
Linking the Deep Web to the Linked Data Web

Rahul Parundekar, Craig A. Knoblock and José Luis Ambite
University of Southern California

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
{parundek,knoblock,ambite}@isi.edu

Abstract

Even though the Linked Data movement is constantly gain-
ing ground, a huge chunk of information is still present in
the traditional web of human readable pages. Data from
such sources in the Surface Web and the Deep Web needs
to be published as structured data into the Linked Data Web.
The work described in this paper, links the individuals in the
RDF extracted from such sources with individuals already
present in the linked data cloud. The extraction of struc-
tured data from these sources is based on our prior work
on automatically generating Semantic Web Services from
web sources. Once we are able to link individuals of the
generated Semantic Web Service with the data present in
the linked data cloud, we can populate data from Deep Web
sources belonging to different domains into the Linked Data
Web. The contribution of the system is that it not only inte-
grates known sources from the Deep Web into the linked data
web but also links previously unknown, similar sources, and
helps generate potentially huge amount of structured data.

Introduction

The Linked Data Web is a vast dataset of structured data
which is steadily increasing in volume as a result of inde-
pendent efforts to publish an organisation’s knowledge, in-
formation and data and linking it with other data already
part of the linked data cloud. As of March 2009, accord-
ing to statistics collected by the linked data community, the
estimated size of the linked data cloud is 4.7 billion triples
with 142 million RDF links (Bizer, Heath, and Berners-Lee
2009). This has come about due to involvement of big orga-
nizations such as BBC, Library of Congress, etc. along with
contributions from various organizations in domains like ge-
netics, clinical trials, online communities, etc. A major part
of the WWW however remains untapped as it is based on
the traditional web where data is embedded within HTML
pages in unstructured text as well as structured tables, etc.

The amount of data on the linked data cloud would signif-
icantly improve if we had a way to convert traditional data
sources into structured data like RDF and at the same time,
link them to the cloud using the linked data design princi-
ples. Some of these traditional sources also fall into the cat-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

egory of the Deep Web, where data is not directly exposed on
the surface and thus cannot be indexed. Moreover, we may
also come accross temporal data which though changing,
might provide useful knowledge e.g. the current weather
conditions for a zip code, prices and statistical data of stocks
and mutual funds, etc. Converting such data into RDF would
not, by itself, be able to provide its potential benefit unless
the knowledge present on the linked data cloud is exploited.
It is the added links between local data and whats already
out there on the cloud that provides improved knowledge to
both the individual as well as the linked data community.

Consider a hypothetical linked data application for track-
ing personal portfolio. Data from various sources such as
various banks and trading sources (secure data that cannot
be statically published), asset holdings, and current prices
of stocks, mutual funds etc. (data that constantly changes
and hence is present only in the Deep Web) needs to be inte-
grated into a single place. Unless these sources are already
linked to the cloud, we need a mechanism to pull data from
them and link it dynamically to the cloud in order for it to
be integrated. Our previous work on automatically generat-
ing Semantic Web Services from online sources (described
in the previous work section) provides a means to generate
RDF data from the traditional web sources. In order to ex-
ploit the capabilities of integrating this data with the vast
knowledge present on the linked data cloud, we propose a
mechanism to populate the Linked Data Web dynamically
from these sources. Our contribution is thus to solve the
problem of information integration between the linked data
web and the traditional web.

In the paper that follows, we first describe the implemen-
tation of the DEIMOS system on which the current work
is based. This is followed by the core section which de-
scribes our contribution in automatically connecting novel
Deep Web sources to the Linked Data Web. We also de-
scribe results of our implementation for the mutual fund do-
main. The related work section describes other work in the
field of data integration into the linked data web. Finally, we
provide the conclusion of our work.

Previous Work

The work in this paper is based on previous work on auto-
matically constructing Semantic Web Services from online
sources (Ambite et al. 2009). DEIMOS is an integration

87

discovery invocation
& extraction

source
modeling

Background
knowledge•seed source

anotherWSgooglefinance

googlefinance

•sample
input
valueshttp://finance.yahoo.com

“RBCGX”

•patterns

googlefinance(FundSymbol,FundName,…)

•definition of known
sources (e.g., seed)
•sample values

googlefinance(FundSymbol,FundName,…)
:-yahoofinance(FundSymbol,…,FundName)

semantic
typing

Semantic
Web

Service

Figure 1: DEIMOS system architecture

of previous work on tackling the sub-problems of automatic
Source Discovery, Extraction and Modeling. As a combined
system, it works as an end-to-end approach that automati-
cally finds sources, extracts the data from them, determines
the semantic types of the outputs, builds the source mod-
els, and turns them into Semantic Web Services. Figure 1
shows the overall architecture. DEIMOS starts with a known
source (seed source) and the description for the domain (e.g.
Mutual funds, Weather, etc.) it belongs to, and generates
Semantic Web Services for similar sources that it discovers.

