Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

Walking the Decidability Line for Rules with Existential Variables

Jean-Francois Baget
INRIA - LIRMM
baget@lirmm. fr

Abstract

We consider positive rules in which the conclusion may con-
tain existentially quantified variables, which makes reason-
ing tasks (such as Deduction) undecidable. These rules,
called V3-rules, have the same logical form as TGD (tuple-
generating dependencies) in databases and as conceptual
graph rules. The aim of this paper is to provide a clearer pic-
ture of the frontier between decidability and non-decidability
of reasoning with these rules. We show that Deduction re-
mains undecidable with a single V3-rule; then we show that
none of the known abstract decidable classes is recognizable.
Turning our attention to concrete decidable classes, we pro-
vide new classes and classify all known classes by inclusion.
Finally, we study, in a systematic way, the question “given
two decidable sets of V3-rules, is their union decidable?”, and
provide an answer for all known decidable cases except one.

Introduction

Rules are fundamental constructs in knowledge-based sys-
tems and databases. Here we consider positive rules in first-
order logic without functions, of form H — C, where H
and C' are conjunctions of atoms, respectively called the hy-
pothesis and conclusion of the rule, and there might be exis-
tentially quantified variables in the conclusion. E.g. the rule
R = Human(x) — Parent(y, x) A Human(y) stands for the
formula Vo (Human(z) — Jy(Parent(y, x) A Human(y))).

These rules, that we call Vd-rules (BLMS09), corre-
spond to a very general kind of integrity constraints in
databases, i.e. so-called tuple generating dependencies
(TGD) (AHV95). They are also equivalent to conceptual
graph rules (Sow84; BM02). They generalize various kinds
of constructs used to represent implicit knowledge, such
as rules in deductive databases, or ontological knowledge
such as rules expressing RDFS semantics (Hay04), con-
straints in F-logic-Lite (CK06; CGKO0S8) and some kinds of
inclusions in description logics (DLs) (BCMT03; BLMSO08;
CGL09).

Variables existentially quantified in the conclusion, asso-
ciated with arbitrary complex conjunctions of atoms, make
V3-rules very expressive but also lead to undecidability of
reasoning. Several decidable classes have been exhibited,
in both artificial intelligence and databases. The aim of this

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Michel Leclere
LIRMM (Univ. Montpellier - CNRS)
leclere@lirmm. fr

466

Marie-Laure Mugnier
LIRMM (Univ. Montpellier - CNRS)
mugnier@lirmm. fr

paper is to bring a clearer picture of the frontier between
decidability and undecidability of reasoning.

An important task on knowledge bases (KB) consists of
querying them with queries at least equivalent to the funda-
mental queries in databases, i.e. conjunctive queries. We
consider knowledge bases composed of a set of facts, which
are existentially closed conjunctions of atoms, and a set of
V3-rules. The problem of deciding whether the KB provides
an answer to a conjunctive query is the same as deciding
whether a fact is deducible from the KB. This is the basic
problem we consider, and we simply call it DEDUCTION.
Equivalent problems include rule deduction (is a V3-rule de-
ducible from a KB?) as well as several fundamental prob-
lems in databases: conjunctive query containment w.r.t. a
set of TGD, TGD implication and boolean conjunctive query
answering under constraints expressed by TGD.

Contributions.
as follows.

1. After having recalled that very strong restrictions on
the set of predicates or the structure of V3-rules still maintain
undecidability, we complete this gloomy picture by show-
ing that DEDUCTION remains undecidable even with a sin-
gle rule (Th. 1). This result has an important immediate
consequence: adding a single rule to any set belonging to a
decidable class of V3-rules can make the problem undecid-
able.

2. Even if the deduction problem is quickly undecid-
able, decidable classes have long been defined and used.
Decidable classes found in the literature are based on var-
ious syntactic properties of V3-rules. We begin our study
of decidable cases by considering abstract characterizations
of these classes based on the behavior of reasoning mecha-
nisms instead of syntactic properties. This yields three ab-
stract classes. Two of them are based on a forward chaining
scheme: finite expansion sets (BMO02), ensuring that a fi-
nite number of rule applications is sufficient to answer any
query, and the more general bounded treewidth sets (bts),
inspired by the work of (CGKOS), that relies on the finite
treewidth model property of (Cou90). The third class is
based on a backward chaining scheme: a finite unification
set (BLMSO09) ensures that any query can be finitely rewrit-
ten. We prove another negative result: these abstract classes
are not recognizable, i.e. checking whether a given set of

The main contributions of this paper are

V3-rules belongs to one of these classes is undecidable (Th.
3).

3. Since abstract classes are not recognizable, we turn
our attention to concrete classes implementing their abstract
behavior. These classes are defined by syntactic proper-
ties of V3-rules. They are less expressive but recogniz-
able. We present a state of the art of known concrete decid-
able classes, classified by inclusion, and introduce two new
decidable classes implementing the bts behavior: frontier-
guarded rules and their extension to weakly frontier-guarded
sets of rules. These classes are generalizations of the classes
defined in (CGKO08) and have the advantage of unifying
some other known classes (BLMS09). We point out that
their expressive power allows us to represent a set of de-
scription logic statements that are particularly interesting in
the context of the new DLs tailored for conjunctive query
answering. To show that (weakly) frontier-guarded rules
have the bts property, we introduce a simple tool, i.e. the
Derivation Graph (DG), as well as reduction operations on
this graph. The fundamental property of this graph is as fol-
lows: if every DG produced by a set of rules can be reduced
to a tree, then this set of rules has the bts property, which is
especially the case for (weakly) frontier-guarded rules (Th.
5).

4. Having a range of non-comparable concrete decidable
classes at our disposal, an interesting question is whether
the union of two decidable classes remains decidable. This
question is of utmost importance if we want to merge two
ontologies for which decidability of reasoning is ensured by
different syntactic properties, or if, having implemented the
semantics of two KR languages with sets belonging to de-
cidable classes, we want to consider the language built from
the union of both languages. We present a systematic study
of this question for all decidable classes we are aware of.
With the exceptions of disconnected rules, which are uni-
versally compatible, and of a still open case, we show that
the union of two incomparable decidable classes is never de-
cidable (Th. 8 and Th. 9). These rather negative results on
the rough union of decidable cases highlight the interest of
precisely studying interactions between rules. We outline
existing and future works in this direction.

