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Abstract

We examine the relationship between the Cooper-Herskovitz
score of a Bayesian network and the conditional entropies of
the nodes of the networks conditioned on the probability dis-
tributions of their parents. We show that minimizing the con-
ditional entropy of each node of the BNS conditioned on its
set of parents amounts to maximization of the CH score.

The main result is a lower bound on the size of the data
set that ensures that the divergence of between conditional
entropy and the Cooper-Herskovitz score is under a certain
threshold.

1. Introduction

The construction of a Bayesian Network Structure (BNS)
from a data set that captures the probabilistic dependencies
among the attributes of the data set has been one of the
prominent problems among community of uncertainty re-
searchers since early 90s. The problem is particularly chal-
lenging due to enormity of number of possible structures for
a given collection of data.

Formally, a Bayesian Belief Network is a pair (Bs, Bp),
where Bs is a directed acyclic graph, commonly referred to
as a Bayesian Network Structure (BNS), and Bp is a col-
lection of distributions which quantifies the probabilistic de-
pendencies present in the structure, as we discuss in detail
in the next paragraph. Each node of the BNS corresponds
to a random variable; edges represent probabilistic depen-
dencies among these random variables. A BNS captures the
split of the joint probability of a set of random variables,
presented by its nodes, into a product of probabilities of its
nodes conditioned upon a set of other nodes, namely the set
of its predecessors or parents.

The set of values (or states) of a random variable Z is
referred to as the domain of Z , borrowing a term from rela-
tional databases. This set is denoted by Dom(Z).

If a random variable X is a node of Bs with Dom(X) =
{1, · · · , RX} and set of random variables PaX =
{Y1, Y2, · · · , Yk} as its set of parents, and if we agree upon

some enumeration of set Dom(PaX) =
∏k

i=1 Dom(Yi),
then denote by θX

lj the conditional probability P (X =

l|Y1 = y1, Y2 = y2, · · · , Yk = yk), where l is some state
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of X and (y1, · · · , yk) is the jth element of the enumera-
tion. Also, we denote with θX

·j , the probability distribution

of X conditioned on its set of parents taking on the jth as-
signment of its domain. Bp is collection of distributions θX

·j

for all nodes X of Bs and 1 ≤ j ≤ |Dom(PaX)|.
A Bayesian network structure for a data set is a BNS in

which the nodes are labelled with its attributes treated like
random variables. Such a BNS is said to be fit for the data set
if the probabilistic dependencies (or independencies) cap-
tured by the structure closely reflects the dependencies (or
independencies) among the attributes according to that data
set. Several scoring solutions have been proposed for eval-
uating this fitness. All these scorings schemes are based on
three major approaches: scores based on maximization of
the posterior probability of the structure conditioned upon
data, scores based on MDL (Minimum Description Length)
principle and scores based on minimization of conditional
entropy.

The first approach was initially introduced in (Cooper and
Herskovits 1993), where the scoring formula was derived
based on a number of assumptions such as assuming that the
distribution of tuples (θX

1j , · · · , θX
RXj) is uniform for all X

and j, or is a Dirichlet distribution. We refer to the scor-
ing criterion introduced in (Cooper and Herskovits 1993) as
the CH score. In (Heckerman, Geiger, and Chickering 1995)
Heckerman et al. replaced the Dirichlet distribution assump-
tion by the likelihood equivalence assumption and argued
that under this assumption tuples (θX

1j , · · · , θX
RXj) obey a

Dirichlet distribution.
The second approach is based on the minimum de-

scription length principle, introduced in (Rissanen 1978).
Later, (Lam and Bacchus 1994) this principle was applied on
learning a BNS from data. The application of same methods
on learning the local structure in the conditional probability
distributions with variable number of parameters that quan-
tify these networks was suggested in (Friedman and Gold-
szmidt 1998).

Another approach was introduced in (Simovici and Baraty
2008) and extended in (Baraty and Simovici 2009) to be
used in evaluating the edges of a Bayesian structure and
pruning unimportant edges. In this approach one tries to
minimize the entropy of each child node conditioned on its
set of parents.

The first two methods and in particular the first one
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are computationally expensive, while the third approach is
cheaper to calculate and the resulting numbers are in a more
manageable range. (Suzuki 1999) showed the close relation-
ship between the MDL scheme and CH score.

