theory theory and simulation theory. Theory theory is
the idea that humans acquire a theory of mind by associat-
ing mental states with observed behaviors and formulating
common-sense theories of correlation. This is akin to how
one gains an informal understanding of physical concepts,
such as gravity, through observation (Gallese and Goldman

'OpenCyc is a trademark and Cyc is a registered trademark of
Cycorp, Inc.
2Also stylized as “Martha”.
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1998; Frith and Frith 2005). An example of this rule-based
approach would be concluding a person is happy by observ-
ing him smile, having previously learned the correlation.

Intuitive evidence, however, favors simulation theory.3 If
Alice is trying to understand how Bob feels or thinks in a
certain situation, she will likely “put herself in the Bob’s
shoes” by thinking about how she might feel, given the
same environmental inputs as Bob. Simulation theory is ex-
actly this intuitive process of simulating one’s thought pro-
cess in a hypothetical situation (Gallese and Goldman 1998;
Shanton and Goldman 2010). The observer can perform an
imaginary spatial translation into the point of view of the
observed individual and determine a likely mental state at-
tributable to the observed individual (Gallese and Goldman
1998; Frith and Frith 2005). Another proposal is that the
observer can approximate the observed individual’s mental
state through a series of conscious deltas or “inhibitions” on
his own mental state (Leslie, Friedman, and German 2004)

There are two other tools and concepts which are required
for implementing such a theory of mind in software. These
are a knowledge base to represent thoughts and a planning
system to act on that knowledge.

Cyc® is a project which aims to create a comprehen-
sive general knowledge base to help intelligent agents ex-
tend to a broad range of applications (Matuszek et al. 2006;
Ramachandran, Reagan, and Goolsbey 2005). Cyc is a struc-
tured representation of knowledge largely organized in first-
order logical statements. It has a powerful and efficient in-
ference engine that allows it to draw conclusions quickly
with practical accuracy (Ramachandran, Reagan, and Gools-
bey 2005). Interaction with the knowledge base is performed
through assertions and queries in CycL, a Lisp-like language
created for Cyc. It is also accessible via a Java API. Our
work uses OpenCyc, a small open-source portion of the pro-
prietary Cyc database which the developers have released
for general use.

Planning arises from connecting pre- and post-conditions
of actions in chains which pursue a goal. (Cantrell et al.
2012) not only successfully built a system capable of cre-
ating plans using known pre/post-conditions, but they also
showed that the system could parse these conditions from
verbal directions on-the-fly.

Finally, there have been attempts to implement rigorous
assistive Al with mental modeling in the past. A notable ex-
ample is PExA (Myers et al. 2007), a personal scheduling
and work organization assistant for enterprise that was made
to be integrated into the CALO (Tur et al. 2010) meeting as-
sistant system. PEXA was intended to free employees from
rote tasks by learning how to do them from the user. For
the tasks it could not do, PExXA would check over the user’s
work to correct mistakes. Most interestingly, PEXA was ca-
pable of proactively communicating with the user, remind-
ing him about obligations and problems, due to its ability
to monitor the user’s mental state. We seek to build upon
this ability with a focus of extending the mental modeling to

3This is not to say that theory theory is not useful, however;
in building an intelligent computer system, it can be convenient to
abstract many learned processes into discrete logical rules.



multiple layers.

MARTHA aspires to combine ideas from each of these
different lines of research. In order to make MARTHA an
assistive Al, we must first create an intelligent agent with
the ability to plan and act in real time, centered on a theory
of mind.

3 Implementing Theories of Mind in
OpenCyc
MARTHA is written in Java to use OpenCyc through the
Cyc Java API. With this, Martha creates a theory of mind
in software by nesting planning and reasoning processes in
layers of hypothetical contexts. These hypothetical contexts
correspond to the human cognitive activity of seeing some-
thing from someone else’s perspective, i.e., “putting oneself
in another’s shoes.” Hence, these contexts are “sandboxed”
or isolated so that assertions in them do not directly change
the beliefs in the parent context. This allows Martha to at-
tribute simulated thoughts to the user and act on them as
such. The nested nature of planning is displayed in Figure 1.