Preliminaries

Facts and rules. We consider first-order logical languages
with constants but no other function symbols. A vocabu-
lary V is composed of a set of predicates and a set of con-
stants. Hence, an atom on V is of form p(t; .. .tj), where
p is a predicate of arity k in V and the ¢; are constants in
V or variables. For a formula ¢, we note terms(¢) and
vars(¢) resp. the terms and variables occurring in ¢. We
use the classical notions of semantic consequence, noted =,
and equivalence, noted =. A conjunct is a (possibly infinite)
conjunction of atoms. A fact is the existential closure of a
conjunct. W.L.o.g. we also see conjuncts and facts as sets
of atoms. The full fact w.r.t. a vocabulary) contains all
ground atoms that can be built on V' (thus any fact on V is
a semantic consequence of it). A V3-rule R = (H,C) is a
closed formula of form Vz; ...Va,(H — (321 ...32,0))

467

where H and C are two finite non empty conjuncts respec-
tively called the hypothesis and the conclusion of R. The
Sfrontier of R (notation fr(R)) is the set of variables occur-
ring in both H and C: fr(R) = vars(H) Nwvars(C). In
examples, we omit quantifiers and use the form H — C.

The Deduction problem. The conjunction of two facts F}
and F5 is equivalentto a fact, say F’; in the set-representation
of facts, I is obtained by making the union of F} and F; af-
ter renaming variables. In the following, we identify a set
of facts with a single fact. A knowledge base K = (F,R)
is composed of a fact F' and a set of V3-rules R. We ad-
dress the following consequence/deduction problem (noted
DEDUCTION in the following): “given a KB K = (F,R)
and a fact @) (built on the same vocabulary), is) deducible
from K (notation K = Q) , i.e. does {FF} UR = @ hold?”.
An instance of this problem is denoted by (F, R, Q). As ex-
plained in the introduction, this problem is a representative
of several other problems. It is undecidable (more precisely,
it is semi-decidable).

Homomorphisms. Given a set of variables X and a set of
terms 1, a substitution of X by T is a mapping from X to 7.
Let 0 : X — T be a substitution, and F' be a fact. o(F’) de-
notes the fact obtained from I’ by replacing each occurrence
of x € X Nterms(F') by o(x). A safe substitution is a bijec-
tion from X to a set of new variables (i.e. that do not appear
in the formulas involved in the reasoning). Given two facts
F and Q, a homomorphism from @ to F' is a substitution o
from vars(Q) to terms(F) such that o(Q) C F. If there
is a homomorphism from @) to F', we say that Q) maps to F.
It is well-known that homomorphism checking is sound and
complete w.r.t. logical deduction in the fragment of facts:
given two facts F and @, F' |= Q iff Q maps to F.

Forward Chaining. We assume in this paper that the reader
is familiar with forward and backward chaining paradigms.
AV3-rule R = (H,C) is applicable to a fact F if there is a
homomorphism o from H to F. The application of R to F'
according to o produces a fact a(F, R,0) = FUo(c'(C)),
where o’ is a safe substitution of var(C) \ fr(R). This appli-
cation is said to be redundant if a(F, R,c) = F (it suffices
to check that «(F, R, o) maps to F). A fact F’ is called
an R-derivation of I if there is a finite sequence (called a
derivation sequence) F = Fy, Fy,...,F, = F’ such that
forall 1 <i <k, thereisarule R = (H,C) € R and a ho-
momorphism ¢ from H to F;_; with F; = «(F;_1, R,0).
This notion yields a sound and complete forward mecha-
nism: givena KB K = (F,R) and a fact Q, K | Q iff Q
maps to an R-derivation of F' (SM96).

Backward Chaining. The key operation in backward chain-
ing is the unification between a fact @, classically called
a goal, and a rule conclusion, which produces a new goal.
Since a precise definition of a unifier is not needed in this
paper, we refer for it to (BLMS09). Let 1 be a unifier of a
fact () and the conclusion of a V3-rule R. The rewriting of)
w.r.t. g and R is a fact noted 5(Q, R, 11). A fact Q' is called
an R-rewriting of @ if there is a finite sequence (called a
rewriting sequence) @Q = Qo,Q1,...,Qr = Q' such that
forall 1 < i < k, thereisarule R = (H,C) € R and
a unifier p of @;—1 and C with @Q; = 3(Q;—1, R,). This

notion yields a sound and complete backward mechanism:
givenaKB K = (F,R) and a fact Q, K = Q iff there is an
R-rewriting of () that maps to F' (SM96)(BLMS09).

In the sequel of the paper, we simply write rules instead
of V3-rules.

A single rule encodes all rules

Even very strong restrictions are not sufficient to make DE-
DUCTION decidable. In (Bag01), it is shown that DEDUC-
TION can be reduced to its restriction where the vocabulary
is limited to a single binary predicate name. In (BM02), it
is proven that DEDUCTION remains undecidable with rules
with a frontier of size 2, and where the hypothesis and con-
clusion are paths. In this section, we present another very
strong restriction (when the KB is restricted to a single rule)
that is not sufficient to make the problem decidable.

Theorem 1 DEDUCTION remains undecidable when the set
of rules is restricted to a single rule.

Proof: Let I = (F,R,Q) be an instance of DEDUCTION.
By a transformation 7, we build another instance 7(I)
(7(F), 7(R), 7(Q)) with |7(R)| = 1, such that [is a posi-
tive instance if and only if 7([I) is. 7 is defined as follows:

e Let) be the vocabulary obtained by considering the con-
stants and the predicates occurring in /. We consider a
vocabulary V; obtained by replacing each predicate name
of arity k£ in V by a predicate (of same name) of arity
k + 1 and by adding to this vocabulary two new con-
stants f and g (f for “fact” and ¢ for “garbage”). Each
atom p(t1, ..., 1) defined on V is translated into an atom
p(t1,...,tr,t) on)V, where ¢ is either f (stating that this
atom corresponds to an atom in /' or deduced from F),
or g. Given a fact F' over V), such a translation is denoted
T(F,t).

o 7(F) is the disjoint union of two sets: a set C'y = 7(F, f)
(the “fact component™); and a set Cy = 7(U,g) (the
“garbage component”) where U is the full fact on V (since
any fact on V can be deduced from U, this latter fact en-
codes that everything is true, but is garbage).

e 7(Q) = 7(Q, f) (we want to deduce it from the part of
7(F) that corresponds to F).

o Let R = {Ry...R,}. Wlo.g., assume that the sets of
variables occurring in each rule are pairwise disjoint. Let
21 ...z, be new variables, i.e. not occurring in R. Then
(R;) = (r(H), 7(Civ2y)). T(R) = {R = (H =
UiT(H;, x;),C = U;T(Cy, x;)) } is composed of a single
rule that encodes all the previous ones.