Our main goal in this paper is to show the relationship
between conditional entropy and CH score. In particular,
we show that minimization of conditional entropy and max-
imization of the CH score yield the same result if the data
set at hand is large and this is precisely the case when the
CH score is computationally impractical. Thus, in case the
data set is large, using entropy makes more sense. Also, we
obtain a lower bound of the size of the data set necessary for
substituting entropy measure with CH score for inferring a
BNS with a good prediction capability.

In Section 2. we examine the relationship between CH
score and conditional entropy. A lower bound on size of
data set is obtained in Section 3.. Experimental results are
presented in Section 4.. The final section contains the conclu-
sion of this paper.

2. Equivalence of CH Score and Conditional

Entropy
Let D be a data set with set of attributes Attr(D) =
{A1, · · · , An}. If t is a tuple of D and L a subset of
Attr(D), the restriction of the tuple t to L is denoted by
t[L]; we refer to t[L] as the projection of t on L. For each
Ai ∈ Attr(D), define the active domain of attribute A in D

to be
AdomD(Ai) = {a1

i , · · · , avi

i }.

The notion of active domain is extended to sets of attributes
by defining AdomD(L) = {t[L] | t ∈ D}.

A partition of a finite set S is non-empty collection of
pairwise disjoint, non-empty subsets of S, π = {Bi|i ∈ I},
such that

⋃
i∈I Bi = S.

If π = {B1, . . . , Bm} is a partition of S, its entropy is the
number

Hp (π) = −
m∑

i=1

|Bi|

|S|
log2

|Bi|

|S|
,

which corresponds to the Shannon entropy of a probability

distribution (p1, . . . , pm), where pi = |Bi|
|S| for 1 ≤ i ≤ m.

If σ = {C1, . . . , Ck} is another partition on S, then, the
entropy of π conditioned on σ is the number,

Hp(π|σ) = −

m∑
i=1

k∑
j=1

|Bi ∩ Cj |

|S|
log

|Bi ∩ Cj |

|Cj |
.

It is known that 0 ≤ Hp(π|σ) ≤ Hp (π).
A similar notion to partition entropy is the entropy of a

finite set of natural numbers. If U = {n1, · · · , nq} ⊆ N,
then the entropy of set U is defined as

Hn (U) = Hn (n1, · · · , nq) = −

q∑
i=1

ni∑q
i=1 ni

log2

ni∑q
i=1 ni

Definition 1 The equivalence relation “∼AI ” defined by
the sequence of attributes A on D, consists of those pairs
(t, t′) ∈ D2 such that t[A] = t′[A]. The corresponding par-
tition πA ∈ PART(D) is the partition generated by A.

Define the number nD

ijk to be the cardinality of the set,

{t ∈ D | t[Ai, Par(Ai)] = (ak
i , a

j
i )} where ak

i ∈

AdomD(Ai) and a
j
i ∈ AdomD(Par(Ai)) = {a1

i , · · · , a
qi

i }.

Also define ri = |AdomD(Par(Ai) ∪ {Ai})| and v
j
i to be

the cardinality of the set {1 ≤ k ≤ vi | nD

ijk �= 0}.

In general, a data set D can be regarded as a multiset of

tuples. Let, ND

ij =
∑vi

k=1 nD

ijk . Note that ND

ij is the number

of tuples t ∈ D such that t[Par(Ai)] = a
j
i . When D is clear

from context, we drop the D subscript or superscript from
notations introduced above.

A BNS for data set D is a graph Bs with set of nodes
Attr(D) and its set of edges a subset of Attr(D) ×
Attr(D). The attributes of the data set are treated as ran-
dom variables. The BNS represents probabilistic dependen-
cies among these attributes. We denote by ParBs

(Ai), the
set of parent nodes of Ai in Bs. The subscript Bs is omitted
whenever possible.

Define BNS(D) to be the set of all possible structures for
D. Also denote by θijk = P (Ai = ak|Par(Ai) = aj).

Let A = (A1, . . . , An) be a list of Attr(D) which repre-
sents expert’s prior knowledge of the domain in the follow-
ing way: attribute Ai is in the set of candidate parents for
Aj , but not vice versa if i < j. We denote by BNSA(D) the
set of all structures for D conforming to the ordering A.

Definition 2 The complete BNS for the list A is the structure
BA

cs in which Par(Ai) = {A1, · · · , Ai−1} for 1 ≤ i ≤ n.

