
New Advances in Sequential Diagnosis

Sajjad Siddiqi
National University of Sciences and Technology

Islamabad, Pakistan
sajjad.ahmed@seecs.edu.pk

Jinbo Huang
NICTA and Australian National University

Canberra, Australia
jinbo.huang@nicta.com.au

Abstract

Sequential diagnosis takes measurements of an abnormal sys-
tem to identify faulty components, where the goal is to reduce
the diagnostic cost, defined here as the number of measure-
ments. To propose measurement points, previous work em-
ploys a heuristic based on reducing the entropy over a set of
diagnoses, which can be impractical when the set of diag-
noses is too large. Focusing on a smaller set of probable di-
agnoses scales the approach but generally leads to increased
diagnostic cost. We propose a new diagnostic framework em-
ploying three new techniques—a more efficient heuristic for
measurement point selection, abstraction-based sequential di-
agnosis, and component cloning—which scales to large sys-
tems with good performance in terms of diagnostic cost.

Introduction

Consider the combinational circuit in Figure 1. Given the
inputs P ∧Q∧¬R, the output V should be 0, but is actually
1 due to the faults at gates J and B. Some of the diagnoses
under this observation are: {V }, {K}, {A}, and {J, B}, and
only one of them corresponds to the set of actual faults.

In sequential diagnosis, measurements of system vari-
ables are taken to isolate the actual faults (de Kleer and
Williams 1987). To propose measurement points, the
GDE (general diagnosis engine) framework (de Kleer and
Williams 1987; de Kleer 1992; de Kleer, Raiman, and
Shirley 1992; de Kleer 2006) considers a heuristic based
on reducing the entropy over a set of computed diagnoses
which is either the set of minimum-cardinality diagnoses or
a set of probable/leading diagnoses. This approach can be
impractical when the set of diagnoses is too large. Focusing
on a smaller set of probable diagnoses scales the approach
but can increase the likelihood of irrelevant measurements
and generally leads to increased average diagnostic costs (de
Kleer 1992).

We propose a new diagnostic framework employing three
new techniques, which scales to much larger systems with
good performance in terms of diagnostic cost. First, we
propose a new heuristic that considers the entropies of the
system variables to be measured as well as the posterior
probabilities of component failures. To compute probabil-
ities, the system is modeled as a Bayesian network (Pearl

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A faulty circuit.

1988) and compiled into deterministic decomposable nega-
tion normal form (d-DNNF) (Darwiche 2001; Darwiche and
Marquis 2002; Darwiche 2003).

Second, we extend hierarchical diagnosis, a technique
based upon system abstraction (Siddiqi and Huang 2007),
to handle probabilities so that it can be applied to sequential
diagnosis to allow larger systems to be diagnosed.

Finally, when the abstraction of a system is still too large
to be compiled, we propose a new method of component
cloning that converts the system into one that has a smaller
abstraction.

We use combinational circuits as an example of the type
of systems we wish to diagnose. Our approach, however,
applies as well to other types of systems as long as a prob-
abilistic model is given that defines the behavior of the sys-
tem. We now present the new techniques we have introduced
starting with the system modeling and compilation method
that underlies our new diangostic system.

System Modeling and Compilation

Suppose that the system to be diagnosed is formally mod-
eled by a joint probability distribution Pr(X∪H) over a set
of variables partitioned into X and H. Variables X are those
whose values can be either observed or measured, and vari-
ables H are the health variables, one for each component
describing its health mode.

The modeling of systems as Bayesian networks has been
discussed in (Siddiqi and Huang 2008). Here we only de-
scribe the encoding of Bayesian networks we use, which is
analogous to what is described in (Darwiche 2003).

Consider the subcircuit in the dotted box in Figure 1 as an
example, which can be modeled as the following formula:

17

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

okJ → (J ↔ ¬P), okA → (A ↔ (J ∧ D)). Specifically,
each signal of the circuit translates into a propositional vari-
able (A, D, P , J), and for each gate, an extra variable is
introduced to model its health (okA, okJ). The formula is
such that when all health variables are true, the remaining
variables are constrained to model the functionality of the
gates. In general, for each component X , we have okX →
NORMALBEHAVIOR(X). In addition, we introduce an extra
Boolean variable θJ , and write ¬okJ → (J ↔ θJ). Fi-
nally, the health variables (okA, okJ) are associated with
the probabilities of the respective gates being healthy (0.9 in
our experiments), and each θ-variable (θJ) is associated with
the probability of the corresponding gate giving an output of
1 when broken (0.5 in our experiments).

Once all components are encoded as described above,
the union (conjunction) of the formulas is compiled into d-
DNNF. The required probabilities can be exactly computed
by evaluating and differentiating the d-DNNF in time linear
in its size (Darwiche 2003).

We now present our baseline diagnosis approach and pro-
pose a new measurement selection heuristic.

New Measurement Point Selection

Diagnosis starts in the initial (belief) state: I0 = Pr(X ∪
H | Xo = xo), where values xo of some variables Xo ⊆ X
(we are using boldface uppercase letters to mean both sets
and vectors) are given by the observation, and we wish to
reach a goal state In = Pr(X ∪ H | Xo = xo,Xm =
xm) after measuring the values xm of some variables Xm ⊆
X\Xo, |Xm| = n, one at a time, such that (the boldface 0
and 1 denote vectors of 0’s and 1’s): ∃Hf ⊆ H, P r(Hf =
0 | Xo = xo,Xm = xm) = 1 and Pr(Hf = 0,H\Hf =
1 | Xo = xo,Xm = xm) > 0. That is, in a goal state a
set of components Hf are known to be faulty with certainty
and no logical inconsistency arises if all other components
are assumed to be healthy.