Let us outline the main ideas of this transformation. Ev-
ery rule in R is applicable to the garbage component C,
thus R is applicable to C,, with variables z; ...z, being
necessarily mapped to the constant g. When a rule R; is ap-
plicable to F' by a homomorphism £, then R is applicable to
7(F) with 7(H;, x;) being mapped to C by h U {(z;,)},
and the remaining /; in H being mapped either to C'y or
C,. Conversely, assume that R is applicable to 7(F): each
7(H;, x;) is necessarily mapped to C'y or to Cy; if 7(H;, x;)
is mapped to C'y, this corresponds to an application of R; to

468

F.If all 7(H;, z;) are mapped to C, then the corresponding
application of R is redundant (by definition of the full fact).
It follows that every derivation from F' with the rules in R
can be translated into a derivation from 7(F) with R (with
a natural extension of the homomorphisms involved in the
first derivation) and reciprocally (with a natural decomposi-
tion of the homomorphisms involved in the second deriva-
tion). Finally, h is a homomorphism from @ to a fact F’
defined on V iff it is a homomorphism from 7(Q) to 7(F")
(and we have h(7(Q)) C C} with O = 7(F", f)).

Note that k& + 1-ary predicates are not required for such
a result: with a similar encoding, the same result can be
obtained using only unary and binary predicates. g

Known abstract classes are not recognizable

We distinguish between several kinds of known decidable
cases according to the properties defining them:

e abstract classes are defined by abstract properties that en-
sure decidability but for which the existence of a proce-
dure for deciding whether a given set of rules fulfills the
property is not obvious; in fact, we show in this section
that none of the three known abstract classes is recogniz-
able;

e concrete classes are defined by syntactic properties of a
given set of rules. These properties are said to be individ-
ual whenever they can be checked independently on each
rule in the set, and they are said to be global otherwise.

The decidable concrete classes found in the literature can
be grouped into three abstract classes according to the prop-
erties that underlie their decidability: finite expansion sets
are based on the finiteness of forward chaining; in their ex-
tension to bounded-treewidth sets, the produced facts have a
tree-like structure, which allows to stop the forward chain-
ing when the size of the facts is sufficient to conclude w.r.t.
a given query; finite unification sets are based on the finite-
ness of backward chaining. We prove that none of them is
recognizable.

A set of rules is called a finite expansion set (fes) if it is
guaranteed, for any fact, that after a finite number of rule
applications all further rule applications will become redun-
dant, i.e. produce facts equivalent to the current fact.

Definition 1 (finite expansion set) (BM02) R is called a
fes if for any fact F, there is an R-derivation F' of F such
that for every rule R = (H,C) € R, for every homomor-
phism o from H to F', a(F’, R, c) maps to F'.

If R is a fes, any forward chaining algorithm that builds
a derivation sequence and stops when all rule applications
are redundant, then checks if () maps to the fact obtained, is
complete and halts in finite time.

The following definition of a bounded treewidth set of
rules (Def. 3) basically follows from (CGKO0S8). This ab-
stract class translates the fundamental property underlying
the concrete decidable classes in this latter paper.

A fact can naturally be seen as a hypergraph whose nodes
are the terms in the fact and whose hyperedges encode
atoms. The primal graph of this hypergraph has the same
set of nodes (terms) and there is an edge between two nodes

is they belong to the same hyperedge (atom). The follow-
ing treewidth definition for a fact corresponds to the usual
definition for the associated primal graph.

Definition 2 (Treewidth of a fact) Let F' be a (possibly in-
finite) fact. A tree decomposition of I is a (possibly infinite)
treeT = (X ={X1,...,Xk,...},U) where:

1. the X; are sets of terms of F' with | J; X; = terms(F);

2. For each atom a in F, there is X; € X s.t. terms(a) C
X

3. For each term e in F, the subgraph of T induced by the
nodes X; such that e € X; is connected.

The width of a tree decomposition T is the size of the
largest node of T, minus 1. The treewidth of a fact F' is the
minimal width among all its possible tree decompositions.

Definition 3 (Bounded treewidth set) (basically
(CGKO0S8)) A set of rules R is called a bounded treewidth
set (bts) if for any fact F there exists an integer b such
that, for any fact F’ that can be R-derived from F,
treewidth(F") < b.

Theorem 2 (Decidability of bts) ! The restriction of DE-
DUCTION to bounded treewidth sets of rules is decidable.

Proof: Let R be a bts. Then for any fact I, there exists a
bound b such that any fact R-derivable from F' has treewidth
at most b. Consider the infinite fact F™* defined as the union
of all facts R-derivable from F. F'* is universal for F' and
R, i.e. any fact consequence of {F'} U R is consequence of
F*. Thanks to the treewidth compactness theorem (Tho88),
F* has bounded treewidth. Since F™* is universal, it follows
that for any fact), both F* A Q and F* A =@ have a model
of bounded treewidth when they are satisfiable. We conclude
with (Cou90), that states that classes of first-order logic hav-
ing the bounded treewidth model property are decidable. [

A fes is a bts, since the finite saturated graph generated by
a fes from an initial fact F' has treewidth bounded by its own
size.

With finite unification sets, the finiteness of backward
chaining is based on the finiteness of the set of most gen-
eral rewritings of ().

Definition 4 (Finite unification set) (BLMS09) A set of
rules R is called a finite unification set (fus) if for every
fact Q, there is a finite set Q of R-rewritings of Q) such that,
Sor any R-rewriting Q' of Q, there is an R-rewriting Q" in
Q that maps to Q'

We show now that fes, bts and fus yield abstract charac-
terizations that are undecidable, with a proof applying to the
three abstract classes.

