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Abstract

We identify three classes of four-state paraconsistent
logics according to their different approaches towards
the disjunctive syllogism, and investigate three repre-
sentatives of these approaches: Quasi-classical logic,
which always accepts this principle, Belnap’s logic, that
rejects the disjunctive syllogism altogether, and a logic
of inconsistency minimization that restricts its appli-
cation to consistent fragments only. These logics are
defined in a syntactic and a semantic style, which are
linked by a simple transformation. It is shown that the
three formalisms accommodate knowledge minimiza-
tion, and that the most liberal formalism towards the
disjunctive syllogism is also the strongest among the
three, while the most cautious logic is the weakest one.

Introduction

Paraconsistent (‘inconsistency-tolerant’) logics are for-
malisms that reason with inconsistent information in a con-
trolled and discriminating way. Thus, while classical logic,
intuitionistic logic, and many other standard logics are ‘ex-
plosive’ in the sense that they admit the inference of any
conclusion from an inconsistent set of premises, paraconsis-
tent logics avoid this approach. In order to do so, at least one
of the following two classically valid rules has to be rejected:

The Disjunctive Syllogism: from ψ and ¬ψ ∨ φ infer φ.

The Introduction of Disjunction: from ψ infer ψ ∨ φ.

Formalisms that validate both of the rules above are neces-
sarily explosive, as ψ entails ψ∨φ and this together with ¬ψ
implies φ, thus the inconsistent set of assumptions {ψ,¬ψ}
yields, in the presence of the two rules above, a derivation
of an arbitrary φ.

In this paper, we consider different approaches of weak-
ening the rules above in order to gain paraconsistency. We
do so in a framework that is based on four possible states of
information regarding the truth of an assertion ψ: in addi-
tion to the two standard states, in which ψ is either accepted
or rejected, two additional states are allowed, reflecting the
two extreme cases of uncertainty about ψ: either there is
no sufficient information to determine its truth, or there are
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conflicting indications, causing a contradictory information
about it.

In the sequel, we divide four-state paraconsistent logics
by the way they apply the disjunctive syllogism (and so, in-
directly, by their attitude to the introduction of disjunction).
Each approach is demonstrated by a different logic, rep-
resenting a particular attitude for tolerating inconsistency:
The basic logic (known as Belnap’s four-valued logic (Bel-
nap 1977a; 1977b)), in which the propositional connectives
have their standard lattice-theoretic interpretations, invali-
dates the disjunctive syllogism altogether. On other ex-
treme, this principle is a cornerstone behind quasi-classical
logic (Besnard and Hunter 1995), which is another formal-
ism that is considered here. In between, we have interme-
diate approaches for cautious applications of the disjunctive
syllogism. This class is represented by the logic of inconsis-
tency minimization (Arieli and Avron 1996), according to
which the disjunctive syllogism is allowed only with respect
to consistent fragments of the premises.

Each one of the logics mentioned above is presented in a
syntactic and a semantic style, which are linked by a simple
transformation. We also show that knowledge minimization,
used for reducing the amount of the relevant models without
affecting the inferences, is supported by all the three log-
ics. Interestingly, Belnap’s logic, which is the most cau-
tious in its attitude towards the disjunctive syllogism, is also
the weakest logic among the three formalisms, and quasi-
classical logic, which is the most liberal one, is the strongest
formalism.

Consequence Relations Based on Four States

of Information

Reasoning with four states of information is extensively
studied in computer science and AI. Some examples for
its application are in the context of symbolic model check-
ing (Chechik et al. 2003), semantics of logic pro-
grams (Fitting 2002), natural language processing (Nelken
and Francez 2002), and, of-course, inconsistency-tolerant
systems. In the context of KR the latter has been investi-
gated, e.g., in the framework of description logic (Ma, Lin,
and Lin 2006), default logic (Yue, Ma, and Lin 2006), belief
revision operators (Gabbay, Rodrigues, and Russo 2000),
and by circumscriptive-like formulas (Arieli and Denecker
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2003) or quantified Boolean formulas (Arieli 2007).
The basic idea behind our framework is to acknowledge

four states of information for a given assertion: either the
assertion is known to be true, known to be false, no infor-
mation about it is available, or there are contradictory indi-
cations about its truth. Two common ways of representing
those states are by incorporating a related (meta-) language
for describing the reasoner’s information (we call these ap-
proaches syntactical, as they do not involve truth functions),
or by using truth values for the same purpose (such ap-
proaches are called semantical). In this section we define
these approaches and describe an obvious link between them
by a simple transformation.

A Syntactic Approach

Let L be a propositional language consisting of an alpha-
bet A of propositional variables (atomic formulas), and the
logical symbols ¬,∧,∨. We denote the elements in A by
p, q, r, literals (i.e., atomic formulas or their negations) by
li (i = 1, 2, . . .), clauses (∨-disjunction of literals) by Ci
(i = 1, 2, . . .), and formulas in a conjunctive normal form
(CNF; ∧-conjunction of clauses) by ψ, φ. The set of CNF-
formulas of L is denoted N . Theories are sets of CNF-
formulas, and are denoted by Γ,Δ.1 The set of all atoms
occurring in a formula ψ is denoted by A(ψ) and the set of
all atoms occurring in a theory Γ is denoted by A(Γ) (that
is, A(Γ) = ∪ψ∈ΓA(ψ)). A signed alphabet A± is a set that
consists of symbols p+, p− for each atom p ∈ A.