Two special cases are worth mentioning: (1) If the ini-
tial state I0 satisfies the goal condition with Hf = ∅ then
the observation is normal and no diagnosis is required. (2)
If the initial state I0 satisfies the goal condition with some
Hf 	= ∅, then the observation is abnormal but the diagno-
sis is already completed (assuming that we are able to check
probabilities as necessary); in other words, a sequence of
length 0 solves the problem.

An optimal solution to sequential diagnosis would be a
policy (Heckerman, Breese, and Rommelse 1995), which is
intractable to compute in general. Therefore, we follow the
approach of heuristic measurement point selection based on
Shannon’s entropy as in previous work. We consider the en-
tropy of a candidate variable to be measured, which provides
the average amount of information gain provided by mea-
suring the variable. Therefore we first consider measuring a
variable with maximal entropy at each step.

This idea alone, however, did not work very well in our
initial experiments. This is largely due to the fact that the
(implicit) space of all diagnoses is generally very large and
can include a large number of unlikely diagnoses, which
tends to compromise the accuracy of the information gain

Algorithm 1 Sequential diagnosis
function SD(C, Δ, D, y, k)
inputs: {C: system}, {Δ: d-DNNF}, {y: measurements}, {k:
fault cardinality}, {D: ordered set of known faults}
output: {pair< D , y >}
1: REDUCE (Δ, D, k − |D|) if D has changed
2: Given y on variables Y, EVALUATE (Δ, y) to obtain Pr(y)
3: DIFFERENTIATE (Δ) to obtain Pr(X = 1,y) ∀ variables X
4: Deduce fault as D = D ∪ {X : Pr(okX = 1,y) = 0}
5: if D has changed && MEETSCRITERIA(Δ,D,y) then
6: return < D , y >
7: Measure variable X which is the best under a given heuristic
8: Add the measured value x of X to y, and go back to line 1

provided by the entropy. The experiments to confirm this
explanation are as follows.

Before the d-DNNF is used to compute probabilities, we
prune it so that models (satisfying variable assignments) cor-
responding to diagnoses with more than k broken compo-
nents are removed.1 We set the initial k to the number of
actual faults in the experiments, and observed that a sig-
nificant reduction of diagnostic cost resulted in almost all
cases. This is apparently due to the fact may unlikely di-
agnoses get eliminated making the posterior probabilities of
variables more accurate.

However, choosing an appropriate k for the pruning can
be nontrivial (note that k need not be exactly the same as
the number of actual faults for the pruning to help). Interest-
ingly, the following heuristic, which is the one we actually
use, can achieve a similar performance gain in an automatic
way: We select a component that has the highest posterior
probability of failure (an idea from (Heckerman, Breese, and
Rommelse 1995); discussed later), and then from the vari-
ables of that component, measure the one that has the highest
entropy. This heuristic does not require the above pruning of
the d-DNNF, and appears to improve the diagnostic cost to a
similar extent by focusing the measurement selection on the
component most likely to be broken.

The Algorithm We start by encoding the system as a log-
ical formula as discussed earlier, where a subset of the vari-
ables are associated with numbers representing the prior
fault probabilities and probabilities involved in the fault
models of the components, which is then compiled into d-
DNNF Δ.

The overall sequential diagnosis process we propose is
summarized in Algorithm 1. The inputs are a system C, its
d-DNNF compilation Δ, the set of faults D (which is empty
but will be used in the hierarchical approach), a set of known
values y of variables, and an integer k specifying the fault
cardinality bound (this is for running the model pruning ex-
periments described earlier, and is not required for diagno-
sis using our final heuristic). We reduce Δ by pruning some
models (line 1) when the fault cardinality bound k is given.
We then evaluate (line 2) and differentiate (line 3) Δ, select

1A complete pruning is not easy; however, an approximation
can be achieved in time linear in the d-DNNF size, by a variant of
the minimization described in (Darwiche 2001).

18

a measurement point and take the measurement (line 7), and
repeat the process (line 8) until the stopping criteria are met
(line 5).

The stopping criteria on Line 5 are given earlier as the
goal condition, i.e., we stop when the abnormal observation
is explained by all the faulty components D already identi-
fied assuming that other components are healthy. A faulty
component X is identified when Pr(okX = 1,y) = 0
where y are the values of variables that are already known,
and as mentioned earlier these probabilities are obtained for
all variables simultaneously in the d-DNNF differentiation
process. Finally, the condition that the current set of faulty
components, with health modes Hf , explains the observa-
tion is satisfied when Pr(Hf = 0,H\Hf = 1,y) > 0,
which is checked by a single evaluation of the original d-
DNNF. The algorithm returns the actual faults together with
the new set of known values of variables (line 6).

Abstraction

We now scale our approach to handle larger systems using
the idea of abstraction based hierarchical diagnosis (Siddiqi
and Huang 2007). The basic idea is that the compilation
of the system model into d-DNNF will be more efficient
and scalable when the number of system components is re-
duced. This can be achieved by abstraction, where subsys-
tems, known as cones, are treated as single components. The
objective here is to use a single health variable and failure
probability for the entire cone, hence significantly reducing
the size of the encoding and the difficulty of compilation.
Once a cone is identified as faulty in the top-level diagno-
sis, it can then be compiled and diagnosed, in a recursive
fashion. For example, the subcircuit in the dotted box in
Figure 1 is a cone (with A as output and {P,D} as inputs)
which contains a fault. First, cone A, as a whole, is deter-
mined as faulty. It is only then that A is compiled separately
and diagnosed.