The example used in this paper is the mutual fund domain,
where the background knowledge consists of: (1) Seman-
tic types: e.g., FundSymbol, FundName; (2) Sample values
for each type: e.g., “RBCGX” for FundSymbol; (3) Domain
input model: a mutual fund source may accept FundSym-
bol or a FundName as input; (4) Known sources (seeds):
e.g., http://finance.yahoo.com; (5) Source descriptions for
the seeds: specifications of the functionality of the source
in a formal language of the kind used by data integration
systems.

DEIMOS then executes the following modules to generate
a Semantic Web Service.

Source Discovery

To provide sources that are similar to the seed source,
DEIMOS first collects popular tags with which the seed
source is annotated on the social bookmarking site
del.icio.us. Using Latent Dirichlet Allocation (LDA) (Blei,
Ng, and Jordan 2003) DEIMOS learns a compressed
description of such sources (Plangprasopchok and Ler-
man 2009). This is used as input to a similarity
determining mechanism to generate the top 100 simi-
lar sources which are then forwarded to the next mod-
ule. E.g. in the Mutualfund domain, the system
discovers sources like http://www.google.com/finance &
http://moneycentral.msn.com/ among others.

Source Invocation and Extraction

The sources discovered in the previous step are typically
Web Pages that use standard HTML forms for input and re-
turn a result page. Thus, they can be invoked with inputs

and produce output pages that are formatted with the doc-
ument object model. From the source web page, DEIMOS
extracts all the forms and input fields including text boxes,
select items, etc. DEIMOS uses a brute force approach, try-
ing all permutations of input values based on background
knowledge of the type of data (e.g. FundSymbol or Fund-
Name for the current domain) in the input form’s fields.
The valid set of mappings from inputs that give meaningful
and extractable results are then used. The Autowrap algo-
rithm (Gazen and Minton 2005) is then used to generate a
page template from the result pages of multiple input exam-
ples for one candidate mapping. The set of mappings along
with corresponding page templates are forwarded to the next
phase.

Semantic Typing of Sources

Using the approach described in (Lerman, Plangprasop-
chok, and Knoblock 2007), we can now semantically type
data extracted from Web sources. Each semantic type can be
described using certain patterns. Using heuristics to evaluate
the quality of the match between the values of a particular
column in the data extracted from the page template with a
semantic type, DEIMOS assigns the best semantic type to
each of the inputs and outputs of the source. For exam-
ple, a subset of the type signature defined for seed source
finance.yahoo.com is:
yahoofinance($FundSymbol, NetValue, ChangeDirection,

ChangeAmount, ChangePercent, PreviousClose,

YTDReturn, NetAssets, Yield, FundName).

Source Modeling

In order to learn the relationship between the input and out-
put parameters of a discovered source, we use the approach
described in (Carman and Knoblock 2007) to learn a Local-
as-View (LAV) description of the source. Even though we
know the semantic types of the parameters of the discov-
ered source (target), we need to define its predicate in terms
of the seed source and match it to the semantic characteri-
zation of the seed source. With a discovered source, there
may be multiple occurences of arguments with the same se-
mantic types, from which we need to understand the differ-
ent meanings behind these types. E.g. In a similar stock
market domain today’s close, previous day’s close, intraday
high, intraday low, etc. all have the semantic type of Net-
Value. For our Mutual Fund domain, the unmodeled target
predicate of the discovered source www.google.com/finance
is shown below.
googlefinance($FundSymbol1,FundName2,FundName3,

FundSymbol4,YTDReturn5,YTDReturn6,NetAssets7,

YTDReturn8,NetValue9,Yield10,ChangePercent11,

ChangeAmount12,NetValue13,ChangeAmount14).