An information state I is an element in P(A±), the
power-set of A±. Intuitively, p+ ∈ I means that in I there
is a reason for accepting p, and p−∈ I means that in I there
is a reason for accepting ¬p. Clearly, an information state
may contain both of p+ and p−, or neither of them. The
former situation reflects inconsistent data about p and the
latter situation corresponds to incomplete data about it. This
is formalized in the following definition, which also extends
atomic information to CNF-formulas and theories:

Definition 1 Denote by ‖=4 the binary relation on
P(A±)×N , inductively defined as follows:

I ‖=4 p if p+∈ I ,
I ‖=4 ¬p if p−∈ I ,
I ‖=4 l1 ∨ . . . ∨ ln if I ‖=4 li for some 1 ≤ i ≤ n,
I ‖=4 C1 ∧ . . . ∧Cn if I ‖=4 Ci for every 1 ≤ i ≤ n.

Given an information state I and a theory Γ, we denote
I ‖=4 Γ if I ‖=4 ψ for every ψ ∈ Γ.

Definition 1 induces a corresponding relation on P(N )×
N .

Notation 2 Given a theory Γ and a formula ψ ∈ N , we
denote:

Mod‖=4
(Γ) = {I ∈ P(A±) | I ‖=4 Γ}.

Γ �4 ψ if Mod‖=4
(Γ) ⊆Mod‖=4

(ψ).

1The concentration on (sets of) CNF-formulas is justified by
the fact that, just as in the classical semantics, in the four-valued
semantics for L, every well-formed formula is logically equivalent
to a CNF-formula (see (Arieli and Avron 1996)).

In what follows we shall write Γ, φ �4 ψ for abbreviating
Γ ∪ {φ} �4 ψ.

Proposition 3 �4 is a Tarskian consequence relation
(Tarski 1941), i.e., it has the following properties, for ev-
ery theory Γ and formulas ψ, φ ∈ N .

Reflexivity: Γ, ψ �4 ψ.
Monotonicity: if Γ �4 ψ and Γ ⊆ Γ′, then Γ′ �4 ψ.
Transitivity: if Γ �4 φ and Γ′, φ �4 ψ, then Γ,Γ′ �4 ψ.

Proof. Reflexivity immediately follows from Notation 2.
Monotonicity follows from the fact that if Γ ⊆ Γ′ then
Mod‖=4

(Γ′) ⊆ Mod‖=4
(Γ). For transitivity, suppose that

Γ �4 φ and Γ′, φ �4 ψ, and let I ∈Mod‖=4
(Γ∪ Γ′). Since

I ∈ Mod‖=4
(Γ) and Γ �4 φ, I ∈ Mod‖=4

({φ}). Thus,

as I ∈ Mod‖=4
(Γ′), we have that I ∈ Mod‖=4

(Γ′ ∪ {φ}).
Now, since Γ, φ �4 ψ, I ∈ Mod‖=4

({ψ}), and so Γ,Γ′ �4

ψ. �

Proposition 4 �4 is paraconsistent: there are ψ, φ ∈ N
such that ψ,¬ψ �4 φ.

Proof. Let I = {p+, p−} for some p ∈ A. For every q ∈
A \ {p} we have that I ‖=4 p and I ‖=4 ¬p but I 	‖=4 q,
thus p,¬p �4 q. �

A Semantic Counterpart

The paraconsistent consequence relation �4 considered in
the previous section is constructed in a syntactical manner,
without using truth values. Yet, it is evident (e.g., by the
intuitive meaning of information states) that it may be as-
sociated with a four-valued semantics. The corresponding
four-valued algebraic structure, denoted FOUR, was intro-
duced by Belnap (1977a; 1977b) (see Figure 1). This struc-
ture is composed of four elements {t, f,⊥,�}. Intuitively,
t and f have their usual classical meanings, ⊥ represents
incomplete information and � represents inconsistent infor-
mation. These values are arranged in two lattice structures.
One, represented along the horizontal axis of Figure 1, is the
standard logical partial order, ≤t, which intuitively reflects
differences in the ‘measure of truth’ that every value repre-
sents. We shall denote by ∧ and by ∨ the meet and the join
(respectively) of the lattice obtained by ≤t, and by ¬ its or-
der reversing involution, for which ¬� = � and ¬⊥ = ⊥.

The other partial order of FOUR, denoted ≤k, is un-
derstood (again, intuitively) as reflecting differences in the
amount of knowledge or information that each truth value
exhibits. This partial order is represented along the vertical
axis of Figure 1, and it will also have a great importance in
what follows.

The next step in using FOUR for reasoning is to choose
its set of designated elements. The obvious choice is the
set D = {t,�}, since both of the values in D intuitively
represent formulas that are ‘known to be true’. The set D
has the property that a ∧ b ∈ D iff both a and b are in D,
while a ∨ b ∈ D iff at least one of a or b is in D.

The semantical analogue of information states are valua-
tions, which are functions that assign a truth value to each
atomic formula. For a valuation ν we shall sometimes de-
note ν = {pi :xi | i = 1, 2, . . .} instead of ν(pi) = xi. The
space of valuations is denoted Λ.
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Figure 1: FOUR

The following definition and notation should be compared
with Definition 1 and Notation 2, respectively.

Definition 5 Denote by |=4 the binary relation on Λ×N ,
inductively defined as follows:

ν |=4 p if ν(p) ∈ D,
ν |=4 ¬p if ¬ν(p) ∈ D,
ν |=4 l1 ∨ . . . ∨ ln if ν |=4 li for some 1 ≤ i ≤ n,
ν |=4 C1 ∧ . . . ∧ Cn if ν |=4 Ci for every 1 ≤ i ≤ n.