USER

— Martha Engine ~—

Martha

MainProcess Consciousness

—_— Martha Process

Knowledge Base Martha Process

ZLA.

Hypothetical
Contexts
(nested)

MARTHA

Figure 1: An organizational view of MARTHA. The arrows
indicate the flow of information.

3.1 MARTHA’s Modules

MARTHA is comprised of four primary modules.

The MainProcess module is responsible for initializing
the knowledge base, spawning the Martha Engine (and
through it, the Martha Consciousness module), and then ac-
cepting user input via a prompt line after everything is ready.

The knowledge base, implemented in OpenCyc, stores the
entirety of Martha’s knowledge about the world.

The Martha Consciousness module drives the real-time
component of MARTHA by continuously interleaving plan-
ning, evaluation, and execution phases. A planning phase
followed by an evaluation phase and an execution phase
comprise one cycle of consciousness. The Martha Con-
sciousness module initiates these cycles in the background,
separate from the user prompt, so that Martha does not need
to wait for user input before acting, allowing her to produce
output of her own volition.

Central to the entire system is the Martha Engine. This
module houses methods for evaluating the utility of actions
and executing plans that interact with the user. It also con-
tains a CycL interpreter. All operations on the OpenCyc
knowledge base are directed through the Martha Engine so
that it can keep track of the information it processes using
meta-tags.
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Martha’s planning process is carried out by a series of
nested Martha Processes spawned within the Martha Engine.
The Martha Process class is a subclass of the Martha En-
gine, modified so that it contains algorithms for planning, as
well as special evaluation and execution methods which send
plans back and forth throughout the nested structure. This
planning takes place in the sandboxed hypothetical contexts
because they contain propositions which are not necessarily
true. This is discussed in further depth in Section 3.4.

3.2 The OpenCyc Knowledge Base

| Universal |

MARTHA

Martha’s Hypothetical of
User

Hypothetical User’s
hypothetical of MARTHA

Figure 2: The hierarchy of contextual spaces in MARTHA.

Martha’s knowledge base (KB) is built on top of Open-
Cyc, accessed through Cyc’s Java API. The KB is organized
into the Universal context, the MARTHA context, and vari-
ous hypothetical contexts, as shown in Figure 2. All contexts
inherit base assertions from the Universal context, which
is what is initialized when Martha starts. During runtime,
Martha moves into the MARTHA context, which contains
all new facts and conclusions that Martha learns, but are not
necessarily universal. Hypothetical contexts inherit all uni-
versal facts, but only selected facts from their parent context
(the selection method is described below). Because each hy-
pothetical context is isolated from its parent context, Martha
is able to actually run simulations, i.e. perform assertions
and observe results, without contaminating the parent and
main MARTHA contexts.

The actual contents of the KB can be divided into the cat-
egories of facts, action definitions and pre/post-conditions,
utility values, and miscellaneous rules.

Facts are assertions about constants and functions, such
as (isa Rover Dog). Goals, beliefs, and knowledge are
three special kinds of facts. An agent’s goals are represented
with the desires predicate while beliefs and its subtype,
knowledge, are represented with beliefs and knows.

More important to Martha are assertions about actions,
especially their pre- and post-conditions. These can be
as simple as (preconditionFor-Props (knows
?AGENT (basicPrice ?0BJECT ??VALUE))

(buys ?AGENT ?OBJECT) ), which states that a pre-
condition for an agent to buy something is that the agent
knows the price of the object. But through the use of impli-
cations, which allows for conditional statements, these defi-
nitions can become quite complex, such as with (implies
(and (beliefs ?AGENT (sells ?STORE
?PRODUCT) ) (desires ?AGENT (buys ?AGENT



?PRODUCT) ) ) (causes—-PropProp (desires
?AGENT (buys ?AGENT ?PRODUCT)) (desires
?AGENT (at-UnderspecifiedLandmark

?AGENT ?STORE)))), which means that given that
an agent believes that a certain store sells a product which
the agent wants to buy, the desire to buy a product will
cause the agent to want to go to the store.

Equally as important and numerous are statements about
the utility values of certain states and actions, which are
placed in assertions like (baseUtilityValue USER
(driveTo USER ?PLACE) -10). This example states
that the base utility value to the user of driving to a certain
place is -10 (due to travel costs).