(Cooper and Herskovits 1993) use the probability
P (Bs, D) as a score of the fitness of the structure Bs in rep-
resenting the probabilistic dependencies among attributes of
D. They assume the tuple (θij1, · · · , θij(vi−1)) has a Dirich-

let distribution with parameters ((n′
ij1 +1), · · · , (n′

ijvi
+1))

for all 1 ≤ i ≤ n and 1 ≤ j ≤ qi. Based on this, and a num-
ber of other assumptions they show that

P (Bs, D) = P (Bs) ·

n∏
i=1

fi, (1)

where

fi =

qi∏
j=1

(N′
ij + vi − 1)!

(Nij + N′
ij + vi − 1)!

·

vi∏
k=1

(nijk + n′
ijk)!

n′
ijk!

,

and N
′
ij =

∑vi

k=1 n′
ijk . Observe that

∑qi

j=1 Nij = |D|,

Nij ≥ 1 and 0 ≤ nijk ≤ Nij for 1 ≤ i ≤ n, 1 ≤ j ≤ qi

and 1 ≤ k ≤ vi.To find the fittest structure for D, we seek a
structure Bs over Attr(D) that maximizes P (Bs, D). That
is, we need to find,

argmaxPar(A1),··· ,Par(An)P (Bs, D).

Since ln(x) is a strictly increasing function we have

argmaxPar(A1),··· ,Par(An)(P (Bs, D))

= argmaxPar(A1),··· ,Par(An)(lnP (Bs, D))

for 1 ≤ i ≤ n.
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Define gi = ln(fi). By Equation (1), we have

ln(P (Bs, D)) = lnP (Bs) +
n∑

i=1

gi. (2)

Next we establish lower and upper bounds for gi.

Theorem 3 Let LO(gi) and UP(gi) be the numbers defined
by

LO(gi) = αi − Φ1 + Φ6 − Φ2 − Φ3 − Φ7 − Φ8

and

UP(gi) = α′
i + Φ1 + Φ6 + Φ3 − Φ7 + Φ4 − Φ8

where Φ1, · · · , Φ8 are defined in Table 1 and αi and α′
i are

given by

αi = 4qi + ri − 2

qi∑
j=1

ln(aj
i ) −

qi∑
j=1

ln(N′
ij + 1)

−

qi∑
j=1

v
j
i ln(bj

i ) −

qi∑
j=1

v
j
i∑

k=1

ln(n′
ijk + 1) −

qi∑
j=1

ln(cj
i )

+

qi∑
j=1

N
′
ij · Hn(n′

ij1, · · · , n
′
ijv

j
i

) −

qi∑
j=1

ln(dj
i ) (3)

α′
i = −4qi − ri +

qi∑
j=1

ln(uj
i ) +

qi∑
j=1

ln(vj
i ) (4)

+

qi∑
j=1

ln(N′
ij + 1) +

qi∑
j=1

N
′
ij · Hn(n′

ij1, · · · , n
′
ijv

j
i

)

+2

qi∑
j=1

ln(wj
i ) +

qi∑
j=1

v
j
i ln(zj

i ) +

qi∑
j=1

ln(N′
ij + v

j
i ).

where a
j
i , b

j
i , c

j
i , d

j
i , u

j
i , v

j
i , w

j
i and z

j
i are constants in the

range [2, 3) for all i and j. Then, we have,

LO(gi) ≤ gi ≤ UP(gi).

Note that neither αi nor α′
i depend on |D|. Also, since

a
j
i , b

j
i , c

j
i , d

j
i , u

j
i , v

j
i , w

j
i and z

j
i are approximately equal to e,

we have,

δi = α′
i − αi

≈ 2

qi∑
j=1

ln(N′
ij + 1) +

qi∑
j=1

ln(N′
ij + v

j
i )

+

qi∑
j=1

v
j
i∑

k=1

ln(n′
ijk + 1)

≤ 2qi ln(
N

′
i·

qi

+ 1) + qi ln(
N

′
i·

qi

+ vi)

+ri ln(
N′

i·

ri

+ 1) = UP(δi),

where N′
i· =

∑qi

j=1 N′
ij .