For a valuation ν and a theory Γ, we denote ν |=4 Γ if ν |=4

ψ for every ψ ∈ Γ.

Notation 6 Given a theory Γ and a formula ψ ∈ N , we
denote:

Mod|=4
(Γ) = {ν ∈ Λ | ν |=4 Γ}.

Γ �4 ψ if Mod|=4
(Γ) ⊆Mod|=4

(ψ).

Proposition 7 �4 is a paraconsistent Tarskian consequence
relation.

Proof. A direct proof is obtained from the proofs of Proposi-
tions 3 and 4, replacing information states by valuations and
Mod‖=4

(Γ) by Mod|=4
(Γ). This proposition also follows

as a corollary of Propositions 3, 4, by the correspondence
between �4 and �4, shown in Proposition 10 below. �

Relating the Two Approaches

The syntactic and the semantic approaches described above
can be related by the following transformation:

Definition 8 For an information state I ∈ P(A±), the val-
uation σ(I) ∈ Λ is defined for every p ∈ A as follows:

σ(I)(p) =

⎧⎪⎨
⎪⎩

t if p+ ∈ I and p− 	∈ I ,
f if p+ 	∈ I and p− ∈ I ,
⊥ if p+ 	∈ I and p− 	∈ I ,
� if p+ ∈ I and p− ∈ I .

Clearly, σ is a one-to-one mapping from the space P(A±)
of the information states onto the space Λ of the four-valued
valuations. Given a valuation ν ∈ Λ, we shall denote by
σ−1(ν) the information state I for which σ(I) = ν.

Lemma 9 It holds that I ‖=4 Γ iff σ(I) |=4 Γ, and ν |=4 Γ
iff σ−1(ν) ‖=4 Γ.

Proof. By induction on the structure of a CNF-formula ψ,
it is easily verified that I ‖=4 ψ iff σ(I)(ψ) ∈ D, and so
I ‖=4 ψ iff σ(I) |=4 ψ . This implies that I ‖=4 Γ iff
σ(I) |=4 Γ. The second part is similar. �

Proposition 10 For every theory Γ and formula ψ ∈ N ,
Γ �4 ψ iff Γ �4 ψ.

Proof. If Γ 	�4 ψ then ν ∈ Mod|=4
(Γ) \ Mod|=4

(ψ) for

some ν ∈ Λ. By Lemma 9, Mod‖=4
(Γ) = {σ−1(ν) | ν ∈

Mod|=4
(Γ)}, thus σ−1(ν) ∈ Mod‖=4

(Γ) \Mod‖=4
(ψ). It

follows that Γ �4 ψ. The proof of the converse is similar,
using the fact that by Lemma 9, Mod|=4

(Γ) = {σ(I) | I ∈
Mod‖=4

(Γ)}. �

Proposition 10 shows that the two approaches above ac-
tually coincide for CNF-formulas. This will be useful in
what follows for showing correspondence among the differ-
ent derivatives of these consequence relations.

Note 11 For relating �4 and �4 with respect to arbitrary sets
of formulas in L (not necessarily in a conjunctive normal
form), some generalizations of the basic definitions are re-
quired. In the semantic approach this can be done rather di-
rectly by extending Definition 5 so that for every L-formulas
ψ, φ,

ν |=4 ¬ψ if ¬ν(ψ) ∈ D,
ν |=4 ψ ∨ φ if ν |=4 ψ or ν |=4 φ,
ν |=4 ψ ∧ φ if ν |=4 ψ and ν |=4 φ.

The consequence relation that is obtained by extending Def-
inition 5 to this satisfiability relation coincides with Bel-
nap’s well-known four-valued logic (Belnap 1977a; 1977b)
and has strong ties to ‘first-degree entailments’ in relevance
logic (Anderson and Belnap 1975; Dunn and Restall 2002).
Indeed, it holds that ψ1, . . . , ψn �4 φ iff ψ1 ∧ . . .∧ψn → φ
is a first-degree entailment.

Adapting the syntactic approach to general formulas is
somewhat more cumbersome, as extra conditions have to be
imposed on the satisfaction relation for assuring the well-
behaving of the induced entailment with respect to general
formulas (e.g., the double-negation rule, associating ¬¬ψ
with ψ, has to be explicitly required; see, e.g., (Hunter 2000,
Section 5)).

Quasi-Classical Logic

By their definition, paraconsistent logics are weaker than
classical logic with respect to inconsistent sets of premises.
However, the consequence relations considered in the pre-
vious section seem to be too weak, as they exclude some
classically valid rules even when the premises are classically
consistent. Thus, for instance, both of �4 and �4 reject the
disjunctive syllogism in any circumstance, as q is not �4-
deducible (and, by Proposition 10, it is not �4-deducible ei-
ther) from {p,¬p∨q}.2 In order to overcome this shortcom-
ing, Besnard and Hunter (1995; 2000) introduced an alter-
native formalism, called quasi-classical logic, in which the
satisfaction relation of the syntactic-based approach (Defini-
tion 1) is strengthen as follows:

2Consider a valuation that assigns � to p and f to q.
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Definition 12 Let ∼ l be the complement of a literal l (i.e.,
∼ l = ¬p if l = p, and ∼ l = p if l = ¬p). Denote by
‖=QC the binary relation on P(A±)×N , defined just as the
relation ‖=4 of Definition 1, with the only exception that
I ‖=QC l1 ∨ . . . ∨ ln if the following two conditions hold:

• I ‖=4 l1 ∨ . . . ∨ ln, and

• for every 1 ≤ i ≤ n,
if I ‖=QC ∼ li then I ‖=QC l1 ∨ . . . li−1 ∨ li+1 ∨ . . .∨ ln.3

Example 13 Let I1 = {q+} and I2 = {p+, p−}. Then
I1 ‖=QC p ∨ q and I1 ‖=QC ¬p ∨ q. On the other hand,
I2 	‖=QC q, and so I2 	‖=QC p ∨ q and I2 	‖=QC ¬p ∨ q.