Theorem 3 Deciding if a set R is a finite expansion (resp.
finite unification, resp. bounded treewidth) set is not decid-
able.

The proof of this theorem relies on the following lemmas.

'This theorem is an immediate generalization of Th. 23 in
(CGKO8), that applies to the concrete bts class called “weakly
guarded TGD”.

469

Lemma 1l Ler (F,R,Q) be an instance of DEDUCTION.
Let V be the vocabulary obtained by considering predi-
cates and constants occurring in F, R and Q). We note
R’ = allrules(F,R,Q) = RU{0 — F;Q — U} anew set
of rules, where U is the full fact.

Then F,R = Qiff),R' = U.

Proof: Since the fact F' and the rule) — F are equiva-
lent, we will prove successively both directions of the equiv-
alence F, R |:Q1ffF RU{Q—U}EU.

(=) Immediate, since F,R = Q and Q,{Q — U} = U
=FR EU.

(<) If F,R" = U, then there exists a derivation F =
Fy, Fi, ..., Fy such that Fy, = U. Suppose that the rule
Ry = @ — U is not used in this derivation. Then
F,R = U and since any fact can be deduced from U, we
have F, R = Q. Otherwise, let us consider the smallest ¢
such that Fj is obtained from F;_; by the application of rule
Ry . It means that there is a homomorphism from @) to F;_4
(applicability of the rule) and that F, R | F,_1 (Ry was
not needed). Then F, R | Q. O

Lemma 2 Let (F, R, Q) be an instance of DEDUCTION. Let
R’ = allrules(F, R, Q) be defined as in lemma 1. If), R’ |=
U, then R’ is a fes, a fus, and a bts.

Proof: Assume (), R’ = U. We successively prove all three
implications:

1) It follows that, for any fact H on V, we have H, R’ = U
and then the forward chaining algorithm produces in finite
time a fact F” such that F’ = U (from semi-decidability of
DEDUCTION proven with forward chaining). Thus F/' = U
and any fact that can be derived from F’ is also equivalent
to U: it means that R’ is a fes.

2) Since all fes are also bts, R’ is also a bts.

3) It follows that, for any fact Q)’, we have), R’ = Q' and
then a breadth-first exploration of all possible rewritings of
Q' will produce () in finite time (from semi-decidability of
DEDUCTION proven with backward chaining). Since 0 is
more general than any other rewriting of Q’, R’ is a fus.
Proof: [Th. 3] (By absurd). Assume there exists a halting,
sound and complete algorithm that determines whether a set
of rules is a fes (resp. a bts, resp. a fus). Then we exhibit
the following halting, sound and complete algorithm for DE-
DUCTION.

Data: (F, R, Q) an instance of DEDUCTION
Result: YES iff F, R = @, NO otherwise.

1 if R' = allrules(F, R, Q) is a fes (resp. fus, resp. bts)
then

2 | return YES iff), R’ }= U, and NO otherwise;

3 else return NO;

This algorithm halts: the condition in line 1 is checked in
finite time (our hypothesis), and if this condition is fulfilled
then the semantic consequence (line 2) can also be checked
in finite time. This algorithm is also sound and complete:
line 2 returns the correct answer (lemma 1) and, assuming
the condition is not verified, line 3 also returns the correct
answer (from lemma 1 and contrapositive of lemma 2, we
have “if R’ is not a fes then F, R £~ Q7). O

Extending concrete classes

Since abstract classes are not recognizable, it is important
to have as large as possible concrete subclasses of these ab-
stract classes. In this section, we first review known concrete
cases. Then we introduce new concrete classes that general-
ize all known concrete bts classes based on individual crite-
ria.

Known concrete cases

Let us begin with the list of concrete classes based on indi-
vidual criteria (we mention after each case the abstract argu-
ment that was initially used to prove decidability).

o range restricted rules® (rr), which do not have existen-
tially quantified variables [fes]. They correspond to rules
in positive Datalog;

o disconnected rules (disc), whose frontier is empty
(BMO02) [fes]; note that the hypothesis and conclusion
may share constants (but not variables);

o guarded rules (g), such that an atom of the hypothe-
sis contains (“‘guards”) all variables of the hypothesis
(CGKO8) [bts];

e atomic hypothesis rules (ah), whose hypothesis is re-
stricted to a single atom (BLMSO09) [fus]. They are special
guarded rules, thus are also bts;

e domain-restricted rules (dr), in which each atom in the
conclusion contains all or none of the variables in the hy-
pothesis (BLMSO09) [fies] ; they include disc rules, which
are thus also fus.

Example 1

Ry =r(z,y) Ar(y,z) — r(z, z) is only rr

Ry =r(z,y) Ar(y, z) — r(u,v) is only disc (and dr since
disc C dr)

Ry =t(x,y,2) Nq(x) — t(y,z,u) is only g

Ry = t(z, . 2) — t(y, 2 u) A q(y) is only ah (and g)

Rs = r(z,y) Ar(y, z) — o(z,y, z,t) A r(t,u) is only dr
Rs = r(z,y) Ar(y,z) — r(z,u) does not belong to any of

the above classes.

Let us also mention the database inclusion dependencies
(ID) in which the hypothesis and conclusion are restricted to
a single atom. The original decidability proof for IDs was
complex (JK84). Since IDs are special ah, both bts and fus
argument yield simple new proofs. In (BLMSQ9) the case
of rules with a frontier of size one (frl) is mentioned (un-
published proof from Baget). In previous example, R is the
only fri-rule. Note that fr/-rules, g-rules and disc-rules are
incomparable classes. The three classes will be seen as sub-
classes of the more general class of frontier-guarded rules
introduced hereafter.

Let us now turn our attention to concrete classes defined
by global properties. The g-rule class is generalized by the

These rules have long been used in logic programming and de-
ductive databases. The name “range-restricted” is from (AHV9S5).
Other names found in databases are fu/l implicational dependencies
(CLMS8I1) and total tuple-generating dependencies (BV84).

