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Abstract

Anticipating the actions of others is key to coordinat-
ing joint activities. We propose the notion of anticipa-
tory action and perception for for robots acting with hu-
mans. We describe four systems in which anticipation
has been modeled for human-robot interaction; two in a
teamwork setting, and two in a human-robot joint per-
formance setting. In evaluating the effects of anticipa-
tory agent activity, we find in one study that anticipation
aids in team efficiency, as well as in the perceived com-
mitment of the robot to the team and its contribution
to the team’s fluency and success. In another study we
see anticipatory action and perception affect the human
partner’s sense of team fluency, the team’s improvement
over time, the robots contribution to the efficiency and
fluency, the robot’s intelligence, and the robots adapta-
tion to the task. We also find that subjects working with
the anticipatory robot attribute more human qualities to
the robot, such as gender and intelligence.

Introduction

In order to design robots that can work fluently with hu-
man partners in a physically situated setting, we want to
overcome the delayed turn-taking structure of most human-
robot interaction. Piecewise interaction often follows from
the stepwise perception-action paradigm, and the discretized
modeling of decision making, which is at the base of most
interactive reasoning and dialog systems in AI literature.
Contrast that to the simultaneous “dance” of two human
agents performing together at high level of coordination and
adaptation, in particular when they practice a task repeti-
tively, and are well-accustomed to the task and to each other.

In recent years, the cognitive mechanisms of joint action
have received increasing attention. Among other factors,
successful coordinated action has been linked to the forma-
tion of expectations of each partner’s actions by the other
and the subsequent acting on these expectations (Sebanz,
Bekkering, and Knoblich 2006; Wilson and Knoblich 2005).
We argue that the same holds for collaborative robots: if they
are to go beyond stop-and-go interaction, agents must take
into account not only past events and current perceived state,
but also an anticipatory model of their human collaborators,
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and apply anticipatory action as a result of these models.
We therefore propose that the timing and meshing of an-
ticipatory action and perception are a useful framework for
human-robot interaction.

In this paper, we describe our work over the last few years
in anticipatory action for human-robot interaction. We de-
tail four systems in which we have modeled anticipation for
agents acting jointly with humans. In two systems, an agent
collaborates on a team task with a human team member.
We propose two models of anticipatory action and evaluate
their effect on human subjects. We apply a slightly differ-
ent anticipatory approach in two additional systems, aimed
at human-robot stage performance. One is a theater per-
formance robot, and another a musical improvisation robot.
Both systems have been successfully used in a live on-stage
performance with human actors and musicians, in front of
live audiences. In all four cases, our aim was to design sys-
tems that not only achieve the task at hand, but do so in a
highly coordinated, fluent fashion.

Related Work

Most work related to joint action has been concerned with a
goal-oriented view of the problem, paying little attention to
the timing of actions, or the quality of action meshing. Joint
action is usually described as solving a problem where the
participants share a goal and a common plan of execution.

In Bratman’s analysis of Shared Cooperative Activity, for
example, he defines certain prerequisites for an activity to
be considered shared and cooperative (Bratman 1992), such
as mutual responsiveness, commitment to the joint activity,
and commitment to mutual support. Supporting Bratman’s
guidelines, Cohen and Levesque propose a formal approach
to building artificial collaborative agents (Levesque, Cohen,
and Nunes 1990). Their notion of joint intention is viewed
not only as a persistent commitment of the team to a shared
goal, but also implies a commitment on part of all its mem-
bers to a mutual belief about the state of the goal. These and
similar principles have been used in a number of human-
robot teamwork architectures (Hoffman and Breazeal 2004;
Alami et al. 2005).

Human-robot collaboration has been investigated in a
number of previous works, although the question of timing
or fluent action meshing has not received much attention.
(Kimura, Horiuchi, and Ikeuchi 1999) have studied a robotic
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arm assisting a human in an assembly task. Their work ad-
dressed issues of vision and task representation, but does not
deal with anticipation or timing. Other human-robot collab-
oration work, such as that of (Jones and Rock 2002) studies
human-robot collaboration with an emphasis on dialog and
control, aimed primarily at the teleoperation scenario.

