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Abstract 

We explore the prospect of inferring the epicenter and 
influences of seismic activity from changes in background 
phone communication activities logged at cell towers. In 
particular, we explore the perturbations in Rwandan call 
data invoked by an earthquake in February 2008 centered in 
the Lac Kivu region of the Democratic Republic of the 
Congo.  Beyond the initial seismic event, we investigate the 
challenge of assessing the distribution of the persistence of 
needs over geographic regions, using the persistence of call 
anomalies after the earthquake as a proxy for lasting 
influences and the potential need for assistance. We also 
infer uncertainties in the inferences and consider the 
prospect of identifying the value of surveying the areas so 
that surveillance resources can be best triaged.   

Introduction   
Cellular phone networks have matured into well-developed 
and relatively widespread systems in developing countries 
with otherwise minimal infrastructure. While these 
pervasive cellular networks are continually generating call 
data records (CDR) for billing and maintenance purposes, 
we consider this infrastructure as an innervating sensor 
network that can be used for natural and human event 
detection. Methods for making inferences from 
anonymized CDR could provide guidance for detecting 
and reacting to natural disasters in remote geographic 
regions. Opportunities include making inferences about the 
nature and needs of people and populations facing acute 
challenges or at risk, about allocating scarce 
reconnaissance resources, and proactive decision making 
and actions to minimize hunger, thirst, and the spread of 
disease.   
 Beyond core inferences, we shall investigate the 
handling of the inevitable uncertainties in predictions. 
Varying densities of phones and cell towers and other 
factors may lead to varying levels of confidence in 
inferences from call data.  Thus, inferential methods should 
include representations and machinery for capturing and 
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propagating uncertainties about the inferences themselves.  
We show how we can coherently represent and propagate 
uncertainties and can use these uncertainties to prioritize 
the collection of new data, via computation of the value of 
making additional observations.  Such computations of 
information value can be used to triage scarce resources 
available for reconnaissance.  For example, the methods 
can be used to compose plans for surveying different 
regions for damages and needs, in order to achieve 
maximum relief within an available reconnaissance budget. 
 

 
 

Figure 1. Location of the epicenter (star) of the February 
2008 earthquake in the Lac Kivu region of the Democratic 
Republic of the Congo (courtesy US Geological Survey).   
 

We evaluate such inferential opportunities in the context of 
the earthquake of February 3, 2008, centered in the Lac 
Kivu region of the Democratic Republic of the Congo.  
The epicenter and surrounding population centers as 
displayed in Figure 1.  We shall examine the trends in call 
activity as logged at all cell towers within Rwanda before 
and after the earthquake and show how we can apply 
statistical modeling methods to: (1) detect when the 
earthquake occurred, (2) estimate the epicenter of the 
earthquake, (3) identify regions associated with persistence 
of anomalous activity, considering these regions and their 
respective population densities as a proxy for potential 
needs for assistance, and (4) quantify regional uncertainties  
to triage additional data collection efforts about the needs 
of a population. 
 We shall first present the general approach and overall 
framework for making such inferences, followed by the 
technical details of modeling and other computational 
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considerations.  Then, we focus on the case of the Lac 
Kivu earthquake and apply the methods to make inferences 
from the Rwandan CDR. 
 

Related Work 
 
Numerous research projects are leveraging the sensing 
capabilities of cellular phones and associated 
communication infrastructure as a resource of behavioral 
information.  As examples, mobile phones have been used 
as sensors in determining social network structure [Eagle et 
al. 2009], performing activity recognition [Choudhary and 
Borriello 2008], and modeling human mobility [González 
et al. 2006].  
 Rather than building models of regular, recurring 
behavioral patterns, we pursue the detection and modeling 
of rare, disruptive events. With this approach, we consider 
background activity to learn patterns of normalcy, and then 
seek to detect and understand anomalies and their 
implications within small windows of time.   
 

Approach 
Assume that there are � cell towers and that for any ��ℎ  
tower (where � ∈ {1. . �}), we have a time series of 
observations: {��1, �, … ��� , … ���} about communication 
activity on consecutive days 1..T logged by each cell tower. 
We also have access to the longitudes and the latitudes (	� , 
� ) of the geographical positions of these towers. 
 We shall consider observations jointly for all the cell 
towers and make inferences from changes in call volume 
that might have disrupted or influenced a population in 
some way. For certain kinds of events, we may be 
interested in inferring a central point of maximal intensity.  
For others, we may additionally wish to infer regions 
where maximal disruption to populations may have 
occurred. By making such inferences, we seek to build 
maps that would highlight areas where assistance or relief 
efforts might need to focus and where additional 
information is required before informed decisions can be 
made about resource allocation.  
 We shall make three assumptions in our analyses:  