DEIMOS uses an approach similar to Inductive Logic Pro-
gramming is used to enumerate the search space of inputs
and output candidates in an efficient, best-first manner and
prune candidate hypotheses to find the best rule to explain
the observed input and output data. As a result, we have
a definition of the discovered source in terms of the seed
source, for example:
googlefinance($FundSymbol1,_,FundName3, _,

YTDReturn5,_,NetAssets7, _,_,Yield10,

ChangePercent11,ChangeAmount12,NetValue13,_):-

88

yahoofinance($$FundSymbol1, NetValue13, _,

ChangeAmount12, ChangePercent11, _,

YTDReturn5, NetAssets7, Yield10, FundName3).

Automatically Generating the Semantic Web
Service

DEIMOS can now generate a Semantic Web Service(SWS)
which encapsulates the web source discovered in the source
modeling phase. The SWS acts as a ‘semantic’ wrapper that
accepts RDF as input and generates RDF output, and wraps
the web form learnt by DEIMOS . The appropriate values
from the input RDF are forwarded to the discovered web
form as inputs. Upon execution of the form, the page tem-
plate described previously is applied to the result page to
extract data values corresponding to the semantic types that
the domain understands. The source description is now used
to convert these values into RDF triples.

The source description consists of unary and binary pred-
icates that reflect the domain ontology - i.e. the individual
declarations and property value assertions for such individu-
als. Conversion from such a definition into RDF is straight-
forward, once the local identifiers for the individuals in the
definition have been replaced with suitable auto-generated
URIs. For example, the definition for yahoofinance is:
yahoofinance($PR_FundSymbol,PR_NetValue,

PR_ChangeDirection, PR_ChangeAmount,PR_ChangePercent,

PR_PreviousClose,PR_YTDReturn, PR_NetAssets,PR_Yield,

PR_FundName) :-

Company(@C), Series(@S), offersSeries(@C,@S),

Contract(@Con), offersContract(@S,@Con),

Symbol(@Sy), hasSymbol(@Con,@Sy),

hasValue(@Sy, PR_FundSymbol), Name(@N),

hasName(@Con,@N), hasValue(@N, PR_FundName),

NetValue(@Net), hasNetValue(@Con,@Net),

hasValue(@Net, PR_NetValue), NetAssets(@NA),

hasNetAssets(@Con,@NA), hasValue(@NA, PR_NetAssets),

Yield(@Y), hasYield(@Con,@Y), hasValue(@Y, PR_Yield),

YTDReturn(@Ret), hasYTDReturn(@Con,@Ret),

hasValue(@Ret, PR_YTDReturn), ChangeAmount(@ChA),

hasChangeAmount(@Con,@ChA),

hasValue(@ChA, PR_ChangeAmount), ChangePercent(@ChP),

hasChangePercent(@Con,@ChP),

hasValue(@ChP, PR_ChangePercent),

ChangeDirection(@ChD), hasChangeDirection(@Con,@ChD),

hasValue(@ChD, PR_ChangeDirection),

PreviousClose(@Pre), hasPreviousClose(@Con,@Pre),

hasValue(@Pre, PR_PreviousClose).

Once a new target like googlefinance is discovered, we can
unfold it over the source definition. At runtime the RDF
triples are generated using this unfolding. A URI generator
automatically replaces local references (e.g. @C, @S, etc.)
with URIs. The data values for the semantic types extracted
from the result page are filled into the triples generated from
the unfolding in their corresponding places. For example,
a subset of output triples for googlefinance with input fund
symbol ‘RBCGX’ look like:
company5179861 rdf:type Company .

series382953 rdf:type Series .

company5179861 offersSeries series382953 .

contract1885719 rdf:type Contract .

series382953 offersContract contract1885719 .

symbol2139169 rdf:type Symbol .

contract1885719 hasSymbol symbol2139169 .

symbol2139169 hasValue "RBCGX" .

name1093443 rdf:type Name .

contract1888902 hasName name1093443 .

name1093443 hasValue "Reynolds Blue Chip Growth" .

...

This Semantic Web Service can now be consumed for ex-
tracting structured data from Deep Web sources.