In (Siddiqi and Huang 2007), we only dealt with comput-
ing minimum-cardinality diagnoses, which does not involve
probabilities or measurement selection. In the context of se-
quential diagnosis, several additional techniques have been
introduced, particularly in the computation of prior failure
probabilities for the cones and the way measurement points
are selected, outlined below.

Propositional Encoding We start by discussing the hier-
archical encoding for probabilistic reasoning, which is sim-
ilar to the hierarchical encoding presented in (Siddiqi and
Huang 2007). Specifically, for the diagnosis of the abstrac-
tion AC of the given system C, only the components in
AC\IC will have extra health variables, which are the gates
{A, B, D, K, V } in our example (IC stands for the set of
inputs of the system C).

In addition, we define the failure of a cone to be when
it outputs the wrong value, and introduce extra clauses to
model the abnormal behavior of the cone. For example,
the encoding given earlier for cone A in Figure 1 (in the
dotted box) is as follows: J ↔ ¬P, okA → (A ↔
(J ∧ D)), ¬okA → (A 	↔ (J ∧ D)).

The first part of the formula encodes the normal behavior

of gate J (without a health variable); the next encodes the
normal behavior of the cone; the last encodes that the cone
outputs a wrong value when it fails. Other gates (that are not
roots of cones) in the abstraction AC are encoded normally.

Note that the formulas for all the components in a cone
together provide the conditional probability of the cone’s
output given the health and inputs of the cone, instead of
the health and inputs of the component at the root of the
cone. For example, the above encoding is meant to provide
the conditional probability of A given P , D, and okA (in-
stead of J , D, and okA), where okA represents the health
mode of the whole cone and is associated with its prior fail-
ure probability, which is initially unknown to us and has
to be computed for all cones (explained below). Such an
encoding of the whole system provides a joint probabil-
ity distribution over the variables AC ∪ IC ∪ H, where
H = {okX | X ∈ AC\IC}.

Prior Failure Probabilities for Cones When a cone is
treated as a single component, its prior probability of fail-
ure as a whole can be computed given the prior probabilities
of components and cones inside it. We do this by creating
two copies Δh and Δf of the cone, where Δh models only
the healthy behavior of the cone (without health variables),
and Δf includes the faulty behavior as well (i.e., the full en-
coding described earlier). The outputs of both Δh and Δf

are collected into an XOR-gate X(when the output of XOR-
gate X equals 1, both of its inputs are forced to be different
in value). We then compute the probability Pr(X = 1)
giving the probability of the outputs of Δh and Δf being
different. The probability is computed by compiling this en-
coding into d-DNNF and evaluating it under X = 1.

Note that this procedure itself is also abstraction based
and hierarchical, performed bottom-up with the probabilities
for the inner cones computed before those for the outer ones.
Also note that it is performed only once per system as a pre-
processing step.

Measurement Point Selection and Stopping Criteria In
principle, the measurement selection and the stopping crite-
ria are the same as in the baseline method; however, a couple
of details are worth mentioning.

First, when diagnosing the abstraction of a given system
(or cone) C, the measurement candidates are restricted to
variables AC ∪ IC, ignoring the internal variables of the
maximal cones—those are only measured if a cone as a
whole has been found faulty.

Second, it is generally important to have full knowledge
of the values of cone’s inputs before a final diagnosis of the
cone is concluded. A diagnosis of a cone concluded with
only partial knowledge of its inputs may exclude some faults
that are vital to the validity of global diagnosis. The reason
is that the diagnosis of the cone assumes that the unknown
inputs can take either value, while in reality their values may
be fixed when variables in other parts of the system are mea-
sured, causing the diagnosis of certain cones to become in-
valid, and possibly requiring the affected cones to be diag-
nosed once again to meet the global stopping criteria.

To avoid this situation while retaining the effectiveness of
the heuristic, we modify the measurement point selection as

19

Algorithm 2 Hierarchical sequential diagnosis
function HSD(C, uC , k)
inputs: {C : system},{uC: obs. across system} {k: fault cardi-
nality}
local variables: {B,D,T : set of components} {y, z,uG : set of
measurements} {i, k′ : integer}
output: {pair< D , uC >}
1: Δ ← COMPILE2DDNNF (AC, uC)
2: i ← 0 , D ← φ , y ← uC

3: < B,y >← SD (C, Δ, B, y, k)
4: for {; i < |B|; i + +} do
5: G ←ELEMENT (B, i)
6: if G is a cone then
7: z ← y ∪ IMPLICATIONS (Δ, y)
8: uG ← {x : x ∈ z, X ∈ IG ∪ OG}
9: k′ ← k − |D| − |B| + i + 2

10: < T,uG >← HSD(DG ∪ IG, uG, k′)
11: y ← y ∪ uG , D ← D ∪ T
12: EVALUATE (Δ, y), DIFFERENTIATE (Δ)
13: else
14: D ← D ∪ {G}
15: z ← y ∪ IMPLICATIONS (Δ, y)
16: uC ← uC ∪ {x : x ∈ z, X ∈ IC ∪ OC}
17: if MEETSCRITERIA (C, D, y) then
18: return < D , uC >
19: else
20: goto line 3

follows when diagnosing a cone. After selecting a compo-
nent with the highest probability of failure, we consider the
variables of that component plus the inputs of the cone, and
measure the one with the highest entropy. We do not con-
clude a diagnosis for the cone until values of all its inputs
become known (through measurement or deduction), except
when the health of all the components in the cone has been
determined without knowing all the inputs to the cone (it
is possible to identify a faulty component, and with strong
fault models also a healthy component, without knowing all
its inputs). The cost increase due to this is often insignificant
because when a cone is concluded as faulty in the abstract
diagnosis, the values of a significant number, if not all, of its
inputs are often known.