 1. Cell tower traffic deviates statistically from the 
normal patterns and trends in case of an unusual event.  

 2. Areas that suffer larger disruptions experience 
deviations in call volume that persist for a longer period of 
time. 

 3. Disruptions are overall inversely proportional to the 
distance from the center(s) of a catastrophe. 

Note that the first assumption talks about deviations, which 
can either be increase or decrease in call activity, 
consequently the approach based on assumption should be 
able to deal with events that induce both kinds of 
deviations. The second assumption is based on the 

observation that cell phones capture the pulse of human 
activity and discourse in a region. Following a large-scale 
event such as an earthquake, people may increase call 
traffic as they check in on safety, seek assistance, or 
coordinate in other ways.  In other cases, a reduction of 
call traffic may occur given disruption to functionality of 
the phone system and large-scale loss of life.  Regardless 
of the different mixes of these phenomena, we may often 
see anomalous call activity. The third assumption about 
centrality and diminishment with distance captures such 
disruptive phenomena as earthquakes that are often linked 
to a point of origin or epicenter.   

Detecting Events. We shall first seek to build a system 
that can detect unusual events, such as disruptions caused 
by seismic events, by analyzing the background and 
dynamics of tower-level call volume. Let us assume that 
for every cell tower we have a Gaussian model that reflects 
regular activity. Formally for an uneventful day �, 

 �(���  |��
 − ���
�)~�(��, ��2) where � ∈ {1. . �} 
 

Here, ��  and ��2 denote the mean activity and the variance 
of the ith cell tower and can be estimated from historical 
data. Given this representation of normal activity, we can 
detect anomalous events by identifying deviations from the 
normal activity and trends in one or more cell towers. To 
detect unusual activity, we seek to identify how well the 
current observations fit the normal activity. Specifically, 
we shall employ the negative log likelihood as a scoring 
mechanism for detecting anomalies in call data: 

                   ������ = ∑ (��� −��)2
2��2 + �������=1                   (1)             

A higher ������  reflects an increased likelihood of an 
anomalous event occurring on day � and this proposed 
measure can be used in a detection procedure. 

Predicting Location of Event. Once we detect that an 
event of significance has taken place, we seek to identify 
the region at the center of the disruption or catastrophe 
from multiple cell towers. We shall rely on Assumption 3, 
which asserts that the call volume at towers that are closer 
to the vicinity of the central region of the disruption should 
have larger increases in activity. In particular, we assume 
that, in light of a significant event, the cell tower activity is 
influenced by the distance it is from the event center, (�	 , �
 ).  Formally, if � ≜ {�	 , �
 , �} then we assert, 

                  �� (���  |���
�)~�(�� + �
��

(�	 ,�
 ) , ��2)           (2) 

Here, ��
(�	 ,�
 ) = �(	� − �	 )2 + (
� − �
 )2 denotes the 

distance of the ith cell tower from the center (�	 , �
 ) and � 
is an unknown scaling parameter. Given this model and the 
observations on the day of the event, we invoke the 
principle of maximum likelihood to estimate the unknown 
center of action, (�	 , �
 ), and the scaling parameter. In 
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particular, we search for the best �∗ to estimate the 
epicenter by maximizing the log likelihood, 
 �∗ = argmaxθ ∑ log �� (���  |���
�)��=1  

 

We can solve for �∗ via search, using gradient-descent 
optimization to determine the parameters (�	 , �
 ) and �, 
thus inferring a central location of a disruptive event.  

Predicting Opportunities for Assistance. Beyond 
identifying regions where there are acute changes in call 
activity in response to a disruptive event, we wish to make 
inferences about regions that have likely suffered more 
damage and thus are higher priority areas of attention for 
the provision of assistance.  Beyond triaging attention, we 
are also interested in opportunities to make direct 
inferences about the nature and geographical distribution 
of ideal sets of proactive actions that might be taken for 
such goals as maximizing the survival of people who have 
been injured or are trapped, coalescing transportation 
resources and expertise for medical care, and creating, 
readying, and perhaps even implementing contingency 
plans for transporting medications, food, and water.  The 
latter can be important with minimizing or ameliorating the 
spread of such diseases as cholera, which may follow 
natural disasters with some delay.  Cholera has a 5% 
mortality rate in Africa and the primary treatment is the 
provision of sufficient water to patients.  We are interested 
in opportunities to construct predictive models that can 
identify regions at risk for a jump in cholera incidence 
following a disastrous event. Proactive measures guided by 
predictive models, such as preparing to ensure that water 
and related medical assistance is available for transport to 
such regions, could reduce morbidity and mortality. 
 Per Assumption 2, we shall consider a significant and 
persistent deviation from the baseline in call volume, as a 
signal of disruption. Our strategy is to build a model that 
can accurately predict if a significant deviation in a tower’s 
call volume would persist. Given that many people may 