Integrating Deep Web data sources into the

Linked Data Web

The Semantic Web Service generated by DEIMOS produces
results as RDF which we now want to integrate into the
Linked Data Web. During execution of this web service, the
RDF data which is output contains auto-generated individu-
als. We need to link these to their corresponding individuals
already present in the linked data web. To do this, we first
model our seed source in terms of the ontology of the linked
data source with which we are trying to integrate our do-
main. We thus begin with integrating our seed source into
the LDW. For any newly discovered source that we are able
to model, we use its definition in terms of the seed source
that we learn to integrate it into the LDW.

Linking the seed source to the Linked Data Web

A local individual can be linked to an individual already
present in the LDW by using the ‘owl:sameAs’ relation. We
begin by defining the domain ontology of the seed source
with the ontology of the linked data source under consider-
ation. We then use the data related to the local individual,
which was generated at runtime, to search for an individ-
ual in the LDW by querying over the values of its proper-
ties. Because the ontology of the seed source is same as the
linked data source, the URI lookup problem gets simplified
to a URI matching problem. The similarity of two individu-
als is concluded by comparing values of the data properties
of the local individual with the values of the corresponding
aligned properties of the linked source individual. Ideally,
this would be a matching based on the equivalence of strings.
However practically, we need to use a string similarity met-
ric to overcome variations in representation of the values of
the same thing.

The URI matching can be represented by a SPARQL
query that constructs ‘owl:sameAs’ assertions, with the
WHERE part selecting the variable representing the URI,
which we want to link the local individual to, using data val-
ues of the properties of the local individual. Because our
seed source is defined with the same ontology as that of
the linked data source, formulation of the query is straight-
forward. Following is the SPARQL query for matching
individuals of yahoofinance with the linked data source at
http://www.rdfabout.com/demo/sec/.

CONSTRUCT{

?C1 owl:sameAs ?C2 .

?S1 owl:sameAs ?S2 .

?Con1 owl:sameAs ?Con2 .

}

89

WHERE{

?C1 rdf:type Company .

?S1 rdf:type Series .

?C1 offersSeries ?S1 .

?Con1 rdf:type Contract .

?S1 offersContract ?Con1 .

?Con1 hasSymbol ?S1 .

?S1 hasValue ?FundSymbol .

?Con1 hasName ?N1 .

?N1 hasValue ?FundName .

?C2 rdf:type Company .

?S2 rdf:type Series .

?C2 offersSeries ?S2 .

?Con2 rdf:type Contract .

?S2 offersContract ?Con2 .

?Con2 hasSymbol ?S2 .

?S2 hasValue ?SV2 .

?Con2 hasName ?N2 .

?N2 hasValue ?NV2 .

FILTER {

contractMatcher(?C1, ?FundSymbol,

?FundName, ?C2, ?SV2, ?NV2) .

}

FILTER {

LDW(?C2).

}

FILTER {

YahooSWS(?C1) .

}

}

The presence of a functional relation from one or more of
the values of the arguments (e.g. FundSymbol), to the indi-
vidual, whose URI is the output, is a requirement for using
those values as input to the matcher. At execution time, the
input variables of the matcher can be grounded to values of
the arguments of the source predicate, which are extracted
from the result page.

The SPARQL query for inputs FundSymbol=‘RBCIX’
and FundName=‘Reynolds Blue Chip Growth’ can be ex-
plained as follows. The query would first retrieve individ-
uals of type Contract based on values for FundSymbol and
FundName from the individuals generated in the Semantic
Web Service for yahoofinance (Filter on YahooSWS). This
query then invokes a function that matches Contract indi-
viduals from the seed and the linked data source, based on a
string similarity metric on the data values of their properties.
We then filter and keep those individuals that are from the
linked data source. The URI of such an individual is linked
to the Contract individual from the yahoofinance SWS by
using the ‘owl:sameAs’ relation. We then match individuals
of type Series using the offersContract property, and finally
match individuals of type Company using the offersSeries
property.

As part of realizing the linking of individuals gen-
erated from the Semantic Web Service to the linked
data web, we aligned our domain ontology to a
slightly extended version of the ontology present at
http://www.rdfabout.com/demo/sec/. This ontology draws

from the EDGAR database of the securities and exchange
commission(SEC) but does not include the concepts for
‘Contract’ or ‘Series’. We extrapolate this part of the ontol-
ogy from the EDGAR database and assume it to be already a
part of the LDW in order to support our case. We now have
our seed source integrated into the LDW.