Some work in shared-location human-robot collaboration
has been concerned with the mechanical coordination and
safety considerations of robots in shared tasks with humans,
e.g. (Khatib et al. 2004) . Other work addresses turn-taking
and joint plans, but not anticipatory action, practice, or flu-
ency (Hoffman and Breazeal 2004). Timing and synchro-
nization have been reviewed on the motor level in the context
of a human-robot synchronized tapping problem (Komatsu
and Miyake 2004). Anticipatory action, without relation to
a human collaborator has been investigated in the area of
robot navigation, e.g. (Endo 2005).

Anticipatory Action in a Non-Atomic MDP

Our first anticipatory action system is built around a time-
aware extension of a Markov Decision Process (MDP).
MDPs are useful structures to model decision making un-
der uncertainty. However, they model perception and action
as atomic entities enforcing a turn-based activity paradigm
which may be inappropriate to time-based joint activities be-
tween agents and humans.

In order to incorporate time into the decision process, we
have proposed an extension of MDPs in which two agents
share a common workspace, on which the actions of both
have effect, and in which action is non-atomic.

In our model, the two agents have a number of internal
states, and the workspace has a number of external states,
which the agents can both perceive and affect. Human and
robot have distinct action sets, and a transition function maps
state-action pairs to new states.

To allow us to investigate temporal aspects of the actions
of two collaborating agents, state transitions are not atomic,
and the decision to take a particular action does not result
in an immediate state transition. Instead, moving between
states takes time, and is associated with a known discrete
cost, which is a function of the states before and after the
action. This cost can be thought of as the ‘distance’ between
states, or more generally — the duration it takes to transition
between states.

The Factory World

In our experiments we use a simulated factory setting (Fig-
ure 1). The goal of the team is to assemble a cart made of dif-
ferent parts. The labor is divided between the human and the
robot: the human has access to the individual parts, and is
capable of carrying them and positioning them on the work-
bench. The robot is responsible for fetching the correct tool
and applying it to the currently pertinent component config-
uration in the workbench. Each tool has to be returned to its
stock location. The size of the state-space in this simulation
is 2,160,900.

The action-space of the robot includes mobility actions,
moving to one of the five locations in the factory. In addition

Figure 1: Simulated factory setting with a human and a robot
building carts, while sharing a workbench, but dividing their
tasks.

the robot can pick up and put down a tool, as well as use it
on the workspace.

Reactive vs Anticipatory Action

We compare two kinds of artificial agents operating in
this framework: reactive and anticipatory agents. Reactive
agents apply their decision function on the currently per-
ceived state. A number of strategies are possible for this
agent class, but they share the trait that they only take into
account the current state.

In contrast, the agent can take an anticipatory, “risk-
taking” policy, in which it acts on a combination of the exist-
ing state and a probabilistic view of the temporal activity of
the human teammate. In the factory world described above,
we model the probabilistic prediction of the human’s actions
as a first-order Markov Process. The agent learns the pa-
rameters of this Markov process using a naı̈ve Bayesian es-
timate. Using its knowledge of action durations, the agent
can then estimate the expected temporal cost of each ac-
tion based on the probabilistic model of the human’s action.
The anticipatory selects actions based on an expectation-
optimization strategy, using a risk-aversion parameter.

Analysis

We showed that using an anticipatory expected-cost mini-
mizing strategy for action selection results in a theoretical
improvement in efficiency over the reactive strategy. This
improvement in efficiency increases over time as the model
of the human behavior gets reinforced, and is dependent on
the human’s consistency.