A key tool for organizing the knowledge base is the Hypo-
thetical Context Constructor. This spawns nested sandboxed
contexts for simulating the next layer in the theory of mind.
Belief statements are unwrapped according to the ordering
of the nested layers, using the nested belief statements of
the current context to initialize the beliefs of the next con-
text. For example, in a three layer simulation consisting of
a Martha thought process, a user simulation, and a Martha
simulation, the statement (beliefs USER (beliefs
MARTHA (isa Rover Dog)))) asserted to the Martha
thought process would be unwrapped to be (beliefs
MARTHA (isa Rover Dog))) in the user simulation,
and then (isa Rover Dog) in the simulation of the user
simulating Martha. This makes it easy to package knowl-
edge so that it can be injected directly into the knowledge
base. We call this format onionized knowledge.

Finally, Martha also has a variety of Martha Func-
tions which have little meaning within the OpenCyc KB
but are indispensable to the Martha Engine. Some key
functions are baseUtilityValue, says, focus, and
carryover. baseUtilityValue specifies the unmod-
ified utility value of a state to a particular agent as a pa-
rameter of a utility function. says is a functional predi-
cate applied to statements which causes Martha to say those
statements. focus is a meta-tag that inputs a fact, goal,
or action as the seed of a forwards search. User statements
are automatically wrapped in focus tags by the MainPro-
cess. carryover is a meta-tag used by the Hypotheti-
cal Context Constructor to include the tagged fact in the
next nested context. Carrying over a focus statement to
see its implications is often very useful; thus there is also
a sowhat function which is an alias for (carryover
(focus statement)).

3.3 Shifting Focus

In intuitive conversation, individuals often discuss only a
few topics at a time; it can be awkward to jump around, for
instance, by first talking about politics and then about buy-
ing sandwiches, without precedent. Thus, it can be helpful to
avoid extraneous lines of thought in MARTHA by using the
focus predicate to center her planning on what is tagged.

Additionally, in real conversation, focuses shift rapidly.

What was important merely a few minutes ago might not
be important now. So, the focus is coupled with a “focus
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ticker,” a counter to identify the latest set of focuses.* So, in
order for a focus tag to be considered, it must have a number
which corresponds to the focus ticker.

Focuses are not the same as contexts; context here refers
to assertion and inference contexts in the OpenCyc knowl-
edge base.

3.4 Theories of Mind through Nested Planning

Simulation theory suggests that theory of mind arises when
individuals extend their thought process into another indi-
vidual’s situation. In MARTHA, this is represented by ap-
plying Martha’s planning schemes (backward-search and
forward-search) in a series of nested mental models. Each of
these nested layers contains the beliefs of a simulated agent,
created by the Hypothetical Context Constructor.

The planning phase begins when the Martha Conscious-
ness module prompts the Martha Engine to explore. This
spawns a new Martha Process in the root MARTHA context.
A forward-search planning process is launched, seeded with
eligible focus statements. This search starts from the focus
and plans forwards in time, chaining preconditions to actions
to postconditions. Concurrently, a backward-search occurs,
which starts with user goals and chains in reverse. These
continue to run until the search is exhausted or a timeout
is reached. Each resulting chain of preconditions, actions,
and postconditions is called a plan, and these are queued
for evaluation. In the backward-search, unfulfilled precondi-
tions are also marked with a special tag that makes them the
focus of the planning phase in the next nested layer.

Martha is agnostic to which search scheme the plans orig-
inated from, since they have the same meaning (i.e., they are
all series of viable actions), yet independent, non-conflicting
roles. The purpose of a forward-search is discovery; it is
analogous to the question, “What if...?” which explores the
consequences of actions. On the other hand, the purpose of
the backward-search is to directly look for paths to goals,
seeking out unfulfilled preconditions in particular.

The evaluation portion of the planning phase (not to be
confused with the evaluation phase run by the Martha En-
gine) follows the search portion. Each plan is scored as the
sum of the utility of its components. Plans must meet a min-
imum score in order to be considered; lines of search that
are obviously useless are discarded to maintain efficiency. In
hypothetical contexts, these thresholds are very low, and all
eligible chains are passed on to the next nested layer to en-
courage imagination. Plans that are passed on are picked up
by the Hypothetical Context Constructor and injected into
the next nested layer.