Linking discovered sources to the Linked Data Web

After a new source is discovered and semantically modeled,
we can integrate it into the LDW by using the same URI
matching technique described in the previous section. As we
can define the target predicate in terms of the seed source, we
get an unfolding of the target as unary and binary predicates
and thus produce the Semantic Web Service. At runtime,
we use this SWS and augment it with the URI matching part
from the previous section, as our target definition is semanti-
cally characterized in terms of the seed source. We can now
link auto-generated individuals from the structured data pro-
duced by the SWS to the indivduals from the LDW using the
‘owl:sameAs’ relation.

googlefinance($PR_FundSymbol,PR_NetValue,

PR_ChangeDirection, PR_ChangeAmount,PR_ChangePercent,

PR_PreviousClose,PR_YTDReturn, PR_NetAssets,PR_Yield,

PR_FundName) :-

Company(@C), sameAs(@Con, URI1), Series(@S),

sameAs(@S, URI2), offersSeries(@C,@S), Contract(@Con),

sameAs(@C, URI3), offersContract(@S,@Con),

Symbol(@Sy), hasSymbol(@Con,@Sy),

hasValue(@Sy, PR_FundSymbol), Name(@N),

hasName(@Con,@N), hasValue(@N, PR_FundName),

NetValue(@Net), hasNetValue(@Con,@Net),

hasValue(@Net, PR_NetValue), NetAssets(@NA),

hasNetAssets(@Con,@NA), hasValue(@NA, PR_NetAssets),

Yield(@Y), hasYield(@Con,@Y), hasValue(@Y, PR_Yield),

YTDReturn(@Ret), hasYTDReturn(@Con,@Ret),

hasValue(@Ret, PR_YTDReturn), ChangeAmount(@ChA),

hasChangeAmount(@Con,@ChA),

hasValue(@ChA, PR_ChangeAmount), ChangePercent(@ChP),

hasChangePercent(@Con,@ChP),

hasValue(@ChP, PR_ChangePercent),

ChangeDirection(@ChD), hasChangeDirection(@Con,@ChD),

hasValue(@ChD, PR_ChangeDirection),

PreviousClose(@Pre), hasPreviousClose(@Con,@Pre),

hasValue(@Pre, PR_PreviousClose).

The linked semantic web service that is generated for the
target source - googlefinance executes as follows:

1. Accept a Mutual Fund symbol as input.

2. Execute live over www.google.com/finance.

3. Extract the relevant values from the output page.

4. Execute the SPARQL query which invokes the matcher

over the SEC database to get URIs for individuals

already present on the LDW.

5. Generate the RDF Triples from the target description,

which is defined in unary and binary predicates.

Results

We implemented our system to integrate web sources be-
longing to the mutual fund domain (as described in this
paper). Our Seed Source was finance.yahoo.com. We

90

modeled the seed source based on an ontology extrapo-
lated from http://www.rdfabout.com/demo/sec/. This on-
tology originally contains only details about the compa-
nies. We assumed a similar representation of the con-
cepts of Series and Contract in the same way that they
are defined in the SEC database to create an extended
version of the ontology. A couple of examples of
the sources that were automatically discovered and mod-
eled by DEIMOS are www.google.com/finance, moneycen-
tral.msn.com/detail/stock quote.

For the discovered source googlefinance described in the
paper, a sample part of the Linked Data produced by the Se-
mantic Web Service for the input fund symbol ‘RBCGX’ is
shown below. The URIs generated for the Series and Con-
tract are though not currently present at www.rdfabout.com,
we infer the pattern of URIs based on those for Company
and assume their existance on the linked data web.
company5179861 rdf:type Company .

company5179861 owl:sameAs

http://www.rdfabout.com/rdf/usgov/sec/id/cik0000832574 .

series382953 rdf:type Series .

series382953 owl:sameAs

http://www.rdfabout.com/rdf/usgov/sec/id/S000000865 .

company5179861 offersSeries series382953 .

contract1885719 rdf:type Contract .

contract1885719 owl:sameAs

http://www.rdfabout.com/rdf/usgov/sec/id/C000002481 .

series382953 offersContract contract1885719 .

symbol2139169 rdf:type Symbol .

contract1885719 hasSymbol symbol2139169 .

symbol2139169 hasValue "RBCGX" .

name1093443 rdf:type Name .

contract1888902 hasName name1093443 .

name1093443 hasValue "Reynolds Blue Chip Growth" .