470

class of weakly guarded rules (wg), in which only some vari-
ables of the hypothesis need to be guarded (CGKO08). Given
a set of rules R, a position ¢ in a predicate p (notation (4, p))
is said to be affected if it may contain a new variable gen-
erated by forward chaining, i.e.: (1) if there is a rule con-
clusion containing an atom with predicate p and an existen-
tially quantified variable at position 7, then position (¢, p) is
affected; (2) if a rule hypothesis contains a variable = ap-
pearing at an affected position (7, p) and x appears in the
conclusion of this rule in position (j,q) then (j,q) is af-
fected. Given R, a weak guard in a rule (H,C) € R is
an atom in H that contains all variables in H that occur only
in affected positions (i.e. do not occur in a non-affected po-
sition); these variables are said to be affected. R is said to
be weakly guarded if each rule in R has a weak guard. In
previous example, {R2}, {R5} and {Rg} are not weakly
guarded. wg are bts (CGKOS8). Special cases of wg-rules are
g-rules (a guard is a weak guard) and rr-rules (no position is
affected), both based on individual properties.

Two other concrete classes defined by global proper-
ties found in the literature are weakly acyclic rules (wa)
(FKMPO03)(DT03) and sets of rules with an acyclic graph
of rule dependencies (aGRD) (Bag04).

The first graph, introduced for TGD and called depen-
dency graph®, encodes variable sharing between positions in
predicates. The nodes represent the positions in predicates
(cf. the notation (p,i) introduced for wg rules). For each rule
R = (H, C) and each variable = in H occurring in position
(p,i): ifz € fr(R), there is an edge from (p, 7) to each po-
sition of z in C'; furthermore, for each existential variable y
in C (ie. y € var(C) \ fr(R)) occurring in position (g, 7),
there is a special edge from (p, i) to (g, 7). The set of rules
is weakly acyclic if this graph has no circuit passing through
a special edge.

The graph of rule dependencies encodes possible interac-
tions between rules: the nodes represent the rules and there
is an edge from R; to Ry iff an application of the rule Ry
may create a new application of the rule Ry (with this ab-
stract condition being effectively implemented by a unifi-
cation operation). aGRD is the case where this graph is
without circuit®.

New concrete cases

Definition 5 ((Weakly) Frontier-guarded rules) Given a
set of variables S, a rule is S-guarded if an atom of its
hypothesis contains (at least) all variables in S. A rule is
frontier-guarded (fg) if it is S-guarded with S being its fron-
tier. A set of rules is weakly frontier-guarded (wfg) if each
rule is S-guarded with S being the set of affected variables
in its frontier.

3We use here the terminology of (FKMP03), developed in
(FKMPOS).

“Unfortunately, the term “acyclic” is ambiguous when used on
directed graphs. In this paper, by acyclic we mean without any
undirected cycle (i.e. the underlying undirected graph is a forest).
We keep the expressions “acyclic GRD” and “weakly acyclic” that
come from other papers, but precise that they refer to circuits.

The class of frontier-guarded rules includes g-rules, fri-
rules and disc-rules. The class of weakly frontier-guarded
rules generalizes it as well as the class of weakly guarded
rules, which itself generalizes range-restricted rules. In par-
ticular, it covers all known decidable classes (to the best of
our knowledge) having the bounded treewidth set property
and based on individual criteria.

Example 2

Ry =r(z,y) NC(y) Ar(x,z) AD(z) = s(x,u) A E(u) is
not g but fr/ since the frontier is restricted to x, thus it is fg.
Rg = r(z,y) Ar(y, z) — s(x,u) A s(y,u) is not g nor frl
but it is fg.

Ry = r(z,2) A s(y,z) — s(y,u) A r(u,z) is not fg (the
frontier is {x, y}); taken as a singleton it is not wg either
(the affected variables in H are x and z), but it is wfg (since
r(x, z) guards x, which is the only variable both affected
and in the frontier).

In the first example, Rs, R3, R4, Rg are all fg; R5, which is
dr, is neither fg nor wfg.

V3-rules are well-suited to represent ontological knowl-
edge, especially the kind of axioms forming the core of re-
cent description logics tailored for efficient query answer-
ing. Typically, V3-rules allow to express inclusions be-
tween concepts built with conjunction (1) and full existen-
tial restriction (Ir.C'), as well as role inclusions, domain
and range restrictions, reflexivity and transitivity role prop-
erties... The first-order translation of these assertions yields
rules that, besides the fact that they have an “acyclic” hy-
pothesis and conclusion, are special cases of previous con-
crete classes. Disjointness axioms and functionality axioms
are other widely used ontological assertions. To represent
them, our framework has to be extended with negative con-
straints (which generalize disjointness axioms) and rules
with equality (which generalize functionality axioms). A
negative constraint can be seen as a forbidden fact (BM02)
or as a rule with a conclusion restricted to the special sym-
bol L (always false) (CGL09). An equality rule is of form
H — x = y, where x and y are in H. Note that, in these
recent DLs, as the both we cite below, disjointness and func-
tionality axioms can be processed as constraints applied to
the initial ABox (the initial set of facts) and do not inter-
fere with query answering. For instance, (CGL09) shows
that the major members of the DL-Lite family (CGLT07)
are covered by guarded rules (plus negative constraints and
specific equality rules). Another example of DL covered by
V3-rules is ELHji_’” (LTWQ09): it can be easily checked that
all inclusions in this DL are fr/-rules or ID, thus they are fg-
rules (with _L being processed by a negative constraint). E.g.
the rule R7 in example 2 translates the following ELH{" in-
clusion: 3r.C' 11 3r.D C ds.E. Finally, note that rules ex-
pressing transitivity are not fg, but rr, thus both wg and wfg.
The weakly frontier-guarded class thus seems particularly
appropriate for studying ontological fragments.

In the following, we prove that (weakly) frontier-guarded
rule sets are bounded treewidth sets. We introduce the no-
tion of a derivation graph. This graph is of interest in itself
because it allows us to explain properties of rules by struc-

471

tural properties of the facts they produce. We call frontier
atom in a rule R an atom in the hypothesis of R that con-
tains at least one frontier variable. Frontier atoms play an
important role in the next definitions.