We also tested our system in a human subject study in-
volving untrained human team members. One group collab-
orated with a reactive agent, and one with an anticipatory
agent. In the post-experimental survey, we found significant
differences between participants in the two groups. Subjects
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in the anticipatory action agent group rated the robot as sig-
nificantly higher when asked whether “The robot’s perfor-
mance was an important contribution to the success of the
team.”; “The robot contributed to the fluency of the interac-
tion.”; and even in the emotionally charged “it felt like the
robot was committed to the success of the team.”

We also found a significant difference in the percentage
of concurrent motion, and perceived delay between the hu-
man’s actions and the robot’s actions, as well as anecdotal
evidence of a more positive attitude towards the anticipatory
agent in open-ended questions. For a full analysis of this
system, please refer to (Hoffman and Breazeal 2007).

Anticipatory Action as Perceptual Simulation

In our second implementation, we extend the above-
described system to cover real-world perceptual input and
continuous decision-making, instead of stepwise probabilis-
tic evaluation of expected cost, and simulated perception.

Neuropsychological analysis of anticipation in human
joint activities and teamwork points towards a perceptual
simulation framework (Wilson and Knoblich 2005; Sebanz,
Bekkering, and Knoblich 2006), according to which agents
simulate perceptual activation in anticipation of external
events and the actions of their collaborators.

Based on these findings, we propose that anticipation
through perceptual simulation can provide a powerful model
for robots acting jointly with humans if they are to collabo-
rate fluently using multi-modal sensor data. To that end, we
developed a cognitive architecture based on the principles of
anticipatory top-down perceptual simulation.

Cognitive Model

Our approach posits that an improvement in the timing of
joint actions achieved through repetitive practice can be
achieved through a system that relies on two processes: (a)
anticipation based on a model of repetitive past events, and
(b) the modeling of the resulting anticipatory expectation as
perceptual simulation, affecting a top-down bias of percep-
tual processes.

In this model, perceptions are processed in modality
streams built of interconnected process nodes. These nodes
can correspond to raw sensory input (such as a visual frame
or a joint sensor), to a feature (such as the dominant color
or orientation of a sensory data point), to a property (such as
the speed of an object), or to a higher-level concept describ-
ing a statistical congruency of features, in the spirit of the
Convergence Zones in (Simmons and Barsalou 2003).

Modality streams are connected to an action network con-
sisting of action nodes, which are activated in a similar man-
ner as perceptual process nodes. An action node, in turn,
leads to the performance of a motor action. Connections
between nodes in a stream are not binary, but weighted ac-
cording to the relative influence they exert on each other.

Importantly, activation flows in both directions, the af-
ferent—from the sensory system to concepts and actions—
and the opposite, efferent, direction. If an activation is trig-
gered in the efferent pathway, the result is a simulation of a
“priming”-like phenomenon, as follows:

Figure 2: The collaborative lighting task workspace.

If a certain higher-level node is activated, the lower-level
nodes that feed that higher-level node are partially acti-
vated through simulation on the efferent pathway. As this
activation is added to the sensory-based activation in the
lower-level nodes, this top-down activation inherently low-
ers the perceptual activation necessary for the activation of
those lower-level nodes, decreasing the real-world sensory-
based activation threshold for action triggering. The re-
sult of this is reduced response time for anticipated sensory
events, and increasingly automatic motor behavior for re-
hearsed perception-action congruences.

Two subsystems support anticipation in this framework:
the first is a Markov-chain Bayesian predictor, building
a probabilistic map of node activation based on recurring
activation sequences during practice, similar to the one
described in the previous Section. It triggers high-level
simulation, which—through the modality stream’s efferent
pathways—biases the activation of lower-level perceptual
nodes. If the subsequent sensory data supports these percep-
tual expectations, the robot’s reaction times are shortened as
described above. In the case where the sensory data does not
support the simulated perception, reaction time is longer and
can, in some cases, lead to a short erroneous action, which is
then corrected by the real-world sensory data. While slower,
we believe that this “double-take” behavior, often mirrored
by the human partner’s motion, may contribute to the hu-
man’s sense of similarity and bond to the robot.