...

The URI matching query was implemented by using
wrappers (on account of the complete SEC database not be-
ing downloadable) for the Mutual Fund search form on the
SEC site1. We can do this because the inputs to the search
form have a correspondence with the value of the ‘hasValue’
properties of the Symbol and Name for the Contract individ-
ual.

Our results show that it is possible to convert data pro-
vided by a previously unknown data source from the Deep
Web, into structured linked data and thus populate the LDW.

Related Work

Integration of sources on the Semantic Web is not a new con-
cept. (Noy 2004) presents a survey of Ontology based ap-
proaches for data integration. This involves, the alignment
of the source and target ontologies based on concepts and
their hierarchy, properties, rules and individuals of the con-
cepts. For example, GLUE (Doan et al. 2003) uses machine
learning techniques to match instances and, thus, the Ontol-
ogy itself. In this case however the source to be matched is
assumed to have a background ontology and is not a tradi-
tional web source.

There is also some existing work done on generating
linked data from present data sources on the web. With the

1http://www.sec.gov/edgar/searchedgar/mutualsearch.htm

rise in popularity of the Linked Data Web, there have been
numerous initiatives to convert existing formatted data e.g.
data formatted with XML, into linked data. (Garca and Gil
2009) describes a mechanism to publish documents based
on the XML Business Reporting Language as linked data.
The mechanism involves aligning the Schema to an OWL
Ontology and transforming document instances into linked
data by using an XML to RDF mapping.

Most of the integration of data to the linked data web, that
is currently part of the cloud, is based on known sources with
a predetermined set of integration rules and is thus human
centric. Automated and semi-automated means of generat-
ing also have been studied. For example, the SILK - Link
Discovery Framework (Bizer et al. 2009) tries to discover
links, specified by users with the Link Specification Lan-
guage, between sources that already have structured (RDF)
data. Our system, however, is not only able to dynamically
generate and integrate data from known Deep Web sources
into the linked data cloud, but also has the capability of in-
tegrating previously unknown data sources in the same do-
main.

Conclusion

We were able to automatically integrate sources from the
Deep Web into the Linked Data Web by extracting structured
data from these sources and linking them with the data in the
cloud. Our results suggest that the large data present in the
Deep Web can now be accesible as linked structured data and
thus solve the problem of information integration between
the Linked Data Web and the Deep Web.

References

Ambite, J.-L.; Darbha, S.; Goel, A.; Knoblock, C. A.; Ler-
man, K.; Parundekar, R.; and Russ, T. 2009. Automatically
constructing semantic web services from online sources.
International Semantic Web Conference.
Bizer, C.; Volz, J.; Kobilarov, G.; and Gaedke, M. 2009.
Silk - a link discovery framework for the web of data. In
18th International World Wide Web Conference.
Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked
data - the story so far. International Journal on Semantic
Web and Information Systems (IJSWIS).
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
dirichlet allocation. Journal of Machine Learning Research
3:993–1022.
Carman, M. J., and Knoblock, C. A. 2007. Learning se-
mantic definitions of online information sources. Journal
of Artificial Intelligence Research (JAIR) 30:1–50.
Doan, A.; Madhavan, J.; Dhamankar, R.; Domingos, P.;
and Halevy, A. 2003. Learning to match ontologies on the
semantic web. The VLDB Journal 12(4):303–319.
Garca, R., and Gil, R. 2009. Publishing xbrl as linked
open data. In WWW2009 Workshop: Linked Data on the
Web (LDOW2009).
Gazen, B., and Minton, S. 2005. Autofeed: an unsuper-
vised learning system for generating webfeeds. In K-CAP

91

’05: Proceedings of the 3rd international conference on
Knowledge capture, 3–10. New York, NY, USA: ACM.
Lerman, K.; Plangprasopchok, A.; and Knoblock, C. A.
2007. Semantic labeling of online information sources. In-
ternational Journal on Semantic Web and Information Sys-
tems, Special Issue on Ontology Matching 3(3):36–56.
Noy, N. F. 2004. Semantic integration: a survey of
ontology-based approaches. SIGMOD Rec. 33(4):65–70.
Plangprasopchok, A., and Lerman, K. 2009. Model-
ing social annotation: a bayesian approach. Technical re-
port, Computer Science Department, University of South-
ern California.

92