Table 1: Table of Notations
Symbol Formula

Φ1

Pqi

j=1 ln(Nij + 1)

Φ2

Pqi

j=1 ln(Nij + N′
ij + v

j
i )

Φ3

Pqi

j=1 ln(Nij + N′
ij + 1)

Φ4

Pqi
j=1

Pv
j
i

k=1 ln(nijk + n′
ijk + 1)

Φ5

Pqi

j=1 ln(Nij + N′
ij + v

j

i − 1)

Φ6

Pqi

j=1(Nij + N′
ij) · Hn(Nij , N′

ij)

Φ7

Pqi
j=1 [ (Nij + N′

ij + v
j
i − 1)

·Hn(Nij , N′
ij + v

j
i − 1) ]

Φ8

Pqi
j=1 [ (Nij + N′

ij)
·Hn((nij1 + n′

ij1), · · · , (n
ijv

j
i

+ n′

ijv
j
i

)) ]

Theorem 4 We have

lim
|D|→∞

LO(gi)

UP(gi)
= 1.

Corollary 5 Let Hp

(
πAi |πPar(Ai)

)
be the conditional en-

tropy of partition generated by Ai given the partition gener-
ated by its set of parents. We have:

lim
|D|→∞

ln(P (Bs, D))

= lnP (Bs) − lim
|D|→∞

n∑
i=1

|D| · Hp

(
πAi |πPar(Ai)

)
.

We conclude that when we have a large data set, minimiz-
ing the conditional entropy of each node of the BNS condi-
tioned on its set of parents amounts to maximization of the
CH score. We refer to this modified optimization process as
CH to entropy substitution.

3. Estimating the Size of the Data Set for CH

to Entropy Substitution

In the previous section we proved that as the size of the data
set tends to infinity the CH score and the conditional en-
tropy are equivalent in the sense that a BNS that minimizes
the conditional entropies maximizes the CH score by Corol-
lary 5.

However, in practice, to optimize the process of finding a
fit BNS for data by CH to entropy substitution, we need to
find out how large the data set needs to be in order to make
this substitution feasible. Note that a combination of Equa-
tion (2), Theorems 3 and 4 and Corollary 5 suggest that the
maximum divergence of two measures, conditional entropy
and CH score, for each i is:

UP(gi) − LO(gi).

To account for the magnitudes of the data set and the en-
tropies of various nodes in order to have a meaningful mag-
nitude for divergence, we define the divergence for node Ai

as
UP(gi) − LO(gi)

|D| · Hp

(
πAi |πPar(Ai)

) .
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Next, we add up the divergence for each node Ai in Bs to
get the total divergence and we denote it with DIV(D, Bs):

DIV(D, Bs)

=
n∑

i=1

UP(gi) − LO(gi)

|D| · Hp

(
πAi |πPar(Ai)

)

=

n∑
i=1

2Φ1 + 2Φ3 + Φ2 + Φ4 + δi

|D| · Hp

(
πAi |πPar(Ai)

) (5)

≤
1

|D|
·

n∑
i=1

5Φ2 + Φ4 + UP(δi)

Hp

(
πAi |πPar(Ai)

) (Φ1 ≤ Φ3 ≤ Φ2)

≤
1

|D|
·

n∑
i=1

(
5qi ln(

|D|+N′

i·

qi
+ vi)

Hp

(
πAi |πPar(Ai)

) (6)

+
ri ln(

|D|+N′

i·

ri
+ 1) + UP(δi)

Hp

(
πAi |πPar(Ai)

)
)

.

We refer to quantity 6 as an upper bound on divergence
of Bs and denote it with UP(DIV(D, Bs)). We can deter-
mine the size of data set D such that UP(DIV(D, Bs)) ≤ ε
for some user given threshold ε > 0. Note that this measure
is dependent on the BNS Bs for which we want to com-
pute the CH score or conditional entropy. But measures are
being used to find a fit BNS. To avoid this circular depen-
dency, we need to find the cardinality of D in such that
UP(DIV(D, Bs)) ≤ ε for all Bs in our set of candidate
structures.

If A, a list of Attr(D), reflects the prior knowledge of
experts, as discussed in previous section, then BNSA(D) is

our candidate space of structures and if we assume that N′
i·

is the same in all Bs ∈ BNSA(D) for 1 ≤ i ≤ n we have
the following theorem.

Theorem 6 If DIV(D, BA

cs) ≤ ε, then DIV(D, Bs) ≤ ε for
all Bs ∈ BNSA(D).

The above theorem enables us to use UP(DIV(D, BA
cs)) as

an upper bound of divergence within space BNSA(D) not
dependent on structures.

Observe that ln x ≤ x − 1 for x > 0. It follows that

ln(ax + b) ≤ ax + b − 1,

so

ln(ax + b)

cx
≤

a

c
+

b − 1

cx
.