An additional mechanism of practice is that of weight
reinforcement on existing activation connections. While
most node connections are fixed, some can be assigned to
a connection reinforcement system, which will dynamically
change the connection weights between the nodes. This sys-
tem works according to the contingency principle, reinforc-
ing connections that co-occur frequently and consistently,
and decreasing the weight of connections that are infre-
quent or inconsistent. This subsystem thus reinforces con-
sistent coincidental activations, but inhibits competing rein-
forcements stemming from the same source node, leading to
anticipated simulated perception of inter-modal perception
nodes. This, again, triggers top-down biasing of lower-level
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perception nodes, shortening reaction times.

Application

We have implemented an instantiation of the proposed ar-
chitecture on two robots: a humanoid robot, and a robotic
desk lamp, depicted in Figure 2. The lamp has a 5-degree-
of-freedom arm and a LED lamp which can illuminate in
the red-green-blue color space. The robot employs a three-
modality sensory and perceptual apparatus, including a 3D
vision system, audio with speech recognition, and a propri-
oceptive perceptual stream fed from the robot’s motor con-
trollers.

In the human-robot collaboration used in our studies, the
human operates in a workspace as depicted in Figure 2. The
robot can direct its head to different locations, and change
the color of its light beam. When asked to “Go”, “Come”,
or “Come here” the robot would point towards the loca-
tion of the person’s hand. Additionally, the color changed
in response to speech commands to one of three colors:
blue, red, and green. The workspace contained three loca-
tions (A,B,C). At each location there was a white cardboard
square labeled with the location letter, and four doors cut
into its surface. Each door, when opened, revealed the name
of a color printed underneath. The task was to complete a
sequence of 8 actions, which was described in diagrammat-
ical form on a sequence sheet, and included opening a door
and shining the right-colored light onto the carboard. This
sequence was to be repeated 10 times, as quickly as possible.

Analysis

In a human subject study involving untrained human team
mates, we have confirmed a number of behavioral hypothe-
ses relating to the efficiency and fluency of the human-
robot team. Again, subjects were divided into two groups,
REACTIVE (bottom-up only) and ANTICIPATORY (top-
down), and showed a significant difference on overall task
time, mean sequence time, human idle time, and perceived
delay (Hoffman and Breazeal 2008b).

In a questionnaire about the subjects’ experience with
the two robots, we find significant differences between sub-
jects in the two experimental conditions: subjects in the
ANTICIPATORY condition perceived the robot’s behavior
as more fluent, and rated the robot’s contribution to the
team, as well as the team’s overall improvement, signif-
icantly higher than subjects in the REACTIVE condition.
This supports our hypothesis that the proposed architec-
ture contributes to the quality of timing and collaboration
in human-robot teams.

In their open-ended responses, a lexical analysis shows
that subjects in the ANTICIPATORY condition com-
mented on the robot more positively, and subjects in the
REACTIVE condition commented on the robot more neg-
atively. ANTICIPATORY subjects attributed more human
characteristics to the robot, although there is little differ-
ence in the emotional content of the comments. Also, gen-
der attributions, as well as attributions of intelligence oc-
curred only in the ANTICIPATORY condition, while sub-
jects in the REACTIVE conditions tended to comment on the
robot as being unintelligent. We also found self-deprecating

comments more prevalent in the ANTICIPATORY condi-
tion (Hoffman and Breazeal 2008a).

Anticipation in Human-Robot Theater
An additional class of joint activities, in which timing plays
an important role, is that of a live human-robot stage per-
formance. We have explored a different notion of anticipa-
tion for synchronized action meshing between humans and
robots on stage, both in a theatrical and a musical setting.

The challenge of designing a system to control a live robot
interacting on stage with human actors is to enable the robot
to be both expressive and responsive. Most existing sys-
tems fall on one extreme of the scripted/direct-drive spec-
trum: they either are triggered in real time, but do not allow
for a continuous expressive, or precisely animated, perfor-
mance, or they are expressively animated but do not allow
for precisely-timed reactive behavior.