Once the planning phase reaches a maximum depth of
nesting, the planning phase ends and the evaluation phase
begins. Returning to the top layer, the Martha Engine scores
all the proposed plans by their utility. Once again, plans must
meet a minimum score to be considered, but in the Martha
Engine, where plans are executed in reality, this threshold is

*One implication of this is that the counter increases at a nearly
regular rate for each cycle of consciousness. This produces a con-
tinually shifting focus, which may be able to create a kind of con-
sciousness in MARTHA, or at least a sense of time.



very high, and only the best plan is executed — if it is worth
it! This threshold has a different role than the threshold in
the evaluation portion of the planning phase in that it is de-
signed to filter out plans with negligible utility (which, if
executed, would cause Martha to “babble”).

Plans which were filtered out but contain Martha Actions
(such as says) are reconsidered in a miniature repeat of
the planning phase using primarily forward-search. This is
analogous to thinking about why a particular urge to perform
an action arose and to investigate if it has any merit. This is
a key ability in social situations, as these urges can represent
societal expectations for behavior.

After the evaluation phase is complete, the execution
phase begins. If there is one, the single best plan that meets
the threshold is read step by step in the Martha Engine. Steps
that correspond to Martha Actions are executed in reality.
Then, the cycle of consciousness repeats, starting again at
the planning phase.

The whole point of this set up is so that Martha uses sim-
ulations of the minds of other agents to identify their inten-
tions and plans of action so that, as an assistive Al, it can act
to help fulfill the inferred needs of these agents. With this
recursive, nested planning simulation, Martha mimics an or-
ganic thought process which humans perform all the time.
While the search algorithms used here are naive, potentially
resulting in long wait times for responses, we plan to imple-
ment faster algorithms in future versions of MARTHA. It is
our hope that the general method described here might allow
artificial agents to navigate the human domain of theory of
mind.

4 Demonstration of Capabilities
4.1 An Example Run with the Sandwich Scenario

The User is looking to buy a sandwich, specifically,
the FiveDollarSteakSandwich (Figure 3). However, with a
propensity to overlook the significance of names, he cannot
tell if he can afford it. He knows that Martha knows the price
of the sandwich, and so he talks to her, telling her that he
wants to buy a FiveDollarSteakSandwich, and that he has $4.
From these two statements, Martha must infer that the user
is telling her this because he would like to know whether he
can afford the sandwich.

The setup for this scenario is created by a series of initial-
ization files. These contain the following initial assertions
(among other internal assertions), translated into plain En-
glish from CycL, below:

1. Knowing that you can afford an item is a precondition to
buying the item.

2. If you have less money than an item’s price, then you can-
not afford the item; if you have more than or the same as
an item’s price, then you can afford it.

3. You know that Martha will tell you whether you can af-
ford something if you need to know whether you can af-
ford something.

4. If you try to buy something you can’t afford, you will feel
embarrassed.
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With these facts in mind, the scenario and Martha’s
thought process are designed to work like this:

Step 1. The user tells Martha that he wants to buy a
FiveDollarSteakSandwich, and that he has $4.

Step 2. Martha considers the user input from Step 1 in the
planning phase, asking itself why the user said what he
said using the sowhat meta-tag.

Step 3. Martha thinks about what the user was thinking
when he gave her the input. When he said “I have $4,” and
“I want to buy a FiveDollarSteakSandwich,” he knew that
would cause Martha to know those facts. These nested be-
liefs are important pieces of onionized knowledge. Martha
also wonders about the information itself: that he wants
to buy a FiveDollarSteakSandwich. She knows that he
knows that to buy a product, one must first be able to af-
ford it, so Martha reasons that the user must be wondering
if he can afford it.

Step 4. Martha simulates the user simulating Martha. Previ-
ously, Martha concluded that the user knows that Martha
knows that he has $4 and that he wants to buy the sand-
wich. Given Initial Assertion 3, Martha knows that the
user therefore expects her to tell him whether or not he can
afford the sandwich. Notice how there is no rule govern-
ing which Martha should say, just an expectation that she
will respond accordingly. This is because, realistically, the
user cannot know for sure what Martha’s internal rules
are, but he can have social expectations for Martha’s be-
havior. To see which is the most useful, both responses
are queued for further investigation.