communicate by phone to simply check in with family and 
friends about the acute influences of an earthquake, we 
wish to consider the region-specific persistence of 
anomalous activity over time as a proxy for significant 
disruption and as an indication of opportunities for 
assistance in those regions.  
 We seek to identify whether a seismic event will lead to 
changes in call activity that persist days after the event as a 
sign  of persistent needs. We explore a predictive model 
that considers cell tower coordinates, in conjunction with 
the prior activity and population around towers, to predict 
whether a significant deviation of call activity from 
baseline will persist.   
 Let us assume that a disruptive event occurred on day �′ . 
We are interested in predicting whether a significant 
increase in activity at an ith cell tower would be observed at " days following the event. To this end, we train a 
classifier #, that predicts anomalous cell traffic at " days, 
given activity at the cell towers. 
 Let us consider call activity ��  to be a significant 
deviation if the call traffic differs by more than one-sigma 
(��)  from the mean �� at baseline. We shall consider three 
observations for each cell tower. Formally, �� =
$[�%� ;  &� ; ��

'�	 ,�
 *; 	� ; 
� -� denotes the observation vector 
corresponding to the ith tower and the features represent 
deviation in activity on the day of earthquake (�%� ≜
��� −��

�� ) , the population density (&�) around the tower, its 

distance (��
(�	 ,�
 )) from the center of the event, and its 

coordinates (	� , 
� ).  
 We include the population density as an evidential 
feature so as to capture the prospect that damage and 
disruption in a region that is buffeted by seismic forces is a 
function of the density of people living in regions.  With 
increasing density of a population comes increasing 
densities of dwellings, and greater numbers of people 
influenced by the breach of structural integrity of buildings 

     

 
Figure 2. Left: Detection of event from cell tower data. Middle: Scatter plot with predicted epicenter, true epicenter, and tower 
activity. Right: Predicted regions where call traffic exceeds 1-σ from the baseline (warmer/darker shades) for the day of the event. 
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and related infrastructure.  Also, the costs of diminishment 
of flows of food and water may rise rapidly in densely 
populated regions. Greater densities of population can also 
raise the risk of transmission of disease.    
 Given these features and the data collected from the 
towers, we can infer a linear classifier  # using algorithms 
such as Support-Vector Machines, logistic regression, and 
Gaussian Process classification (GPC) [Rasmussen and 
Williams 2006]. We shall review the construction of a 
classifier with GPC as it provides both predictions and 
estimates of uncertainties about those predictions. As we 
shall see, this classifier can be used to compute the value of 
information, which we employ later to compute the value 
of surveying regions. Formally, building the classifier 
results in a most-likely classifier, represented as #, and the 
variance around it Σw . For any test point, ���0� , the 
predictive probability of persistence can be written as: 

���0����0� 0� = Φ( #����0�
�1 + ���0�� Σ# ���0�

) 

 
Here Φ(∙) denotes cumulative distribution function (cdf) of 
a normal distribution. This model thus can be used to 
persistence of a significant deviation at any hypothetical 
cell tower located at a coordinate (x,y). Specifically, given 
the parameters (#, Σw )  and the test location (x,y), we can 
predict the persistence of deviation in the hypothetical cell 
tower at a particular location.  In use, we compute the 
distance from epicenter and obtain the population density 
&(	,
). Then, we approximate �5 (	,
)� ′

, the deviation of 
activity of hypothetical towers on the day of the 
earthquake. We use a nearest-neighbor approximation, 
where we identify an existing cell tower 6 that is nearest to 
the location (x,y) and assume that �%(	,
)� ′ = �%6�

′
.  