To straddle this gap, we have developed a hybrid control
system aimed for rehearsal and production of live stage per-
formances of robots acting with humans. This system is in-
tended to allow a single operator to control a robotic actor
using pre-animated gestures and sequences, but at the same
time adapting to the rhythm of live performance to the hu-
man actors. The result permits the robot to be both expres-
sive and responsive to its scene partner.

Cue-Impulse Separation

Our solution lies in the possibility to trigger a scene action
through a combination of anticipatory and follow-through
movements. The base narrative layer is structured around
the play’s scenes. A scene is a sequence of beats, each of
which describes a gesture on the robotic character’s part.

To allow for complex gesture expressiveness, a scene is
animated in a 3D animation software, using a physically
structured model of the robot. This results in a sequence
of positions for the robot throughout the scene, broken into
frames. A custom-written exporter to the animation program
exports the robot’s DoF positions in radians for each of the
frames in the scene, which are saved in the scene database.

Next, beats are identified and delimited in each scene. A
beat is defined by an onset frame and end frame. During
performance, a beat is expressed in two parts: the antici-
patory impulse and the follow-through cue, two terms bor-
rowed from acting method. To quote acting guru Sanford
Meisner: “[T]he impulse comes early in the speech, and the
cue then plays that out.” (Meisner and Longwell 1987) The
beat’s impulse is the preparatory behavior of the character,
which happens before the character’s cue to perform an ac-
tion, as an initial reaction to the scene partner’s action. In
order to support this in our system, a beat is assigned two
speeds, in frames per second, for the impulse-to-cue, and
cue-to-end parts of the beat. The result of this impulse-to-
cue architecture is to prevent a stop-and-go delayed perfor-
mance on the robot’s part, and allowing for a fluent exchange
of movement on stage.

Performance

We staged a theater production using the above-mentioned
system in three live performances in front of an audience
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Figure 3: Scene from a stage production employing the de-
scribed hybrid puppeteering system.

of roughly 50 each night. The performed play was entitled
Talking to Vegetables. The robotic performer used in the
play was the same robotic desk lamp described in the pre-
vious Section. Figures 3 show a photo of the robot in the
production. For a full description of the system, the perfor-
mance, and responses to the show, please refer to (Hoffman,
Kubat, and Breazeal 2008).

Anticipation in Human-Robot Musicianship

In a similar vein, we have applied an anticipa-
tion/followthrough framework to a human-robot joint
musical performance. This work is as part of our work
in robotic musicianship (Weinberg and Driscoll 2006).
Few applications are as sensitive to time as music, and in
particular the case of a joint musical performance. We have
tried to build a system that can perform live with a human
performer, improvising freely, and without noticeable delay.

Our system was implemented on Shimon, a robot play-
ing a percussion instrument called marimba. The physi-
cal robot is comprised of four arms, each actuated by a
voice-coil linear actuator at its base, and running along a
shared rail, in parallel to the marimba’s long side. The arms
are custom-made aluminum shells housing two rotational
solenoids each. The solenoids control mallets, chosen with
an appropriate softness to fit the area of the marimba that
they are most likely to hit. Each arm contains one mallet
for the bottom-row (“white”) keys, and one for the top-row
(“black”) keys. Shimon was designed in collaboration with
Roberto Aimi of Alium Labs.

Anticipatory Action

We describe a musical improvisation system in a separate
paper (in review). The system includes a number of inter-
action modules, such as call-and-response, joint improvisa-
tion, and accompaniment. In all of these modules, it is cru-
cial for the robot to be able to strike the correct notes at the
precise time, and often together with the cue from the human
player.