The Algorithm Pseudocode for the hierarchical approach
is given in Algorithm 2 as a recursive function. The inputs
are a system C, a set of known values uC of variables at
the inputs IC and outputs OC of the system, and again the
optional integer k specifying the fault cardinality bound for
the purpose of experimenting with the effect of model prun-
ing. We start with the d-DNNF compilation of the abstrac-
tion of the given system (line 1) and then use the function
SD from Algorithm 1 to get a diagnosis B of the abstraction
(line 3), assuming that the measurement point selection and
stopping criteria in Algorithm 1 have been modified accord-
ing to what is described in the previous sub-section. The ab-
stract diagnosis B is then used to get a concrete diagnosis D
in a loop (lines 4–14). Specifically, if a component G ∈ B is
not the root of a cone, then it is added to D (line 14); other-
wise cone G is recursively diagnosed (line 10) and the result
of it added to D (line 11).

Before recursively diagnosing a cone G, we compute an
abnormal observation uG at the inputs and output (IG ∪
{G}) of G. The values of some of G’s inputs and out-
put will have been either measured or deduced. The value
of a variable X is implied to be x under the measure-
ments y if Pr(X = ¬x,y) = 0, which is easy to check
once Δ has been differentiated under y. The function
IMPLICATIONS(Δ, y) (lines 7 and 15) implements this op-
eration, which is used to compute the partial abnormal ob-
servation uG (line 8). A fault cardinality bound k′ for the
cone G is then inferred (line 9), and the algorithm called
recursively to diagnose G, given uG and k′.

The recursive call returns the faults T inside the cone G
together with the updated observation uG. The observation
uG may contain some new measurement results regarding
the variables IG ∪ {G}, which are added to the set of mea-
surements y of the abstraction (line 11); other measurement
results obtained inside the cone are ignored because internal
measurements of the cone are not required in the abstraction,
as explained earlier. The concrete diagnosis D is augmented
with the faults T found inside the cone (line 11), and Δ is
again evaluated and differentiated in light of the new mea-
surements (line 12).

After the loop ends, the variable uC is updated with the
known values of the inputs IC and outputs OC of the sys-
tem C (line 16). The stopping criteria are checked for the
diagnosis D (line 17) and if met the function returns the pair
< D,uC > (line 18); otherwise more measurements are
taken until the stopping criteria (line 17) have been met.

Since D can contain faults from inside the cones, the
compilation Δ cannot be used to check the stopping crite-
ria for D (note the change in the parameters to the function
MEETSCRITERIA at line 17) as the probabilistic informa-
tion regarding variables inside cones is not available in Δ.
The criteria are checked as follows instead: We first propa-
gate the values of inputs in the system, and then propagate
the fault effects of components in D, one by one, by flipping
their values to the abnormal ones and propagating them to-
wards the system outputs in such a way that deeper faults are
propagated first (Siddiqi and Huang 2007), and then check
the values of system outputs obtained for equality with those
in the observation (y).

Example Suppose that we diagnose the abstraction of the
circuit in Figure 1, with the observation {P = 1, Q =
1, R = 0, V = 1}, and take the sequence of measurements
{D = 1, K = 1, A = 1}. It is concluded, from the abstract
system model, that given the values of P and D, the value 1
at A is abnormal. So the algorithm concludes a fault at A.
Note that Q = 1 and D = 1 suggests the presence of an-
other fault besides A, triggering the measurement of gate B,
which is also found faulty. The abstract diagnosis {A, B}
meets the stopping criteria with respect to the abstract cir-
cuit.

We then diagnose cone A, recursively, with observation
{P = 1, D = 1, A = 1}. The only unknown wire J is
measured and found faulty, which explains the observation
at the cone’s output A, given its inputs P and D. The recur-
sion terminates and the abstract diagnosis {A, B} generates

20

Figure 2: A faulty circuit with faults at B and J (left). Cre-
ating a clone B′ of B according to D (right).

the concrete diagnosis {J, B}, which meets the stopping cri-
teria and the diagnosis stops.

Component Cloning

In the preceding section, we have proposed an abstraction
based approach to sequential diagnosis, which reduces the
complexity of compilation and diagnosis by reducing the
number of system components to be diagnosed. We now
take one step further, aiming to handle systems that are so
large that they remain intractable even after abstraction, as
is the case for the largest circuits in the ISCAS-85 bench-
mark suite.

Our solution is a novel method that systematically modi-
fies the structure of a system to reduce the size of its abstrac-
tion.2 Specifically, we select a component G with parents P
(a component X is a parent of a component Y , and Y is a
child of X , if the output of Y is an input of X) that is not
part of a cone and hence cannot be abstracted away in hier-
archical diagnosis, and create a clone G′ of it according to
some of its parents P′ ⊂ P in the sense that G′ inherits all
the children of G and feeds into P′ while G no longer feeds
into P′ (see Figure 2 for an example). We create a suffi-
cient number of clones of G so that G and its clones become
part of some cones and hence can be abstracted away. Re-
peated applications of this operation can allow an otherwise
unmanageable system to have a small enough abstraction for
compilation and diagnosis to succeed. The hierarchical al-
gorithm is then extended to diagnose the new system and the
result mapped to the original system.

We now formally define component cloning:

Definition 1 (Component Cloning). Let G be a component
in a system C with parents P. We say that G is cloned ac-
cording to parents P′ ⊂ P when it results in a system C′
that is obtained from C as follows: The edges going from G
to its parents P′ are removed. A new component G′ func-
tionally equivalent to G is added to the system such that G′
shares the inputs of G and feeds into each of P′.