Definition 6 (Derivation Graph) Letr D (F =

Fo, F1, ..., F, F') be a derivation sequence. The

Derivation Graph assigned to D is the directed graph Gp =

(X, E, newAtoms, label), where X is the set of nodes, E is

the set of edges, and new Atoms and label are functions re-

spectively labeling nodes and edges, such that:

o X ={Xp...X,},

e newAtoms assigns to each x; € X the set of atoms
created at step i, i.e. newAtoms(Xo) = F and for
1 <i < n,newAtoms(X;) = F; \ Fi_1. Furthermore,
we note terms(X;) = terms(newAtoms(X;)).

o there is an edge (X;,X;) in E if: let F;
a(Fj_1,R,0); there are a € newAtoms(X;) and b a
frontier atom in R with o(b) = a; label(X;, X;) = {e €
terms(X;)|3a € newAtoms(X;) s.t. e € terms(a), I
frontier atom in R with x € terms(b) N fr(R), o(b) =a
and o(z) = e}.

Roughly speaking, nodes and their labeling encode atoms
created at each derivation step; each edge (X, X;) ex-
presses that the homomorphism o from a rule hypothesis H
to [7;_1, that has led to F;, has mapped at least one frontier
atom in f to an atom (in F_1) created in Fj; the label of
(X, X;) indicates the terms in F; that are used to produce
the new atoms in F;. By definition, a derivation graph has
no circuit, but it is generally not acyclic (i.e. it is not a tree,
or a forest if not connected). Every application of a discon-
nected rule leads to a node initially isolated, thus the graph
may be not connected.

Property 1 (Decomposition properties) Ler (F,R) be a
KB such that no rule in R has a constant in its conclusion.
Then, for any R-derivation D from F = Fy to F,, = F',
G p satisfies the following properties, called the decomposi-
tion properties w.r.t. F':

1. |J; Xi = terms(F');

2. For each atom a in F’, there is X; € X sit. a €
newAtoms(X;);

3. Foreachtermein F', the subgraph of G p induced by the
nodes X; such that e € terms(X;) is connected.

4. For each X; € X, the size of terms(X;) is bounded
by an integer that depends only on the size the KB (here
max(|terms(F)|, [terms(C;)|r,er)-

Proof: The proof of conditions 1), 2) and 4) being imme-
diate, we focus here on condition 3). Every edge labeled e
links two nodes containing e. For each term e in F”, there
exists X, a node corresponding to F¢, the first derived graph
in which e appears (if e has been generated by a rule appli-
cation then X, identifies that rule application, otherwise e
belongs to F' and X, = Xj). Moreover, if X; contains a
term e then F, (the graph associated to X.) has been gener-
ated before F; in the derivation sequence. We can thus es-
tablish the following property: “for each node X; such that
e € terms(X;), there exists a path from X, to X; in which

all nodes contain e and all edge labels contain e”. This prop-
erty can be easily proven by a recurrence on the length of the
derivation from F, to Fj. O

Note that the third decomposition property is not true for
constants occurring in a rule conclusion. We will process
these constants in a special way together with the notion of
affected variable.

Property 1 expresses that D satisfies the properties of a
tree decomposition of I (seen as a graph) except that it is
not —yet— acyclic. We now introduce operations that allow
to build an acyclic graph from D¢ for some classes of rules,
while keeping these properties.

Definition 7 (Reduction operations on Derivation Graphs)

Redundant edge removal. Let (X;, Xi,) and (X, X},) be
two edges with the same endpoint. If a term e appears in
label(X;, Xy,) and label (X, X},), then e can be removed
Jfrom one of the label sets. If the label of an edge becomes
empty, then the edge is removed.

Edge contraction. Let (X;,X;) be an edge. If
terms(X;) C terms(X;) then X; and X, can be
merged into a node X such that newAtoms(X)
newAtoms(X;) U newAtoms(X;). This merging in-
volves the removal of (X;, X;) and, in all other edges
incidental to X; or X;, X; and X are replaced by X,
with multiedges being replaced by a single edge labeled
by the union of their labels.

Property 2 The above operations preserve the decomposi-
tion properties w.r.t. F'.

Proof: Conditions 1), 2) and 4) are trivially respected by
both operations. No atom (and thus no term) disappears in
the derivation graph, and no node receives any additional
atom (since the only merging of nodes happens when a set
is included in the other).

Condition 3) is satisfied by edge contraction, which does
not change the connectivity of the graph. Let us consider
redundant edge removal. For each node X that contains a
term e there exists a path from X, to X (see proof of prop.
1) in which all nodes and edges are labeled e. Moreover,
nodes incident to an edge labeled e also contain e, thus if a
node X}, has two parents X; and X, these two latter nodes
also contain e and then there is a second path from X, to
X}j. By removing one of these edges, it is impossible to
disconnect the set of nodes containing e. U

Theorem 4 Let R be a set of rules without constant in con-
clusion. If for all R-derivation D, G p can be reduced to an
acyclic graph then R is a bounded treewidth set.

O

Property 3 If all rules are range-restricted and without
constant in their conclusion, then any derivation graph with
these rules can be reduced to a single node by a sequence of
edge contractions.

Proof: Follows from Prop. 1 and 2.

Proof: 1f all rules are rr, all terms in generated atoms are
contained in the root of the derivation graph. We can thus
iteratively contract all edges of the derivation graph into the
root.

472

Property 4 If all rules are frontier-guarded and without
constant in their conclusion, then any derivation graph with
these rules can be reduced to an acyclic graph.

Proof: We show that if a node X of the derivation graph is
the destination of n > 2 distinct edges, then n — 1 of them
can be suppressed by redundant edge removal. We begin by
pointing out that, to be the destination of an edge, X must
have been obtained by applying some rule IR that contains
at least one frontier node (i.e. R is not disc). Moreover, by
definition of a derivation graph, these edges’ labels are nec-
essarily a subset of the terms that were images of the frontier
nodes of R. In frontier-guarded rules, the guard g of R (i.e.
the atom containing the frontier) generates an edge (X,, X)
in the derivation graph, where X, contains the image of g.
This edge is labeled by all terms of the frontier of R, and
thus any other edge whose destination is X is redundant with
(X4, X) and can be removed. O

Property S Frontier-guarded rules without constant in
their conclusion are bts.