Note that according to Definition 12, the disjunction ∨
cease to have its usual lattice-based meaning. The idea
behind this definition is, generally speaking, to link be-
tween a disjunct and its complement, and by this to preserve
the meaning of the resolution principle. This gives rise to
the following definition of entailments in the quasi-classical
logic.

Notation 14 Given a theory Γ and a formula ψ ∈ N , we
denote:

Mod‖=QC
(Γ) = {I ∈ P(A±) | I ‖=QC Γ}.

Γ �QC ψ iff Mod‖=QC
(Γ) ⊆Mod‖=4

(ψ).

Example 15 For Γ = {p ∨ q,¬p ∨ q}, Mod‖=QC
(Γ) =

{{p+, p−, q+}, {p+, q+}, {p−, q+}, {q+}}, thus Γ �QC q.
Note that Γ �4 q, since {p+, p−} is in Mod‖=4

(Γ) but not

in Mod‖=4
(q).

Proposition 16 �QC is paraconsistent.

Proof. It holds that {p+, p−} ∈ Mod‖=QC
({p,¬p}) but

{p+, p−} 	∈Mod‖=4
({q}), therefore p,¬p �QC q. �

Note that, as demonstrated in Example 15, unlike �4, the
entailment �QC admits the principle of resolution, so for ar-
bitrary clauses C1, C2, C3, C4 we have:{
C1 ∨ l ∨ C2 , C3∨∼ l ∨ C4

}
�QC C1 ∨C2 ∨ C3 ∨ C4.

The clauseC1∨C2∨C3∨C4 is called a resolvent ofC1∨l∨
C2 andC3∨∼ l∨C4. By the monotonicity of quasi-classical
logic we have, then, the next result.

Proposition 17 Any resolvent of two clauses in a theory Γ
is �QC-deducible from Γ.

The ‘price’ of this is that �QC is not a consequence rela-
tion, since (although it is reflexive and monotonic) it is not
transitive.4 Thus, proofs cannot be composed for more com-
plicated proofs, and so inference in quasi-classical logic is
not an iterative process, but rather a one-step procedure. We
refer to (Hunter 2000) for a more detailed discussion on the
properties of �QC and a corresponding sound and complete
proof theory.

By the next lemma, shown in (Hunter 2000), we can give
a semantic counterpart to �QC.

3In (Besnard and Hunter 1995; Hunter 2000) the relations ‖=QC

and ‖=4 are called, respectively, strong satisfiability and weak sat-
isfiability.

4Indeed, p �QC p ∨ q and ¬p, p ∨ q �QC q, but p,¬p �QC q.

Lemma 18 I ‖=QC l1 ∨ . . . ∨ ln iff

• there is 1 ≤ i ≤ n, such that l+i ∈ I and l−i 	∈ I , or

• for all 1 ≤ i ≤ n, l+i ∈ I and l−i ∈ I .

Definition 19 Denote by |=QC the binary relation on Λ×N ,
inductively defined as follows:

ν |=QC p if ν(p) ∈ D
ν |=QC ¬p if ¬ν(p) ∈ D
ν |=QC l1 ∨ . . . ∨ ln if ν(li) = t for some 1 ≤ i ≤ n

or ν(li) = � for all 1 ≤ i ≤ n
ν |=QC C1 ∧ . . . ∧ Cn if ν |=QC Ci for all 1 ≤ i ≤ n

Given a valuation ν and a theory Γ, we denote ν |=QC Γ if
ν |=QC ψ for every ψ ∈ Γ.

Notation 20 Given a theory Γ and a formula ψ ∈ N , we
denote:

Mod|=QC
(Γ) = {ν ∈ Λ | ν |=QC Γ}.

Γ �QC ψ iff Mod|=QC
(Γ) ⊆Mod|=4

(ψ).

Proposition 21 For every theory Γ and a formula ψ ∈ N ,
Γ �QC ψ iff Γ �QC ψ.

Proof. For a literal l we have that I ‖=QC l iff σ(I)(l) ∈ D,
thus I ‖=QC l iff σ(I) |=QC l. Also, by Lemma 18,
I ‖=QC l1 ∨ . . . ∨ ln iff σ(I) = t for some 1 ≤ i ≤ n, or
σ(I) = � for every 1 ≤ i ≤ n, iff σ(I) |=QC l1 ∨ . . . ∨ ln.
Thus, by induction on the structure of a CNF-formula ψ,
we have that I ‖=QC ψ iff σ(I) |=QC ψ. It follows
that Mod‖=QC

(Γ) = {σ−1(ν) | ν ∈ Mod|=QC
(Γ)} and

Mod|=QC
(Γ) = {σ(I) | I ∈ Mod‖=QC

(Γ)}. This implies
(as in the proof of Proposition 10) that �QC and �QC coin-
cide. �

Logic of Minimal Inconsistency

As noted before, Belnap’s logic excludes some classically
valid rules even for classically consistent theories, and so it
may be considered as too weak. Quasi classical logic, on the
other hand, may be considered as too strong. This is shown
in the following example.