  We compute an assistance-opportunity score for 
characterizing opportunities for assistance and identifying 
regions that might most benefit by relief efforts. Under the 
assumption that areas with high population density require 
more relief effort per unit of region we define the 

assistance score as the product of predicted relative 
increase in persistent call traffic multiplied by the 
population density: 

700�0������(	,
 ) = �(	,
)���0�0� ∙ &(	,
 ) 

Determining Value of Survey.  Cell towers are most 
densely packed near big cities, capitals, and overall more 
developed parts of countries. Consequently, we can expect 
to have more confidence in predictions about opportunities 
for assistance around the areas with higher cell tower 
density, and have less confidence about inferences based 
on fewer cell towers.  Such uncertainty can be reduced 
with the pursuit of additional information following an 
earthquake. However, as surveillance resources are scarce 
and costly, we pursue a formal model for triaging scarce 
reconnaissance resources under a limited budget.  We take 
a decision-theoretic perspective to compute the expected 
value of surveying a region by considering expected benefit 
and costs of gathering information. In particular, we seek 
to select a set of locations �∗ from the set of non-
instrumented locations 8 that provide maximum gain per 
unit cost1: 
 

�∗ = �����	�⊆8
:��
(�)
<�0�(�) 

 
Given inferences that provide uncertainties in predictions, 
we can compute the expected value of information 
[Howard, 1967; Horvitz, Breese, and Henrion, 1989].  We 
shall define :��
(�) as reduction in uncertainty at non-
instrumented locations. Formally, we use 7 to denote the 
set of locations that we have information about and 8 as 
the set we have not surveyed, respectively. We write the 
selection criterion as: 
 

                                                 
1 This criterion can also be represented as :��
 � −<�(�); using gain per 
unit cost enables allows gain and the cost to be in different currencies. 

 
Figure 3. Inferences of opportunities for assistance. Maps display predictions about regions associated with increased opportunities 
for assistance, using as a proxy for disruption the extension of anomalous call activity to k days following the earthquake, weighted by 
population density. Warmer colors (darker shades) correspond to regions with increased opportunities for assistance.   
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�∗ = �����	�⊆8
>(8 − �|7) − >(8 − �|7 ∪ �)

<�0�(�)  

 
where >(⋅) denotes entropy.  This formulation attempts to 
find the set � that provides maximum information about 
the rest of the sites (denoted as: 8 − �) under minimum 
costs. It is known that determining �∗ is computationally 
intractable for a large set 8, however, a greedy solution to 
this problem results in a close approximation to the ideal 
solution in settings where a sub-modularity property holds 
[Krause et al. 2008]. We note that the above mentioned 
criteria attempts to optimize a gain in terms of reduction in 
uncertainty, without taking into account either the amount 
of disruption or the expected gain in terms of human lives 
that could be saved. Beyond optimizing the reduction in 
uncertainty, we can consider a gain, which we call 
expected value of survey, by multiplying the information 
theoretic savings (∆>(⋅)) with the population density and 
the expected disruptions (�0���0�0� ). Formally, the greedy 
selection procedure selects the location s to survey that 
maximize the following:  

B��C�DE�C���
0 = �0���0�0� ∙ &0 ⋅ ∆>(0)
<�0�(0) 

 
 The other detail we need is an estimation of the 
uncertainty about inferences. For linear Gaussian Process 
models [Rasmussen and Williams 2006], we can show that 
the information theoretic gain can be written as [Krause et 
al. 2008]: 
 

△ >(0) = log⁡HI00 − I07I77−1I70
I00 − I07̅I7̅7̅−1I7̅0

K 

Here, I = ["�6 ], is a kernel matrix where  "�6 =  ����6  are 
the linear projections. 
 Finally, we can approximate the cost of surveying a 
location as a function of the distance from a major city. 
However, we emphasize that cost can be modeled using 
various factors such as geography, financial considerations, 
time to respond, and other relevant variables. We can 
sequentially select sites to survey in a greedy manner until 
the budget is exhausted. Thus, given the location of cell 
towers and logged call activity, we can use the above 
methodology to determine the areas that should be probed 
under a budget in order to best triage relief efforts. 

Results 
We now test the proposed framework in the context of 
Rwandan CDR.  In particular, this data is aggregated to the 
tower-level, consisting of daily, directed communication 
volume for each cell tower in the country over a period of 
3 years.  These include data during the week including 
February 3, 2008, when a 5.9 magnitude earthquake was 

observed with an epicenter located by the USGS at 2.318 S 
and 28.945 E.  
 We first start by building baseline models from historic 
data recorded during a normal time-period. In particular we 
look at a continuous period of ten days and for each ith cell 
tower record the mean ��  and the variance ��2. This 
constitutes a baseline model and we use this model in 
performing the computations as described earlier. 
 
Detecting the Earthquake. We use the event detection 
score as described in Equation 1 to determine deviation  
from normal activity. Figure 2 (left) shows the scores for 
10 consecutive days around Feb 3, 2008.  We can see that 
the score spikes at the correct day when the earthquake 
occurred demonstrating that such a scoring scheme can be 
used to detect seismic events. 
 