Therefore, if H(i) = Hp

(
πAi |π

Par
BA

cs
(Ai)

)
,

UP(DIV(D, BA
cs))

=

n∑
i=1

⎛
⎝5qi ln( |D|

qi
+

N′

i·

qi
+ vi)

|D| · H(i)

+
ri ln( |D|

ri
+

N′

i·

ri
+ 1) + UP(δi)

|D| · H(i)

⎞
⎠

≤

n∑
i=1

(
5

H(i)
+

5N
′
i· + 5qi(vi − 1)

|D| · H(i)

+
1

H(i)
+

N′
i·

|D| · H(i)
+

UP(δi)

|D| · H(i)

)

=

n∑
i=1

6

H(i)
+

1

|D|

n∑
i=1

6N′
i· + 5qi(vi − 1) + UP(δi)

H(i)
.

The above number is an upper bound
for UP(DIV(D, BA

cs)) which we denote with

UP
2(DIV(D, BA

cs)) and to have it less than or equal
to ε it suffices to have

|D| ≥

∑n

i=1
6N′

i·+5qi(vi−1)+UP(δi)
H(i)

ε −
∑n

i=1
6

H(i)

.

This establishes an explicit lower bound for |D|.
Note that the above formula is obtained from several

phases of amplifying the bound. So it may require a large
data set in order to satisfy the inequality for some small
threshold ε. Thus, if the inequality is not satisfied for a data
set at hand, it does not necessarily mean that substitution of
entropy for CH is not feasible. But we may need to resort
to some randomized approaches in order to approximate a
more realistic maximum divergence as we will see in the
next section.

4. Experimental Results

We conducted two different experiments on three data sets,
Alarm, Neapolitan Cancer, and Breast Cancer with 20002,
7565 and 277 rows with no missing values and 5, 37 and 10
attributes respectively. The attributes of the Neapolitan data
set are all binary.

In the first experiment we computed the
UP(DIV(D, BA

cs)) for the three data sets with differ-
ent values for |D|. We used the ordering of attributes of
the three data sets, AAM , ANC and ABC , which represent
the prior knowledge of the domain from (Cooper 1984;
Cooper and Herskovits 1993; Williams and Williamson
2006) respectively. To be able to compute the UP(DIV)
for data set cardinalities greater than the actual size of the
data set at hand , we make the simplifying assumption that

the conditional entropy Hp

(
πAi |πParBs (Ai)

)
is relatively

independent on the size of the database. This assumption
is supported by experiments. Indeed, we show in Figure 1
the variation of several values of conditional entropy with
respect to the size of the data set (obtained by random
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extraction from the Neapolitan data set). Clearly, it is the
case, that beyond a certain number of tuples this entropy is
almost constant.

Figure 1: Variation of some conditional entropies with the
size of the data set.

Also, we assume that n′
ijk = 0 for all i, j and k. That is,

the distribution of (θij1, · · · , θij(vi−1)) is uniform for all i
and j. Table 2 represents the result of this experiment.

Table 2: DIV as a Function of Cardinality of Data Sets
|D| UPDIV(D, B

AAM
cs ) UPDIV(D, B

ANC
cs ) UPDIV(D, B

ABC
cs )