Example 22 Consider the theory Γ = {p,¬p, p∨ q}. Here,
Mod|=QC

(Γ) = {{p : �, q : t}, {p : �, q : �}}, thus Γ �QC

q. This may look counter-intuitive, as there is no justification
to infer q from p ∨ q (the only assertion in Γ that mentions
q) as long as one already ‘knows’ p.

The formalism that is considered in this section over-
comes this problem by applying classically valid rules (in
particular, the disjunctive syllogism) only to classically valid
fragments of the theory (see Corollary 29 and Note 30 be-
low). The idea here is to minimize the inconsistent states of
information of the reasoner, following the recognition that
although inconsistency is unavoidable, it should be mini-
mized as much as possible.

Definition 23 For ν, μ ∈ Λ we denote by ν ≤� μ that for
every atom p ∈ A, μ(p) = � whenever ν(p) = �. We
denote by ν <� μ that ν ≤� μ and there is an atomic
formula p ∈ A, such that μ(p) = � while ν(p) 	= �.

Notation 24 Given a theory Γ and a formula ψ ∈ N , we
denote:
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Mod|=MI
(Γ) = {ν ∈Mod|=4

(Γ) |
if μ <� ν then μ 	∈Mod|=4

(Γ)}.

Γ �MI ψ iff Mod|=MI
(Γ) ⊆Mod|=4

(ψ).

The logic �MI was introduced in (Arieli and Avron
1996; 1998) as a generalization to the four-valued case of
Priest’s three-valued logic LPm of inconsistency minimiza-
tion (Priest 1991).

Proposition 25 �MI is paraconsistent.

Proof. Indeed, {p :�, q : f} ∈ Mod|=MI
({p,¬p}) but {p :

�, q :f} 	∈Mod|=4
({q}), and so p,¬p �MI q. �

Example 26 Consider again the theory Γ = {p,¬p, p ∨
q} of Example 22. As intuitively expected (and unlike
quasi-classical logic), q is not a �MI-conclusion of Γ, as
Mod|=MI

(Γ) = {{p :�, q : t}, {p :�, q : f}, {p :�, q :⊥}}.
On the other hand, r,¬r,¬p, p ∨ q �MI q. The latter is a
particular case of the next proposition that shows that every
non-tautological clause that can be inferred from a consis-
tent fragment of a theory, can also be inferred by �MI from
the whole theory, provided that the clause is independent of
the inconsistent part of the theory.

Definition 27 We say that Γ′ and Γ′′ are independent, if
A(Γ′) ∩ A(Γ′′) = ∅. Two independent theories Γ′ and Γ′′

are a partition of Γ, if Γ = Γ′ ∪ Γ′′.

Proposition 28 Denote by � the standard entailment of
classical logic. Let Γ′ and Γ′′ be a partition of Γ. Sup-
pose that Γ′ is classically consistent, and that ψ is a non-
tautological clause5 that is independent of Γ′′. If Γ′ � ψ
then Γ �MI ψ.6

Proof. By (Arieli and Avron 1998, Proposition 64), if Γ′

is classically consistent and ψ is as in the proposition, then
Γ′ � ψ iff Γ′ �MI ψ. It is enough to show, then, that under
the conditions of the proposition, if Γ′ �MI ψ then Γ �MI ψ.
Indeed, suppose otherwise that Γ 	�MI ψ. Then there is a val-
uation ν ∈Mod|=MI

(Γ) \Mod|=4
(ψ). Note that this in par-

ticular implies that ν ∈ Mod|=4
(Γ′) and ν ∈ Mod|=4

(Γ′′).
Now, consider the following valuation:

μ(p) =

{
ν(p) if p ∈ A(Γ′) ∪ A(ψ),
t otherwise.

As μ(φ) = ν(φ) for every formula φ ∈ Γ′ ∪ {ψ}, we have
that μ ∈ Mod|=4

(Γ′) and μ 	∈ Mod|=4
(ψ). Now, since

Γ′ �MI ψ, μ 	∈ Mod|=MI
(Γ′), and so there is a valuation

μ′ ∈ Mod|=4
(Γ′) such that μ′ <� μ. Now, consider the

following valuation:

ν′(p) =

{
μ′(p) if p ∈ A(Γ′) ∪ A(ψ),
ν(p) otherwise.

5That is, none of the disjunctions in ψ contains an atomic for-
mula and its negation.

6The aspiration to preserve classically valid inferences when-
ever this is reasonably possible, even in the presence of incon-
sistency, is sometimes called ‘adaptivity’ (Batens 2000); Adaptive
formalisms presuppose the consistency of all the assertions ‘unless
and until proven otherwise’.

Clearly, ν′ <� ν, and since ν′ is the same as μ′ on A(Γ′),
ν′ is also a model of Γ′. Moreover, using the facts that
both Γ′ and ψ are independent of Γ′′, it follows that ν′ ∈
Mod|=4

(Γ′′). Thus, ν′ ∈ Mod|=4
(Γ) and ν′ <� ν, which

implies that ν 	∈ Mod|=MI
(Γ), but this is a contradiction to

the choice of ν. �

Corollary 29 Suppose that Γ′ and Γ′′ are a partition of
Γ and that Γ′ is classically consistent. Then any non-
tautological resolvent of two clauses in Γ′ is �MI-deducible
from Γ.