In Figure 2 creating a clone B′ of B according to {D}
results in a new circuit whose abstraction contains only the
gates {A, D, K, V }, whereas the abstraction of the original
circuit contains also gate B.

2Choi, Chavira, and Darwiche (2007) described a related but
different technique, called node splitting.

Choices in Component Cloning There are two choices to
be made in component cloning: Which components do we
clone, and for each of them how many clones do we create
and how do they split the parents?

Since the purpose is to reduce the abstraction size, clearly
we only wish to clone those components that lie in the ab-
straction (i.e., not within cones). Among these, cloning of
the root of a cone cannot reduce the abstraction size as it will
destroy the existing cone, reintroducing some of the com-
ponents inside the cone into the abstraction. For example,
cloning D according to K in Figure 2 (right) will produce a
circuit where D and its clone can be abstracted away but B′
is no longer dominated (Siddiqi and Huang 2007) by D and
hence is reintroduced into the abstraction. The final can-
didates for cloning are then precisely those components in
the abstract system that are not roots of cones. The order in
which components are cloned is unimportant as each when
cloned will cause a reduction of precisely 1 in the abstraction
size, if any.

It then remains to determine for each candidate how many
clones to create and how to connect them to the parents.
To understand our final method, it helps to consider a naive
method that simply creates |P|−1 clones (where P is the set
of parents) and has each clone, as well as the original, feed
into exactly one parent. Thus every parent of the component
becomes the root of a cone and the component itself and all
its clones are abstracted away. In Figure 2 (left), B has three
parents {E,A, D}, and this naive method would create two
clones of B for a total of three instances of the gate to split
the three parents, which would result in the same abstraction
as in Figure 2 (right).

The trick now is that the number of clones can be reduced
by knowing that some parents of the component may lie in
the same cone and a single clone of the component accord-
ing to those parents will be sufficient for that clone to be
abstracted away. In the example of Figure 2, again, the par-
ents E,A of B lie in the same cone A and it would suffice
to create a single clone of B according to {E,A}, resulting
in the same, more efficient cloning as in Figure 2 (right).

More formally, we partition the parents of a component
G into subsets P1,P2, . . . ,Pq such that those parents of G
that lie in the same cone are placed in the same subset and
the rest in separate ones. We then create q − 1 clones of G
according to any q − 1 of these subsets, resulting in G and
all its clones being abstracted away. This process is repeated
for each candidate component until the abstraction size is
small enough or no further reduction is possible.

Diagnosis with Component Cloning The new system is
functionally equivalent to the original and has a smaller ab-
straction, but is not equivalent to the original for diagnostic
purposes. As the new model allows a component and its
clones to fail independently of each other, it is a relaxation
of the original model in that the diagnoses of the new system
form a superset of those of the original. Specifically, each
diagnosis of the new system that assigns the same health
state to a component and its clones for all components corre-
sponds to a diagnosis of the original system; other diagnoses
are spurious and are to be ignored.

21

Our core diagnosis process continues to be applicable on
the new system, with only two minor modifications neces-
sary. First, the spurious diagnoses are (implicitly) filtered
out by assuming the same health state for all clones (includ-
ing the original) of a component as soon as the health state
of any one of them is known. Second, whenever measure-
ment of a clone of a component is proposed, the actual mea-
surement is taken on the original component in the original
system, for obvious reasons (in other words, the new system
is used for reasoning and the original for measurements).

The presence of spurious diagnoses in the model can po-
tentially skew the measurement point selection heuristic (at
least in the early stages of diagnosis, before the spurious
diagnoses are gradually filtered out). However, by using
smaller benchmarks that could be diagnosed both with and
without cloning, we conducted an empirical analysis which
indicates, interestingly, that the overall diagnostic cost is
only slightly affected (see next section).

Experimental Results
We now empirically evaluate our new diagnostic system, re-
ferred to as SDC (sequential diagnosis by compilation), that
implements the baseline, hierarchical, and cloning based ap-
proaches. All experiments were conducted on a cluster of 32
computers consisting of two types of (comparable) CPUs,
Intel Core Duo 2.4 GHz and AMD Athlon 64 X2 Dual Core
Processor 4600+, both with 4 GB of RAM running Linux.
A time limit of 2 hours and a memory limit of 1.5 GB were
imposed on each test case. The d-DNNF compilation was
done using the publicly available d-DNNF compiler C2D
(Darwiche 2004; 2005). The CNF was simplified before
compilation using the given observation, which allowed us
to compile more circuits, at the expense of requiring a fresh
compilation per observation.

We generated test cases for single- and multiple-fault
scenarios using ISCAS-85 benchmark circuits. For single
faults, we simulated the equal prior probability of faults by
generating n fault scenarios for each circuit, where n equals
the number of gates in the circuit: Each scenario contains
a different faulty gate. We then randomly generated 5 test
cases for each of these n scenarios. Doing the same for
multiple-fault scenarios would not be practical due to the
large number of combinations, so for each circuit we simply
generated 500 (for circuits up to c1355) or 100 (for remain-
ing circuits) random scenarios with the given fault cardinal-
ity and a random test case for each scenario.