Step 5. Martha begins the evaluation phase to investigate
these two plans. Note that the knowledge and conclusions
from the planning phase are preserved in the MARTHA
context. She also knows the sandwich costs $5.

Step 6. Martha explores the possibilities of a suggested ac-
tion produced by the planning phase: telling the user
he can’t afford the sandwich. From Initial Assertion 1,
Martha knows that if she says this, the user will know that
he cannot afford the sandwich, and therefore cannot buy
it because the mandatory precondition of being able to af-
ford what one wants to buy is unfulfilled. Martha’s speech
act here is associated with a positive utility value because
Martha is telling the user something he doesn’t know.

Step 7. With a similar logic, Martha finds that if she tells
the user that he can afford the sandwich, he will go ahead
and try buying it, resulting in his embarrassment (since he
can’t afford it). This is associated with a strong negative
utility value.

Step 8. Martha looks at the utility values of the proposed
plans, and chooses the highest one which exceeds the
minimum utility threshold.

Step 9. Martha executes the chosen plan, telling the user
that he cannot afford the sandwich. The user is naturally
disappointed, but glad he has been saved the embarrass-
ment of trying to buy a sandwich he could not afford.
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Figure 3: The thought process of the Sandwich Scenario. Provided only with information about how much money the User
U has and which sandwich he wants, MARTHA M must infer that the user needs to know whether or not he can afford the
sandwich before he goes to buy it. Through a series of nested steps, Martha is able to simulate the user’s intentions for telling
Martha such information, and Martha responds accordingly by telling the user whether he can afford the sandwich.

4.2 Selected Output from the Sandwich Scenario

We provide some screenshots from the actual execution of
the program to demonstrate the level of interaction that
MARTHA is capable of. We also provide some interesting
sub-scenarios in which we alter the input to further demon-
strate MARTHA'’s use of a theory of mind.

Note that since this is an early implementation, we did not
use natural language processing with OpenCyc, so commu-
nications must still be done through CycL assertions.

MARTHA:
MARTHA:
MARTHA:

MARTHA>>> (not (affordToBuy USER FiveDollarSteakSandwich))

MARTHA=>> (basicPrice FiveDollarSteakSandwich (Dollar-UnitedStates 5))

Figure 4: The Sandwich Scenario output, as designed. Green
text is user input, while black text is MARTHA output.

In Figure 4, we see the user interaction as described by the
model above. The user tells Martha that he has $4 and wants
the FiveDollarSteakSandwich. Martha responds that the user
cannot afford the sandwich. Interestingly, Martha also tells
the user the price of the sandwich, since another precondi-
tion of buying something is to know how much it costs. This
is surprising though, because in the naive planner, telling
the price would be part of a plan to buy something (which
the user cannot afford), which would be associated with em-
barrassment. While Martha initially avoided this plan in the
first cycle of consciousness, after she told the user that he
couldn’t afford the sandwich, she seemed to become free to
think about what might happen if the user were able to af-
ford the sandwich. This other speech act emerges as useful
in the next cycle of consciousness and is added moments
later, reminiscent of a second thought.

In Figure 5, we see Martha explore what might happen if
she tells the user that he can afford the FiveDollarSteakSand-
wich when he can’t. Starting from the speech act, Martha
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>»> (says MARTHA (affordToBuy USER FiveDollarSteakSandwich))

USER ===EXPLORE=== 1

>>> FORWARDS : (says MARTHA (affordToBuy USER FiveDollarSteakSandwich)) @
>>> FORWARDS : (knows USER (affordToBuy USER FiveDollarSteakSandwich)) 1
>>> FORWARDS : (buys USER FiveDollarSteakSandwich) 2