Predicting Seismic Epicenter.  We next pursue the 
challenge of predicting the location of the epicenter from 
the cell tower activity. We use the model described in 
Equation 2, and use the communication data to infer the 
epicenter. In particular we maximize the likelihood of the 
model for this challenge. Figure 2 (middle) shows the 
result of this experiment. The cell towers are depicted as 
black circles with radii indicating call activity handled by 
cell towers.  We plot both the epicenter identified by 
USGS (magenta square) and the predicted epicenter. The 
predicted epicenter (-2.34, 28.71) is in close proximity to 
the USGS epicenter (-2.32, 28.94), highlighting the 
promise of using call activity and the existing 
communication infrastructure as a large-scale seismic 
sensing system. 
 
Inferring Opportunities for Assistance. We also seek to 
employ geospatial methods to model persistence of 
deviations in cell tower traffic. As described earlier, 
modeling this persistence may help to identify regions 
where relief efforts are most needed.  For experimental 
purposes, we learn the geospatial model parameters for k = 
1,..,5 days. More specifically, to explore capabilities of the 
model we use the tower data to build predictive models for 
each of five days following an earthquake.  
 We perform leave-one-out analysis in order to verify the 
performance of the model. In particular, for every cell 
tower in the training set we build a leave-one-out model 
using the rest of the training data and then use the model to 
predict the classification label the tower that has been left 
out (label = +1 means whether a significant effect persists 
or not). Table 1 shows recognition results using leave-one-
out and compares it with a baseline approach of using the 
observed activity on the day of the earthquake as 
predictions for persistence. We also mention the marginal 
rates (maximum recognition obtained when the classifier 
predicts same label for all the towers).  We can see that the 
predicted model is superior to the baseline and provides 
predictions that are significantly better for k =3, 4 and 5.  
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. 
Table 1. Performance of geospatial-temporal model and 

baseline use of the previous day's observations. 

 
k 

Accuracy   
(Predictive Model)  

Accuracy 
(Baseline) 

Marginal 

1 0.63 0.54 0.57 
2 0.60 0.50 0.50 
3 0.78 062 0.71 
4 0.74 0.62 0.62 
5 0.65 0.45 0.57 

 
We apply the learned model to predict observations for any 
location (x, y), consequently recovering an estimate of 
disruption. Figure 2 (right) displays a map showing these 
predictions. Regions near the epicenter show higher 
disruption. However, disruptiveness is not smoothly 
distributed. As the model encapsulates the population 
density and call activity, we obtain a richer view of regions 
of disruption, per the definitions we have formulated.  
 We use these predictions about anomalous call volumes 
to compute the 700�0������ at all locations. Figure 3 
highlights the regions that we infer would most benefit 
from relief efforts, based a definition of disruption as call 
traffic anomalies at k days following the earthquake.  As 
we shift the definition of “disruption” as the extension of 
call traffic anomalies to increasingly longer durations, the 
inferred regions of increased opportunities for assistance 
shift away from epicenter, toward other regions of the 
country. 
 
Inferring Regions to Survey. Next, we explore the 
potential value of predictive modeling in computing the 
value of survey. We employ the greedy information-value 
procedure to select the top ten sites that should be surveyed 
in order to make the relief efforts effective. In this 

experiment, we assume that the cost of surveying a site is 
directly proportional to its distance from Kigali.  
 Figure 4 shows the map of the country with the top ten 
sites to survey. The figure also shows the existing cell 
towers. Further, the gray levels of different areas 
correspond to population density. Again, if we had used 
predictions to model call activity only on the day of the 
earthquake, the majority of the predicted regions to survey 
would be near the earthquake center. However, modeling 
the extension of disruptions to additional days, and 
considering anomalous call traffic at later days as proxies 
for disruption, leads to recommendations to survey much 
wider areas, especially for regions with high population 
density but fewer cell towers. 

Conclusion and Future Work 
We presented methods for using the cellular phone 
infrastructure to detect seismic events and their influences 
on a population. We applied the methods to tower-level 
CDR from Rwanda and demonstrated our ability to detect 
the 2008 Lac Kivu earthquake and estimate its epicenter. 
We reviewed approaches to inferring regions that require 
relief efforts and for guiding surveys. The results highlight 
the promise of performing predictive analyses with 
existing telecommunications infrastructure. Future research 
directions include running sensitivity analyses over ranges 
of parameters and assumptions to explore the robustness of 
the results, the use of richer models that consider such 
information as geographic terrain and more detailed 
measures of seismic activity, and methods for guiding 
proactive planning, aimed at mitigating such downstream 
phenomena as the cutting of food supply lines and the 
outbreak of disease. 
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