Each test case is a faulty circuit where some gates give
incorrect outputs. The inputs and outputs of the circuit are
observed. The values of internal wires are then computed
by propagating the inputs in the normal circuit towards the
outputs followed by propagating the outputs of the assumed
faulty gates one by one such that deeper faults are propa-
gated first. The obtained values of internal wires are then
used to simulate the results of taking measurements. We use
Pr(okX = 1) = 0.9 for all gates X of the circuit. Note
that such cases, where all gates fail with equal probability,
are conceivably harder to solve as the diagnoses will tend to
be less differentiable. Then, for each gate, the two output
values are given equal probability when the gate is faulty.

size system
single-fault double-fault triple-fault
cost time cost time cost time

13
GDE 3.6 2.0 3.8 1.81 4.0 1.9
SDC 3.6 0.01 3.4 0.01 2.8 0.01

14
GDE 3.5 6.66 3.3 15.1 3.0 14
SDC 4.2 0.01 2.9 0.01 2.9 0.01

15
GDE 3.4 111 3.5 88 4.3 299
SDC 3.9 0.01 3.4 0.01 3.7 0.01

16
GDE 3.3 398 3.5 556 3.2 509
SDC 3.5 0.01 3.3 0.01 2.8 0.01

17
GDE 3.7 2876 4.6 4103 4.5 2067
SDC 3.8 0.01 4.2 0.01 4.2 0.01

Table 1: Comparison with GDE.

Again, this will tend to make the cases harder to solve due to
the high degree of uncertainty. For each circuit and fault car-
dinality, we report the cost (number of measurements taken)
and time (including the compilation time, in CPU seconds)
to locate the faults, averaged over all test cases solved.

The following three subsections empirically show the ef-
fectiveness of the new heuristic, hierarchical sequential di-
agnosis, and component cloning, respectively.

Effectiveness of Measurement Point Selection

We first compare the baseline algorithm of SDC with a ver-
sion of GDE and show that SDC performs as well in terms of
diagnostic cost and scales to much larger circuits, illustrat-
ing the effectiveness of our new heuristic.

Comparison with GDE We could obtain only the tutorial
version of GDE (Forbus and de Kleer 1993), which com-
putes the set of minimal diagnoses instead of probable diag-
noses. This makes our comparison less informative. Nev-
ertheless, we are able to make a reasonable comparison in
terms of diagnostic cost as the set of minimal diagnoses can
also serve as a large set of probable diagnoses when compo-
nents have equal prior probabilities. According to de Kleer
et al. (1992) availability of more diagnoses aids in heuristic
accuracy, whereas focusing on a smaller set of probable di-
agnoses can be computationally more efficient but increase
the average diagnostic cost.

This version of GDE, developed for tutorial purposes, was
in fact unable to solve any circuit in ISCAS-85. To enable
a useful comparison, we extracted a set of small subcircuits
from the ISCAS-85 circuits: 50 circuits of size 13, 14, 15
and 16, and 10 circuits of size 17. For each circuit we ran-
domly generated 5 single-fault, 5 double-fault, and 5 triple-
fault scenarios, and one test case (input/output vector) for
each fault scenario. The comparison between GDE and SDC
(baseline) on these benchmarks given in Table 1 shows that
SDC performs as well as GDE in terms of diagnostic cost.

Larger Benchmarks To evaluate the performance of SDC
on the larger ISCAS-85 circuits, we have again conducted
three sets of experiments, now involving single, double, and
five faults. In order to provide a systematic reference point
for comparison we have implemented a random strategy
where a random order of measurement points is generated
for each circuit and used for all the test cases. This strategy

22

cir- sys- pru- single-fault double-fault five-fault
cuit tem ning cost time cost time cost time

c432 RAND
no 92.3 20.7 97.7 23.2 117.8 26.5

(160
yes 4.5 11.4 36.8 12.4 99.7 17.2

gates) SDC(ew)
no 42.0 16.6 42.5 21.3 68.4 25.5
yes 3.7 11.1 8.6 12.0 33.8 12.8

SDC(fp)
no 6.7 11.7 6.4 12.5 9.4 13.0
yes 4.3 11.0 5.0 12.3 9.1 12.6

c499 RAND
no 109.6 0.8 120.6 1.2 150.0 1.4

(202
yes 5.5 0.2 20.1 0.2 104.9 0.7

gates) SDC(ew)
no 58.1 0.7 54.0 0.5 95.8 0.8
yes 3.6 0.2 3.7 0.2 35.7 0.3

SDC(fp)
no 6.5 0.2 4.3 0.2 7.2 0.2
yes 4.8 0.2 3.0 0.2 7.1 0.2

c880 RAND
no 221.0 1.9 251.3 1.9 306.4 2.3

(383
yes 5.4 0.2 47.3 0.3 205.7 1.3

gates) SDC(ew)
no 26.8 0.3 32.8 0.4 79.0 0.7
yes 4.0 0.2 6.8 0.2 30.5 0.4

SDC(fp)
no 10.8 0.2 9.2 0.2 15.8 0.3
yes 5.6 0.2 6.7 0.2 14.0 0.3

c1355 RAND
no 327.2 4.3 365.7 5.7 437.4 5.6

(546
yes 7.4 0.4 59.0 1.0 328.6 3.5

gates) SDC(ew)
no 82.6 1.3 91.2 1.5 203.9 3.4
yes 4.9 0.4 5.5 0.4 65.9 1.1

SDC(fp)
no 34.1 0.8 14.8 0.5 19.3 0.8
yes 8.0 0.4 9.4 0.6 18.4 0.6

Table 2: Effectiveness of measurement point selection.

also uses the d-DNNF to check whether the stopping criteria
have been met.

Table 2 shows the comparison between the random strat-
egy and SDC using the baseline approach with two different
heuristics, one based on entropies of wires alone (ew) and
the other based also on failure probabilities (fp). For each of
the three systems we ran the same set of experiments with
and without pruning the d-DNNF (using the known fault car-
dinality), indicated in the third column of the table. We only
use the first four circuits as other circuits could not be com-
piled.