277 3516294.597 5.000846603 437.554884

5000 215637.6066 0.497802902 63.79188858

7565 148993.292 0.355157238 47.15089133

10000 116996.2833 0.273901451 38.26594429

20002 65964.77078 0.15195053 22.41791235

30000 48007.49444 0.111300484 16.2496481

50000 32621.53866 0.07078029 10.74018886

75000 24172.33578 0.047520193 7.686459238

1.00E+05 19570.13933 0.036790145 6.045594429

2.00E+05 11735.87967 0.019765073 3.361797214

5.00E+05 5856.573866 0.008578029 1.523918886

1.00E+06 3395.911933 0.004539015 0.829959443

5.00E+06 903.9083866 0.001007803 0.197391889

1.00E+07 500.9891933 0.000549301 0.105195944

1.00E+08 66.45191933 6.39901E-05 0.012819594

5.00E+08 15.58238387 1.407E-05 0.002923919

1.00E+09 8.281191933 7.30791E-06 0.001511959

5.00E+09 1.882238387 1.5878E-06 0.000333062

1.00E+10 0.996119193 8.21501E-07 0.000173296

5.00E+10 0.223223839 1.7698E-07 3.78232E-05

1.00E+11 0.111611919 9.12231E-08 1.95916E-05

5.00E+11 0.025322384 1.9513E-08 4.23402E-06

1.00E+12 0.013161192 1.00295E-08 2.18496E-06

The first column is the cardinality of the data set which
may be greater than the actual size of data. The second
column is UP(DIV) for the Alarm data set based on se-
quence of attributes, AAM . The third and forth columns are
UP(DIV)’s for Neapolitan Cancer and Breast Cancer data
sets respectively. Note that the UP(DIV) for Neapolitan
data set is much smaller than the UP(DIV) for Alarm for
the same data set size. This deviation is due to the cardinal-
ity of the domain of the tuples of Alarm data set being much
larger than that of Neapolitan. For the Neapolitan data set
the upper bound on divergence is small for moderate data
sizes even though this measure is very pessimistic and this
guarantees a sound substitution of entropy for CH measure.

As we discussed in previous section, for some data sets
to approximate a more realistic divergence we may need to
resort to some randomized approach which is the motivation
for our second experiment. Let us denote the Expression (5)
with Δ(|D|, Bs) and denote by PD, the frequency extracted

from D. We can substitute Nij by |D| · P̂ (ParBs
(Ai) =

aj) and nijk by |D| · P̂ (ParBs
(Ai) = aj , Ai = ak) in

Δ(|D|, Bs). Then, as in previous experiment, we assume
extracted frequencies and the conditional entropies are not
dependent on the size of data. So we can go over the actual
size of data in hand in our experiment.

In this experiment, given a data set D, we randomly select
n structures from the set

Sm =
{
Bs ∈ BNS(D)

∣∣ |ParBs
(Ai)| ≤ m for 1 ≤ i ≤ n

}
and compute the Δ(|D|, Bs) for each randomly selected
structure Bs and for different values of |D| ranging from
a couple of hundreds to 50, 000, 000. Then, we take their
average which we denote by Avg

D
(n, |D|). This number

represents the approximate divergence of substitution for in-
stances of the data set at hand if the data set size is |D|.
Clearly, as the number of trials n gets larger, we have a more
precise approximation.

We limit the complexity of the structures we are evalu-
ating by limiting the number of parents of a node. This is
necessary because the number of unconstrained structures is
super-exponential in the number of nodes which renders any
algorithm with no constrains impractical. The upper bound
on the number of parents of a node is denoted by m.

Other restrictions can be applied in the random selec-
tion phase of this approximation if the algorithm under con-
sideration in which we want to substitute conditional en-
tropy with CH score imposes other types of candidate space-
limiting constraints. We have plotted the results of this ex-
periment in Figures 2,3 and 4 for Alarm, Breast Cancer
and Neapolitan data sets respectively. The number of tri-
als n is 50 in the first columns of all the three figures and
n = 130 for the second columns. The space of candidate
structures for random selection is extended by adding more
complex structures which is achieved by increasing m, the
upper bound on the number of parents for a single node.

Experimental results show that the upper bound of diver-
gence of the substitution given an ordering A of attributes,
UP(DIV(D, BA

cs)), is overstated. That is, DIV(D, Bs) for
an average structure in terms of complexity, Bs converges
to zero much faster than UP(DIV(D, BA

cs)) as the data set D

gets larger. As we increase m, the divergence gets slightly
larger. But, the rate of decrease in divergence as data set
gets larger is almost constant. The plots are very stable with
respect to increasing the number of trials n.

5. Conclusion and Future Works

Our main result shows that for Bayesian structures inferred
from large data sets the CH score, that is difficult to compute
(but is the standard evaluation tool for Bayesian Networks)
can be replaced with the total conditional entropy of the net-
work obtained by summing the conditional entropy of each
node conditioned on its parents. We obtained a lower bound
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Figure 2: The Plots for Alarm data set. The (n, m) pairs for different plots are as follows

a.(50, 3), b.(130, 3), c.(50, 4), d.(130, 4), e.(50, 5), f.(130, 5).

Figure 3: The Plots for Breast Cancer data set. The (n, m) pairs for different plots are as

follows a.(50, 3), b.(130, 3), c.(50, 4), d.(130, 4).

Figure 4: The Plots for Neapolitan data set. The (n, m) pairs for different plots are as

follows a.(50, 2), b.(130, 2), c.(50, 3), d.(130, 3).

of the size of data sets that allow a safe replacement of the
CH score and provided experimental evidence that this re-
placement is feasible. We intend to work on improving this
lower bound.
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