Proof: Immediate consequence of prop. 4 and theorem 4. [

To cover rules that introduce constants, as well as weakly
frontier-guarded rules, we extend the notion of derivation
graph.

Definition 8 (Extended Derivation Graph) Given a set of
terms T and a derivation graph G p, the extension of Gp
with T, notation Gp[T), is obtained from G p with the fol-
lowing sequence of operations:

1. the mapping terms is modified: for each
terms(X;) = terms(newAtoms(X;)) U T (ie.
terms of T are added everywhere);

all terms occurring in T' are removed from the labels in
edges; if a label becomes empty, then the edge is removed;
3. for each connected component in Gp that does not in-

clude Xy, a node X; without incoming edge is chosen
and the edge (Xo, X;) is added with label T

Property 6 Gp[T] satisfies the decomposition properties,
with the bound on |terms(X;)| being increased by |T|; fur-
thermore Gp[T] does not contain new cycles w.r.t. Gp.

X,
the

2.

Proof: There is no suppression of atoms so the terms and
atoms of F” remain covered. We add at most |T'| terms to
each node thus the width (and consequently the treewidth)
of the derivation graph is at most increased by |T'|. Global
connectivity is ensured since 7" is added to all nodes of the
derivation graph. Since edges are added only to reconnect
disconnected components, no circuit is created. OJ

Theorem 4 and properties 3, 4, 5 can be extended to rules
with constants in their conclusion by considering the ex-
tended derivation graph with 7' being the set of constants
occurring in rule conclusions.

Property 7 Let R be a set of rules and let C' be the set of
constants occurring in the rule conclusions. If R is frontier-
guarded, then, for any R-derivation D, Gp[C| can be re-
duced to a tree. If R is weakly frontier-guarded, then, for
any R-derivation D, Gp[C Uterms(F)| can be reduced to
a tree.

Proof: The proof is similar to the proofs of properties 4 and
6. A key property is that a non-affected variable in a rule
hypothesis is never mapped to a new variable (i.e. not oc-
curring in the initial fact) by an application of this rule. [

Theorem S Weakly frontier-guarded rule sets are bts.

Figure 1 summarizes inclusions between decidable cases.
All inclusions are strict and no inclusion is omitted (i.e.
classes not related in the schema are indeed incomparable).
The examples provided before allow to check most cases
and it is easy to build other examples proving this claim.
We add below some examples showing the incomparability
of classes based on global criteria, namely wa, aGRD and

wfg.

S fus

I
e / disc \

Figure 1: Inclusions between decidable cases

Example 3

{q(x) = p(z,2), p(z,2) Ap(y,z) — r(z,y)} is wa and
aGRD but is not wfg because the frontier variables x and y
in the second rule are affected but not guarded

p(z,y) — ply, z) is wfg (because it is fr]) but it is not wa
neither aGRD (this rule depends on itself).

p(z,y) A q(y) — p(y, z) A s(z) is aGRD and wfg (because
it is frl) but it is not wa.

q(z) Ap(z,y) — q(y) Ar(y, z) is wa and wfg (because it is
frl) but it is not aGRD (this rule depends on itself).

Study of the union of decidable classes

Let us say that two decidable classes are incompatible if the
union of two sets respectively belonging to these classes may
be undecidable.

Universal compatibility of disconnected rules
We first prove that disconnected rules are compatible with
any decidable set of rules.

Theorem 6 Let R = Ro U Ruyisc be a set of rules, where
Raisc is a set of disconnected rules. If R is decidable, then
R also is.

473

Proof: The key property of a disconnected rule is that it
needs to be applied only once: any further application of
it is redundant. Assume we have an algorithm for DEDUC-
TION, say Ded, that decides in finite time if F, Ry E Q
for any F' and . We extend this algorithm to an algorithm
that decides in finite time if F, R }= @ for any F' and @, as
follows:

Data: (F, R = Ro U Rdisca Q)
Result: YES iff F, R | Q, NO otherwise.
F' — F,
repeat
forall Rp = (HD, CD) € Ryisc do
if Ded(F', Ry, Hp) then
F’ — F'"U{Cp} (with a safe substitution);
Remove Rp from R g;sc;

until stability of Raisc ;
return Ded(F', Ry, Q);

O

Incompatibility results

We say that two sets of rules R and R are equivalent w.r.t.
a vocabulary V if, for any fact F' built on V, the sets of facts
on V deducible respectively from knowledge bases (F, R1)
and (F,R2) are equals. Let us now consider two simple
transformations from a rule into an equivalent pair of rules:

e 7y rewrites arule R = (H, C') into two rules:
R, =H — R(z1...2,) and
R. = R(x1...xp) — C, where {z1...2,} = vars(H)
and R is a new predicate (i.e. not belonging to the vocab-
ulary) assigned to the rule. Note that 7, is both range-
restricted and domain restricted, and R, is atomic hypoth-
esis.

e 7 is similar to 71, except that the atom R(...) contains all
variables in the rule: R, = H — R(y1 ...yx) and
R(yr...yx) — C, where {y1 ...yr} = vars(R). Note
that, among other properties, R, is domain-restricted,
while R, is range-restricted.

Property 8 Any set of rules can be split into an equivalent
set of rules by Ty or To.

Proof: For 11, we prove that, given a set of rules R and
a fact F', both on a vocabulary V, there is an R-derivation
from F to a fact F iff there is a 71 (R)-derivation from F'
to a fact F” s.t. the restriction of F” to the vocabulary V
is isomorphic to F”. For each part of the equivalence, the
proof can be done by recurrence on the length of a deriva-
tion. In the = direction, it suffices to decompose each step
of the R-derivation according to 7. In the < direction, we
show that any 7(R)-derivation can be reordered so that the
rule applications corresponding to the application of a rule
in R are consecutive in the derivation. The reason is that
the atom R(...) added by a rule application according to a
given homomorphism keeps (at least) all information needed
to apply R according to this homomorphism and cannot be
used to apply another rule. For 79, the = direction holds.
The <« direction holds for a 75 (R)-derivation that is “com-

plete” w.r.t. the R(...) atoms, i.e. such that all rules appli-
cable w.r.t. a homomorphism to an R(...) atom have been
applied. Since any 72(R)-derivation can be completed in
a minimal way, we obtain the equivalence between R and
T2 (R) O

Theorem 7 Any instance of DEDUCTION can be reduced to
an instance of DEDUCTION with a set of rules restricted to
two rules, such that each rule belongs to a decidable class.