It is clear that the diagnostic cost is significantly lower
with both heuristics of SDC than with the random strategy
whether or not pruning has been used. It is also interesting
to note that pruning significantly reduces the diagnostic cost
for the random and SDC-ew strategies, but has much less
effect on SDC-fp except in a few cases (c1355 single-fault).
Moreover, SDC-fp generally dominates SDC-ew, both with
and without pruning.

We may also observe that (i) on the five-fault cases, SDC-
fp without pruning results in much lower diagnostic cost
than SDC-ew with pruning; (ii) on the double-fault cases,
the two are largely comparable; and (iii) on the single-faults
cases, the comparison is reversed. This indicates that as the
fault cardinality rises, the combination of failure probabili-
ties and wire entropies appears to achieve an effect similar
to that of pruning. That SDC-ew with pruning performs bet-
ter than SDC-fp without pruning on single-fault cases can be
attributed to the fact that on these cases pruning is always
exact and hence likely to result in maximum benefit.

circuit pruning
single-fault double-fault five-fault
cost time cost time cost time

c432 no 15.4 0.4 15.8 0.5 22.2 0.5
(64 cones) yes 4.9 0.3 10.4 0.4 21.5 0.4
c499 no 7.3 0.1 5.8 0.1 10.5 0.2

(90 cones) yes 4.5 0.1 3.9 0.1 9.6 0.2
c880 no 9.5 0.1 10.2 0.1 17.4 0.2

(177 cones) yes 5.6 0.1 7.6 0.1 16.3 0.2
c1355 no 9.3 0.3 8.2 0.2 14.0 0.3

(162 cones) yes 5.8 0.2 6.3 0.2 14.4 0.3
c1908 no 11.0 222 17.1 587 34.9 505

(374 cones) yes 3.0 214 8.5 463 32.4 383
c2670 no 16.3 213 19.2 172 25.4 58

(580 cones) yes 6.5 196 13.3 90 24.3 45

Table 3: Effectiveness of abstraction.

circuit
total abstr. cloning total abstr. size
gates size time clones after cloning

c432 160 59 0.03 27 39
c499 202 58 0.02 0 58
c880 383 77 0.1 24 57

c1355 58 58 0.05 0 58
c1908 880 160 0.74 237 70
c2670 1193 167 0.77 110 116
c3540 1669 353 5.64 489 165
c5315 2307 385 3.6 358 266
c6288 2416 1456 0.16 0 1456
c7552 3512 545 6.68 562 378

Table 4: Results of preprocessing step of cloning.

Effectiveness of Abstraction

Table 3 reports the results of repeating the same experiments
with SDC-fp using the hierarchical approach.

The running time generally reduces for all cases and we
can now handle two more circuits, namely c1908 and c2670,
solving 139 of 300 cases for c1908 (25 of single, 15 of dou-
ble, and 99 of five-fault cases) and 258 of 300 cases for
c2670 (100 of single, 60 of double, and 98 of five-fault
cases). In terms of diagnostic cost, in most cases the hi-
erarchical approach is comparable to the baseline approach.
On c432, the baseline approach consistently performs bet-
ter than the hierarchical in each fault cardinality, while the
reverse is true on c1355.

The results indicate that the main advantage of hierarchi-
cal approach is that larger circuits can be solved. For circuits
that can also be solved by the baseline approach, hierarchi-
cal approach may help reduce the diagnostic cost by quickly
finding faulty portions of the circuit, represented by a set
of faulty cones, and then directing the measurements inside
them, which can result in more useful measurements. On the
other hand, it may suffer in cases where it has to needlessly
go through hierarchies to locate the actual faults, while the
baseline version can find them more directly and efficiently.
Finally, we note that pruning helps further reduce the diag-
nostic cost to various degrees.

23

circuit
single-fault double-fault five-fault
cost time cost time cost time

c432 7.2 10.3 6.6 7.8 9.6 9.7
c880 11.2 0.2 9.3 0.2 16.2 0.3

Table 5: Effect of component cloning on diagnostic perfor-
mance.

circuit
single-fault double-fault five-fault
cost time cost time cost time

c432 15.2 0.1 14.8 0.1 20.2 0.1
c880 8.8 0.1 9.3 0.1 15.8 0.2
c1908 13.6 2.8 18.3 5.0 35.4 5.1
c2670 13.5 4.5 15.3 0.7 20.1 2.3
c3540 27.8 382 30.5 72.5 36.1 108.6
c5315 7.2 2.5 21.1 5.9 24.4 6.6
c7552 70.6 1056 43.1 129.0 104.8 1108

Table 6: Effectiveness of component cloning (c499 and
c1355 omitted as they are already easy to diagnose and
cloning does not lead to reduced abstraction).

Effectiveness of Component Cloning

In this subsection we discuss the experiments with compo-
nent cloning. We show that cloning does not significantly
affect diagnostic cost and allows us to solve nearly all the
circuits in the ISCAS-85 suite.

Table 4 shows the result of the preprocessing step of
cloning on each circuit. The columns give the name of the
circuit, the total number of gates in that circuit, the size of
the abstraction of the circuit before cloning, the time spent
on cloning, the total number of clones created in the circuit,
and the abstraction size of the circuit obtained after cloning.
On all circuits except c499, c1355, and c6288, a significant
reduction in the abstraction size has been achieved. c6288
appears to be an extreme case with a very large abstraction
that lacks hierarchy, while gates in the abstractions of c499
and c1355 are all roots of cones, affording no opportunities
for further reduction (note that these two circuits are already
very simple and easy to diagnose).