Proof. If ψ is a resolvent of two clauses in Γ′ then Γ′ � ψ.
Also, A(ψ) ⊆ A(Γ′), thus ψ is independent of Γ′′. By
Proposition 28, then, Γ �MI ψ. �

Note 30 As Example 26 shows, Corollary 29 does not hold
in general (i.e., for resolvents of clauses in any theory), so
�MI admits a restricted form of resolution (and so of the
disjunctive syllogism), adhering consistency (cf. Proposi-
tion 17).

The syntactical counterpart �MI of �MI is defined as fol-
lows:

Definition 31 For I, J ∈ P(A±)we denote by I ≤� J that
{p ∈ A | p+, p− ∈ I} ⊆ {p ∈ A | p+, p− ∈ J}}. If the
above containment is proper, we write I <� J .

Notation 32 Given a theory Γ and a formula ψ ∈ N , we
denote:

Mod‖=MI
(Γ) = {I ∈Mod‖=4

(Γ) |
if J <� I then J 	∈Mod‖=4

(Γ)}.

Γ �MI ψ iff Mod‖=MI
(Γ) ⊆Mod|=4

(ψ).

Again, it is easy to see that for information states I, J ∈
P(A±) it holds that I <� J (in the sense of Definition 31)
iff σ(I) <� σ(J) (in the sense of Definition 23). Simi-
larly, for valuations ν, μ ∈ Λ, ν <� μ iff σ−1(ν) <�
σ−1(μ). Thus, we have that Mod‖=MI

(Γ) = {σ−1(ν) |
ν ∈ Mod|=MI

(Γ)} and that Mod|=MI
(Γ) = {σ(I) | I ∈

Mod‖=MI
(Γ)}, which implies that �MI and �MI coincide.

Knowledge Minimization

Since Mod|=MI
(Γ) ⊆ Mod|=4

(Γ) and Mod|=QC
(Γ) ⊆

Mod|=4
(Γ), the set of models needed for drawing conclu-

sions by �MI and by �QC is never bigger than those needed
for drawing conclusions by �4. In this section we present a
natural approach for reducing the number of models even
further, without changing the logic. The idea is to con-
sider, in each logic, the ⊆-minimal information states of the
premises, or – equivalently – to take advantage of the knowl-
edge order ≤k of FOUR and to consider the ≤k-minimal
valuations among the models of the premises. The intuition
behind this refinement is that one should not assume any-
thing that is not really known.

Definition 33 For ν, μ ∈ Λ we denote by ν ≤k μ that for
every p ∈ A, ν(p) ≤k μ(p). We denote by ν <k μ that
ν ≤k μ and there is a p ∈A such that ν(p) <k μ(p).

Notation 34 Given a set S ⊆ P(A±) of information states
and a set V ⊆ Λ of valuations, we denote:
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Min⊆(S) = {I ∈ S | if J ⊂ I then J 	∈ S}.

Min≤k
(V) = {ν ∈ V | if μ <k ν then μ 	∈ V}.

Using Notation 34 we can now introduce a variety of
derivatives of the entailments relations considered previ-
ously, adhering knowledge-minimization.

Notation 35 Given a theory Γ and a formula ψ ∈ N , for
every logic x ∈ {4,QC,MI} we denote:

Γ �
⊆
x ψ iff Min⊆(Mod‖=x

(Γ)) ⊆Mod‖=4
(ψ).

Γ �≤k

x ψ iff Min≤k
(Mod|=x

(Γ)) ⊆Mod|=4
(ψ).

Proposition 36 Knowledge minimization with respect to ⊆
and ≤k are dual:

a) Γ �
⊆
4 ψ iff Γ �≤k

4 ψ.

b) Γ �
⊆
MI
ψ iff Γ �≤k

MI
ψ.

c) Γ �
⊆
QC

ψ iff Γ �≤k

QC
ψ.

Proof. We show Part (a); The proof of the other two parts is
similar. For each information states I, J ,

I ⊆ J iff
∀p ∈ A± p+∈ I ⇒ p+∈ J and p−∈ I ⇒ p−∈ J , iff
∀p ∈ A σ(I)(p) ≤k σ(J)(p), iff
σ(I) ≤k σ(J).

By Lemma 9, Mod‖=4
(Γ) = {σ−1(ν) | ν ∈ Mod|=4

(Γ)}
and Mod|=4

(Γ) = {σ(I) | I ∈Mod‖=4
(Γ)}, thus:

Min⊆(Mod‖=4
(Γ))={σ−1(ν) | ν ∈Min≤k

(Mod|=4
(Γ))},

Min≤k
(Mod|=4

(Γ))={σ(I) | I ∈Min⊆(Mod‖=4
(Γ))}.

It follows, then, that:

• If Γ 	�⊆4 ψ then there is an I ∈ Min⊆Mod‖=4
(Γ) such

that I 	∈ Mod‖=4
(ψ), thus σ(I) ∈ Min≤k

Mod|=4
(Γ)

and σ(I) 	∈Mod|=4
(Γ), so Γ 	�≤k

4 ψ.