Since it takes time for the robot to reach the appropri-
ate position to play the correct note, we achieve synchro-
nization by taking an anticipatory action approach, divid-
ing gestures into preparation and follow-through, similar
to the robotic theater control system. By separating the—
potentially lengthy—preparatory movement (in our case:

the horizontal movement) from the almost instant follow-
through (in our case: the mallet action), we can achieve a
high level of synchronization and beat keeping without rely-
ing on a complete-musical-bar delay of the system, as usu-
ally done in real-time joint music systems.

For example, in the call-and-response module, the robot
prepares the response chord while the human is playing their
phrase. If the phrase matched the prepared chord, the robot
can respond with the first note of the response almost in-
stantly. In the joint improvisation module, the robot starts
the anticipatory action between the last beat of a bar and first
beat of the next bar. This enables it to follow through at the
precise onset of each bar. Similarly, for the grand finale of a
performance, the robot’s anticipatory movement is triggered
by the human’s crescendo, with the final chord activated by
the human’s cue, resulting in a seemingly synchronized mu-
sical experience.

Performance

We have used the described interaction module as part of a
live human-robot Jazz performance before a public audience
in April 2009 in Atlanta, GA, USA. The performance was
part of an evening of computer music and was sold-out to an
audience of approximately 160 attendants.

Figure 4: Live performance of the robot Shimon using the
improvisation system discussed herein.

The performance was structured around a “Jordu”, a Jazz
standard by Duke Jordan. The overall performance lasted
just under seven minutes. Video recordings of the perfor-
mance were widely covered by the press and viewed by an
additional audience of over 40,000 online viewers.

Visual contact and Synchronization

In experiments with experienced pianists, we evaluated the
role of visual contact using the anticipatory gestures de-
scribed above. In particular, we used the call-and-response
module from the above-mentioned performance system, in
three conditions: in one, the robot was in plain sight of the
pianist; in the second the robot was physically present, but
occluded; and in the third, the music was synthesized by a
computer without any physical movement of the robot.

We find that, when the robot slightly alters the tempo in
response to the human’s playing, the pianists’ ability to syn-
chronize with the robot is significantly reduced, compared
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to the robot playing precisely on tempo. In these case, vi-
sual contact significantly reduces the error compared to the
occluded and synthesized condition. In particular, visual
contact allows the pianists to react to the robot instead of
pre-empting the timing of their playing (often badly). This
indicates that the pianists use the visual cues to time their
playing, making use of the robot’s anticipatory gestures to
time their own musical activities.

We also find that visual contact is more crucial during
slow trials, and during trials in which the robot slows down,
possibly suggesting that visual cues are slow to be processed
and aid less in fast sequences. It may be that during fast se-
quences, the pianists did not have time to look at the robot.
We report on these and other results from this study in a sep-
arate paper (in review).

Conclusion

In this paper, we survey a number of projects exploring
the notion of anticipation in human-robot interaction. We
present a time-based extension to a Markov Decision Pro-
cess, in which we developed an anticipatory agent to work
together with a human in a joint state space. Comparing the
anticipatory agent to a purely reactive agent, we find that
human subjects collaborating with the agents find the antic-
ipatory agent to be more fluent and more committed.

We also model anticipation as perceptual simulation,
based on neurological findings in humans. We show a sys-
tem using top-down simulation to achieve perceptual antic-
ipatory action, and discuss an implementation on a collabo-
rative robotic lamp. We present a human subject study eval-
uating the effects of our approach, comparing it with a sys-
tem using only bottom-up processing. We find significant
differences in the task efficiency and fluency between the
two conditions. From self-report, we find significant differ-
ences in the perception of the team’s fluency and the robot’s
contribution to that fluency, as well as in a number of other
self-report metrics. Interestingly, we also find a tendency
towards self-criticism in subjects collaborating with the an-
ticipatory version of the robot.

Finally, we present two performance systems, one in the
realm of theater performance, and one in the musical field,
in which a apply an anticipation/followtrough framework to
achieve a high level of synchronization with human stage
partners. In the musical application, we also find that human
players use visual contact to synchronize with a robot using
the robot’s anticipatory movement.
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