We start by investigating the effect of component cloning
on diagnostic performance. To isolate the effect of compo-
nent cloning we use the baseline version of SDC (i.e., with-
out abstraction). Table 5 summarizes the performance of
baseline SDC with cloning on the circuits c432 and c880.
Comparing these results with the corresponding entries in
Table 2 shows that the overall diagnostic cost is only slightly
affected by cloning. We further observed that in a significant
number of cases, the proposed measurement sequence did
not change after cloning, while in most of the other cases
it changed only insubstantially. Moreover, in a number of
cases, although a substantially different sequence of mea-
surements was proposed, the actual diagnostic cost did not
change much. Finally, note that the diagnosis time in the
case of c432 has reduced after cloning, which can be as-
cribed to the general reduction in the complexity of compi-
lation due to a smaller abstraction.

Results in Table 6 illustrate the performance of hierarchi-
cal sequential diagnosis with component cloning—the most

scalable version of SDC. All the test cases for circuits c1908
and 2670 were now solved, and the largest circuits in the
benchmark suite could now be handled: All the cases for
c5315, 164 of the 300 cases for c3540 (34 of single-, 65 of
double-, and 65 of five-fault cases), and 157 of the 300 cases
for c7552 (60 of single-, 26 of double-, and 71 of five-fault
cases) were solved. In terms of diagnostic cost, cloning gen-
erally resulted in a slight improvement. In terms of time,
the difference is insignificant for c432 and c880, and for the
larger circuits (c1908 and c2670) diagnosis with cloning was
clearly more than an order of magnitude faster.

Related Work

The idea of testing the most likely failing component comes
from (Heckerman, Breese, and Rommelse 1995), where the
testing of a component was considered a unit operation. The
heuristic was computed assuming a single fault (this as-
sumption could compromise the diagnostic cost in multiple-
fault cases as the authors pointed out). In our case, by con-
trast, the testing of each variable of a component is a unit
operation, calling for a more complex heuristic; also, we do
not need to assume a single fault. Our work also goes fur-
ther in scalability using several structure-based techniques:
compilation, abstraction, and component cloning.

In the GDE framework, de Kleer (2006) studied the sensi-
tivity of diagnostic cost to the ε-policy, which provides esti-
mates for the probabilities of diagnoses. In our case, proba-
bilities of diagnoses are not required, and those probabilities
required can be computed exactly and efficiently.

Flesch, Lucas, and van der Weide (2007) proposed a new
framework to integrate probabilistic reasoning into model-
based diagnosis. However, they did not address the problem
of sequential diagnosis.

Most recently, Feldman, Provan, and van Gemund (2009)
proposed a related method for reducing diagnostic uncer-
tainty. While our work attempts to identify the actual faults
with the fewest individual measurements, their heuristic was
aimed at reducing the number of diagnoses with the fewest
test vectors.

Conclusion

We have presented a new system for sequential diagno-
sis, called SDC, that employs three new structure-based
techniques—a new more efficient heuristic for measurement
point selection, abstraction-based sequential diagnosis, and
component cloning—to scale diagnosis to larger systems
with low diagnostic costs.

Topics for ongoing and future work include extensions to
cases where measurements have varying costs, the feasibil-
ity of finding optimal measurement selection policies, and
the application of the proposed techniques to model-based
testing and to other probabilistic queries (such as MPE and
MAP) on Bayesian networks.

Acknowledgments

We thank the anonymous reviewers for their comments. An
initial part of this work has been presented at a sympo-
sium (Siddiqi and Huang 2008). NICTA is funded by the

24

Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of
Excellence program.

References

Choi, A.; Chavira, M.; and Darwiche, A. 2007. Node split-
ting: A scheme for generating upper bounds in Bayesian
networks. In Proceedings of the 23rd Conference on Uncer-
tainty in Artificial Intelligence (UAI), 57–66.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM 48(4):608–647.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. Journal of the ACM 50(3):280–305.
Darwiche, A. 2004. New advances in compiling CNF into
decomposable negation normal form. In Proceedings of the
16th European Conference on Artificial Intelligence (ECAI),
328–332.
Darwiche, A. 2005. The C2D compiler user manual. Tech-
nical Report D-147, Computer Science Department, UCLA.
http://reasoning.cs.ucla.edu/c2d/.
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Artificial Intelligence 32(1):97–130.
de Kleer, J.; Raiman, O.; and Shirley, M. 1992. One step
lookahead is pretty good. In Readings in model-based di-
agnosis. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc. 138–142.
de Kleer, J. 1992. Focusing on probable diagnosis. In Read-
ings in model-based diagnosis. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. 131–137.
de Kleer, J. 2006. Improving probability estimates to lower
diagnostic costs. In 17th International Workshop on Princi-
ples of Diagnosis (DX).
Feldman, A.; Provan, G.; and van Gemund, A. 2009. FRAC-
TAL: Efficient fault isolation using active testing. In Pro-
ceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI), 778–784.
Flesch, I.; Lucas, P.; and van der Weide, T. 2007. Conflict-
based diagnosis: Adding uncertainty to model-based diag-
nosis. In Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI), 380–385.
Forbus, K. D., and de Kleer, J. 1993. Building problem
solvers. Cambridge, MA, USA: MIT Press.
Heckerman, D.; Breese, J. S.; and Rommelse, K. 1995.
Decision-theoretic troubleshooting. Communications of the
ACM 38(3):49–57.
Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
Siddiqi, S., and Huang, J. 2007. Hierarchical diagno-
sis of multiple faults. In Proceedings of the 20th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI),
581–586.
Siddiqi, S., and Huang, J. 2008. Probabilistic sequential
diagnosis by compilation. In International Symposium on
Artificial Intelligence and Mathematics.

25