• If Γ 	�≤k

4 ψ then there is a ν ∈ Min≤k
Mod|=4

(Γ) and

ν 	∈Mod|=4
(ψ). Thus, σ−1(ν) ∈Min⊆Mod‖=4

(Γ) and

σ−1(ν) 	∈Mod‖=4
(ψ), so Γ 	�⊆4 ψ. �

Proposition 37 All the logics considered above are pre-
served under knowledge minimization: for every theory Γ
(not necessarily finite) and a formula ψ,

a) Γ �4 ψ iff Γ �≤k

4 ψ.

b) Γ �MI ψ iff Γ �≤k

MI
ψ.

c) Γ �QC ψ iff Γ �≤k

QC
ψ.

Proof. Parts (a) and (b) follow, respectively, from Corol-
lary 32 and Proposition 59 of (Arieli and Avron 1998). For
Part (c) we adjust a similar proof in (Arieli and Avron 1998)
to quasi-classical logic. First, we show the following lemma:

Lemma 38 For every ν ∈ Mod|=QC
(Γ) there is a μ ∈

Min≤k
(Mod|=QC

(Γ)) such that μ ≤k ν.

Proof. Indeed, for a valuation ν ∈ Mod|=QC
(Γ) consider

the set Sν = {νi | νi ∈ Mod|=QC
(Γ), νi ≤k ν}. Suppose

that C ⊆ Sν is a descending chain with respect to ≤k. We
shall show that C is bounded in Sν , so by Zorn’s lemma

Sν has a minimal element, which is the required valuation
in Min≤k

(Mod|=QC
(Γ)). Let μ be the following valuation:

for every p ∈ A, μ(p) = min≤k
{νi(p) | νi ∈ C}. This

μ is well defined since C is a chain of four-valued valu-
ations. Obviously, μ bounds C. It remains to show that
μ ∈ Sν . Suppose that ψ ∈ Γ and A(ψ) = {p1, . . . , pn}.
Then: μ(p1) = νi1(p1), . . . , μ(pn) = νin(pn). Since C is
a chain we may assume, without a loss of generality, that
νi1 ≥k . . . ≥k νin , and so μ is the same as νin on every
atom in A(ψ). Since νin ∈ Mod|=QC

(ψ), so is μ. This is
true for every ψ ∈ Γ, and so μ ∈ Sν as required.

Now, back to the proof of Part (c) in Proposition 37: One
direction is obvious: if Γ �QC ψ then Mod|=QC

(Γ) ⊆
Mod|=4

(ψ). But Min≤k
(Mod|=QC

(Γ)) ⊆ Mod|=QC
(Γ),

hence Min≤k
(Mod|=QC

(Γ)) ⊆ Mod|=4
(ψ), and so Γ �≤k

QC

ψ. For the converse, let ν ∈ Mod|=QC
(Γ). By Lemma 38

there is a valuation μ ∈ Min≤k
(Mod|=QC

(Γ)) such that

μ ≤k ν. As Γ �≤k

QC
ψ, μ ∈ Mod|=4

(ψ), that is, μ(ψ) ∈
D = {t,�}. Since all the operators that correspond to
the connectives of ψ are monotone with respect to ≤k,
ν(ψ) ≥k μ(ψ). But D is upwards-closed with respect to
≤k, therefore ν(ψ) ∈ D as well, i.e., ν ∈ Mod|=4

(ψ). It

follows that Mod|=QC
(Γ) ⊆ Mod|=4

(ψ), and so Γ �QC ψ.
�

Example 39 Let Γ = {pi ∨ pi+1, pi ∨ ¬pi+1 | i ≥
1}. This theory has an infinite number of QC-models, as
{ν1, ν2, . . .} ⊂ Mod|=QC

(Γ), where ∀i, j ≥ 1 νi(pj) = � if

j ≥ i and νi(pj) = t if j < i. On the other hand, there is
only one ≤k-minimal QC-model of Γ, denote it μ, in which
μ(pj) = t for every pj ∈ A. By Proposition 37, then, it
suffices to consider only μ for the QC-inferences of Γ, that
is, Γ �QC ψ iff μ |=4 ψ.

Knowledge minimization is therefore admitted by all the
formalisms that we have considered:

Corollary 40 For a theory Γ and a formula ψ ∈ N ,

a) Γ �4 ψ iff Γ �4 ψ iff Γ �
⊆
4 ψ iff Γ �≤k

4 ψ.

b) Γ �MI ψ iff Γ �MI ψ iff Γ �
⊆
MI
ψ iff Γ �≤k

MI
ψ.

c) Γ �QC ψ iff Γ �QC ψ iff Γ �
⊆
QC

ψ iff Γ �≤k

QC
ψ.

Proof. Item (a) follows from Propositions 10, 36(a), and
37(a); Item (b) follows from the note at the end of the previ-
ous section and from Propositions 36(b) and 37(b); Item (c)
follows from Propositions 21, 36(c), 37(c). �

Comparing the Logics

As noted before, an important difference among the three
formalisms considered above is their attitude towards the
disjunctive syllogism. The following example illustrates
this.

Example 41 Let Γ = {p,¬p, q,¬p ∨ r,¬q ∨ s}. Belnap’s
consequence relation excludes any application of the dis-
junctive syllogism, thus Γ 	�4 r and Γ 	�4 s. On the other
extreme, quasi-classical logic supports every application of
resolution in Γ, therefore Γ �QC r and Γ �QC s. The logic

307



of inconsistency minimization is situated in an intermediate
level: as Γ can be partitioned to two independent fragments
Γ′ = {q,¬q ∨ s} and Γ′ = {p,¬p,¬p ∨ r}, the former of
which is classically consistent, then by Proposition 28 the
disjunctive syllogism is supported only with respect to its
consistent fragment, hence Γ �MI s while Γ 	�MI r.