>>> FORWARDS : (possesses USER FiveDollarSteakSandwiich) 3
EVAL-QUEUED: [(says MARTHA (affordToBuy USER FiveDollarSteakSandwich)),
>>> FORWARDS : (feelsEmotion USER (HighAmountFn Embarrassment)) 3
EVAL-QUEUED: [(says MARTHA (affordToBuy USER FiveDollarSteakSandwich)), (knows
EVAL-QUEUED: [(says MARTHA (affordToBuy USER FiveDollarSteakSandwich)), (knows
GOALS: [(buys USER FiveDollarSteakSandwich), (feelsEmotion USER (HighAmountFn H
>>> BACKWARDS : (buys USER FiveDollarSteakSandwich) 1

>>> BACKWARDS : (knows USER (affordToBuy USER FiveDollarSteakSandwich)) 1

>>> BACKWARDS : (says MARTHA (affordToBuy USER FiveDollarSteakSandwich)) 1
>>> BACKWARDS : (desires MARTHA (knows USER (affordToBuy USER FiveDollarSteak
[[(buys USER FiveDollarSteakSandwich), (knows USER (affordToBuy USER FiveDollar

(knows

Figure 5: Debug output from the Sandwich Scenario demon-
strating the forwards and backwards search process.

finds that saying something as such will cause the user to
(falsely) know that he can afford it, which will lead him to
buy the sandwich. Usually, this means that he would possess
the sandwich, so this is queued for evaluation. But since the
user can’t afford it, another consequence is that the user will
feel a high amount of embarrassment for trying to buy some-
thing that he can’t afford. Embarrassment is associated with
a strong negative base utility value, which overrides any of
the positive benefit which may exist intrinsically in knowl-
edge, hypothetical possession, or other actions in the plan.

Also shown here is how Martha queues each plan for eval-
uation (EVAL—-QUEUED) once the planner has exhausted
that particular the line of search. Also shown is how Martha
can perform her backwards search (GOALS) to look for ways
to fulfill a defined set of goals.

In the example in Figure 6, we show how Martha is able
to update the user model when new information becomes
available. The user starts by telling Martha that he has $4 and
that he wants a FiveDollarSteakSandwich. Martha responds
that he cannot afford it and conveniently tells the user that
it costs $5. When the user tells Martha that he now has $7
available, Martha notifies the user that he can now afford the
sandwich. Notice how Martha does not tell the user the price
of the sandwich again, since it was already said.

In the final alteration to the Sandwich Scenario in Figure
7, we looked at what might happen if the user changed his



MARTHA:
MARTHA :
MARTHA :

MARTHA>>> (not (affordToBuy USER FiveDollarSteakSandwich))

MARTHA>>> (basicPrice FiveDollarSteakSandwich (Dollar-UnitedStates 5))

MARTHA: =(cashAssetsOfAgent USER (Dollar-UnitedStates 7
MARTHA :

MARTHA=>> (affordToBuy USER FiveDollarSteakSandwich)

Figure 6: MARTHA handling changing information. She re-
acts by updating her speech act from before.

MARTHA: =(cas
MARTHA: =(des
MARTHA:

MARTHA=>> (not (affordToBuy USER FiveDollarSteakSandwich))

MARTHA>>> (basicPrice FiveDollarSteakSandwich (Dollar-UnitedStates 5))

MARTHA :
MARTHA :
MARTHA:

MARTHA>>> (affordToBuy USER JimmyJohnnyBLT)

Figure 7: MARTHA avoiding redundancy. She responds
without telling the user the price of the sandwich again.

mind about which sandwich he wanted rather than chang-
ing the amount of money he had. The user begins by telling
Martha that he has $4 and wants the FiveDollarSteakSand-
wich. Upon learning that he can’t afford it, he tells Martha
that he now wants the JimmyJohnnyBLT. As an additional
challenge, he says to Martha that he already knows it costs
$3.50. Martha correctly tells the user that he can afford it
without saying the cost again, since he already knows.

These examples demonstrate how complex behavior —
such as giving second-thoughts, thinking hypothetically, and
correcting speech acts with new information — can arise from
a set of common-sense facts and a nested planning algo-
rithm. In this way, Martha can be adapted to any field of
knowledge, not just sandwiches, by integrating an appropri-
ate knowledge base. It is hoped that by integrating a large
and diverse amount of these, Martha can be extended to
work in a broad range of activities.