Next, we investigate the relative strength of the three for-
malisms.

Proposition 42 For every theory Γ and ψ ∈ N ,

a) if Γ �4 ψ then Γ �MI ψ,

b) if Γ �MI ψ then Γ �QC ψ.

Note 43 The two items of Proposition 42 imply that Γ �QC

ψ whenever Γ �4 ψ, and so �4 ⊆ �MI ⊆ �QC. Note that
by Example 41 these containments are, in fact, strict (see
also Examples 22, 26). Moreover, unlike �4 and �QC that
are monotonic (see, respectively, (Arieli and Avron 1996,
Proposition 3.10) and (Hunter 2000, Proposition 4.32)), �MI

is nonmonotonic. This is demonstrated in Example 26: for
Γ = {¬p, p ∨ q} we have that Γ �MI q but Γ ∪ {p} 	�MI q.

Proof Outline of Proposition 42. Part (a) simply follows
from the fact that Mod|=MI

(Γ) ⊆ Mod|=4
(Γ). For Part (b),

suppose first that Γ consists only of clauses. We consider
two operators that construct a theory from a theory and a
valuation:

• T1(Γ, ν) is the theory that is obtained fromΓ by removing
all the clauses in which there is a literal l such that ν(l) =
�.

• T2(Γ, ν) is the theory that is obtained fromΓ by removing
from every clause in Γ the literals l such that ν(l) = �.7

The following facts are easily verified:

Fact 1: If ν ∈Mod|=MI
(T1(Γ, ν)) there is μ ∈Mod|=MI

(Γ)
such that μ ≤� ν and μ ≤k ν (either μ = ν or μ is obtained
from ν by letting μ(pi) ∈ {t, f,⊥} for some pi ∈ A(Γ) \
A(T1(Γ, ν)) such that ν(pi) = �).

Fact 2: If ν ∈Mod|=QC
(Γ) then ν ∈Mod|=QC

(T2(Γ, ν)).

Also, by the definitions of T1 and T2, for every clause C1 in
T1(Γ, ν) there is a clause C2 in T2(Γ, ν) such that C1 is a
subformula of C2. Thus:

Fact 3: Mod|=4
(T2(Γ, ν)) ⊆Mod|=4

(T1(Γ, ν)).

Now, if Γ 	�QC ψ, there is ν ∈ Mod|=QC
(Γ) \Mod|=4

(ψ).
By Fact 2, ν ∈ Mod|=QC

(T2(Γ, ν)) \ Mod|=4
(ψ), thus

ν ∈ Mod|=4
(T2(Γ, ν)) \ Mod|=4

(ψ), and by Fact 3, ν ∈
Mod|=4

(T1(Γ, ν)) \Mod|=4
(ψ). Note that this implies, in

particular, that there is no p ∈ A(T1(Γ, ν))∪A(ψ) such that
ν(p) = �. Consider a valuation ν′ ∈ Λ that is identical to
ν on A(T1(Γ, ν)) ∪ A(ψ) and ν(p) 	= � elsewhere. Then
ν′ ∈ Mod|=MI

(T1(Γ, ν)) \ Mod|=4
(ψ). Now, by Fact 1,

there is a valuation μ ∈ Mod|=MI
(Γ) such that μ ≤k ν′.

Since ν′ 	∈ Mod|=4
(ψ), μ 	∈ Mod|=4

(ψ) as well. Thus

7Consider for instance the theory Γ = {p,¬p, p ∨ q} of Ex-
amples 22 and 26, and let ν ∈ Λ such that ν(p) = �. Then
T1(Γ, ν) = ∅ and T2(Γ, ν) = {q}.

Mod|=MI
(Γ) 	⊆Mod|=4

(ψ), and so Γ 	�MI ψ.

The proof for sets of CNF-formulas follows from the proof
above by the fact thatC1∧. . .∧Cn �x ψ iffC1, . . . , Cn �x ψ
for both x = QC and x = MI. �

A graphic representation of the results in Corollary 40 and
Proposition 42 is given in Figure 2.

As the next result shows (see Proposition 1–3 in (Coste-
Marquis and Marquis 2005)), the formalisms considered
above also differ in their computational complexity.

Proposition 44 Deciding whether a formula ψ ∈ N fol-
lows from a theory Γ is in P for �4, is coNP-complete for
�QC, and is Πp2-complete for �MI.

8

Summary
Paraconsistent reasoning requires the weakening of either
the disjunctive syllogism or the law of disjunction introduc-
tion. In this paper, we have considered three different ap-
proaches for doing so in the context of four-states logics,
and investigated the relative expressive power of three log-
ics, each one represents a different approach. More specifi-
cally, we compared quasi-classical logic – whose definition
is syntactical in nature and motivated by the need to pre-
serve the resolution principle – to a logic of inconsistency
minimization, that is based on purely semantical consider-
ations, and which tolerates classically valid rules only with
respect to classically consistent fragments of the premises.

Despite their different attitudes to the application of the
disjunctive syllogism, all the investigated formalisms share
the knowledge minimization property, which allows to re-
duce the number of models without affecting the conclu-
sions. This also may be captured, in the context of four pos-
sible states of information, as a kind of consistency preserv-
ing method: As long as one keeps the redundant information
as minimal as possible the tendency of getting into conflicts
decreases.
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