4.3 The “I’m Bored” Scenario

An important potential application of MARTHA is in as-
sistive search, such as in helping a user find something to
do when he says “I'm bored.” Currently, intelligent per-
sonal assistants who are presented with a statement like “I"'m
bored,” respond with a message like “Not with me, I hope.”
(Siri), or simply open up a web page (Google Now). In con-
trast, Martha will use its ability to simulate theories of mind
to provide the user with an intuitive suggestion based on
facts Martha knows about the user. Therefore, not only is
Martha’s communication meaningful, but it is also similar
to human communication.

Figure 8 depicts the process by which Martha suggests
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the user play golf. Here, Martha already knows that the user
dislikes basketball but enjoys golf and tennis.

Step 1. The bored user tells Martha that he’s bored.

Step 2. Martha sets up an analysis as to why the user
told her that he’s bored by tagging the statement with a
sowhat tag.

Step 3. Martha knows that because the user said he was
bored, the user does not know what to do, and that he
would prefer to have something to do. Therefore, Martha
now knows that the user is expecting a response in the
form of a suggestion.

Step 4. Martha knows that the user knows that she knows a
plethora of activities. Martha also knows that the user dis-
likes basketball but enjoys golf and tennis. Since Martha
knows the user is expecting a response, she considers two
choices: either tell the user that there are no activities for
him to do, or tell him to take part in an activity that he
likes, such as golf.

Step 5. After evaluating possible speech acts, Martha sug-
gests to the user that he should play golf.

At this point, the user may give feedback to Martha’s se-
lection, such as saying “I don’t want to play golf” or “I
am actually starting to get interested in basketball.” Because
Martha is still focused on the user’s desire to do something,
Martha will repeat this process of searching, taking into ac-
count the new information from the user. This leads to a dy-
namic search that feels more natural than limited forms of
querying presently available. With such a regime, it may be
possible to use Martha to find those things that are “on the
tip of your tongue.”

5 Conclusions and Future Work

This paper puts forth what we consider to be principles of
intelligent interaction and communication: the use of nested
mental models and theories of mind and the principle of
decision-theoretic rationality. We describe our preliminary
implementation with OpenCyc through a simple sandwich
purchase scenario as well as an assisted search scenario.
The applications of MARTHA, of course, can be extended
beyond mere sandwich shopping and activities. Even the
simple ability to tell the user whether or not he can afford
something can be coupled with product data and ideas in fi-
nance to allow Martha to aide users in financial decisions.
With just a little more work in integrating the necessary
knowledge, but with the same foundational algorithm, some
examples of what Martha could be capable of include

e Providing information (like weather or traffic updates)
when the user needs it by anticipating the user’s inten-
tions;

e Helping people, from families to investors, make sound
financial decisions, using its nested planning algorithm;

e Assisting a child to find a book he wants to read, a re-
searcher to find the perfect article, a government official
to find a particular document, etc., by understanding what
they are looking for through conversational feedback;
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Figure 8: The “I’'m Bored” scenario.

e Issuing dynamic reminders, such as a reminder to take a
medication, when it is least likely to be ignored, rather
than at an easily-dismissed pre-set time.

Most importantly, these individual behaviors can be imple-
mented simultaneously in MARTHA. When outputs from
one mode of operation can act as inputs to another because
Martha has knowledge and function in those areas, it is ev-
ident that MARTHA can gain sophistication through an ex-
pansion of its knowledge base.

In future work, a number of issues need to be tackled to
make our approach scale to reality. In addition to optimiz-
ing the algorithm for faster execution, these include keep-
ing close track of the preferences and goals of the user (for
example, by using inverse reinforcement learning) (Ng and
Russell 2000); automatically inferring new rules of life; han-
dling overlapping goals and tasks; and keeping track of the
user’s current focus and attention span.

Ultimately, we see that the addition of a theory of mind to
assistive Al has the potential to greatly improve human inter-
action with intelligent agents in that these can communicate
more naturally and effectively. Agents capable of modeling
mental states can not only avoid redundancy in communica-
tive acts, but they can also act more intelligently by virtue
of predicting the motives and intentions of other agents. In
MARTHA, we are confident that the system has the potential
to bring contextual understanding to human conversations;
with more work to enlarge its knowledge base and data ac-
quisition capabilities as well as its algorithm, this could sig-
nificantly advance assistive intelligence.
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