Proof: From Th.1, any instance of DEDUCTION can be en-
coded by an instance with a single rule, say R. By splitting
R with 71 or 72, we obtain the wanted pair of rules.]

If we furthermore consider the concrete classes of the
rules obtained by both transformations, we obtain the fol-
lowing result:

Theorem 8 DEDUCTION remains undecidable if R is com-
posed of

e q range-restricted rule and an atomic-hypothesis rule
e a range-restricted rule and a domain-restricted rule

o an atomic-hypothesis rule and a domain-restricted rule.

Since ah-rules are also g-rules, this implies that g-rules
are incompatible with rr-rules and dr-rules. The case of fr!
is more tricky. We did not find any transformation from gen-
eral rules into fr/ rules (and other rules belonging to compat-
ible decidable classes). To prove the incompatibility of fi/
and rr (Th. 9), we use a reduction from the halting problem
of a Turing Machine. This reduction transforms an instance
of the halting problem into an instance of DEDUCTION, in
which all rules are either fr/ or rr. The compatibility of fr/
and dr is an open question.

Theorem 9 DEDUCTION remains undecidable if R is com-
posed of frl-rules and rr-rules.

Proof: See Appendix. O

The following table synthesizes decidability results for
the union of decidable classes based on individual criteria;
ND means “not preserving decidability”.

T fes (wa)

id/ah fg ND

g fg ND g

fr1 fg ND fg fg

fg fg ND fg fg fg

dr dr ND | ND | ND | Open | ND
disc rr | id/ah | g frl fg

We can also conclude for concrete classes based on global
criteria, i.e. wg, wfg, wa and aGRD: all of them are in-
compatible, which includes the incompatibility of each class
with itself (indeed, the union of two sets satisfying a global
property does generally not satisfy this property; only one
added rule may lead to violate any of the above criteria).

Theorem 10 The union of two sets belonging to classes wg,
wfg, wa and aGRD does not preserve decidability.

Proof: See that the transformation 7, decomposes a rule into
two rules Ry, and R, s.t. { R} and {R.} are each wa, aGRD

474

and wg. Let I be any instance of DEDUCTION. [is trans-
formed into an instance containing a single rule by the re-
duction in the proof of Th. 1. Let I’ be the instance obtained
by applying 7 to this rule. The set of rules in I’ is the union
of two (singleton) sets both wa, aGRD and wg. Since I’ is
a positive instance iff [is, we have the result. 0

It follows from previous results that abstract classes are
incompatible:

Theorem 11 The union of two sets belonging to classes fes,
bts or fus does not preserve decidability.

Proof: Follows from Th. 8 (for all possible pairs except
fes/fes) and 10 (for the pair fes/fes). 0

To conclude, the rough union of two sets of rules belong-
ing to different decidable classes almost always leads to un-
decidability. The precise study of interactions between rules,
as done in (BLMS09), is thus a promising approach. DE-
DUCTION is decidable when the graph of rule dependencies
has no circuit (we have the aGRD class). Even more inter-
esting is the fact that when all connected components of this
graph are fes (resp. fus, resp. bts), then the set of rules is a
fes (resp. fus, resp. bts). By combining abstract classes we
are able to effectively combine concrete classes implement-
ing their behavior, and thus take all classes presented here
into account, as well as those we are not yet aware of. With
additional conditions on this graph, it is possible to com-
bine a bts and a fus into a new decidable class (that strictly
contains both bts and fiss) using a mixed forward/backward
chaining algorithm. This shows that using abstract classes is
a powerful method for building generic decidability results.

Perspectives

We have pointed out the interest of precisely studying inter-
actions between rules to enlarge decidable cases. Two tech-
niques for encoding these interactions can be found in the
literature and have been mentioned previously: one relies on
the graph of rule dependencies and the other on a graph of
position dependencies. Both graphs encode different kinds
of interactions between rules. We are currently investigating
a method combining these two techniques with the aim of
gaining greater insight into interactions between rules.

Other future work includes precise studies of DEDUCTION
complexity for all concrete decidable cases (pursuing the re-
sults in (BMO02) and (CGKO0S)).

In the section devoted to new concrete cases, we pointed
out that frontier-guarded rules, and their generalization to
weakly frontier-guarded rules, along with negative con-
straints and equality rules, allow to encode interesting on-
tological fragments, including some recent DLs tailored
for query answering. A general framework dedicated to
conjunctive query answering with ontologies is proposed
in (CGL09). This Datalog-based framework is called
Datalog®: on one hand, this framework extends Datalog
(i.e. range-restricted rules) with TGDs (i.e. V3-rules), equal-
ity generating dependencies (EGDs, i.e. equality rules) and
negative constraints, on the other hand it restricts TGDs and
EGDs to achieve decidability and tractability. Our decidable
classes can be seen as new members of this family, which

generalize the members studied in (CGL09). Note however
that the complexity of query answering (i.e. DEDUCTION)
with these new classes of rules remains to be studied.

Acknowledgements
We thank Georg Gottlob for useful references.

References

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

J.-F. Baget. Représenter des connaissances et raisonner avec des
hypergraphes: de la projection a la dérivation sous contraintes.
PhD thesis, Université Montpellier II, Nov. 2001.

J.-F. Baget. Improving the forward chaining algorithm for concep-
tual graphs rules. In KR, pages 407-414. AAAI Press, 2004.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook. Cam-
bridge University Press, 2003.

J.-F. Baget, M. Leclere, M.-L. Mugnier, and E. Salvat. DL-SR: a
lite DL with expressive rules: Preliminary results. In Description
Logics, 2008.

J.-F. Baget, M. Leclere, M.-L. Mugnier, and E. Salvat. Extending
decidable cases for rules with existential variables. In IJCAI, pages
677-682, 20009.

J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Con-
straints. JAIR, 16:425-465, 2002.

C. Beeri and M.Y. Vardi. A proof procedure for data dependencies.
Journal of the ACM, 31(4):718-741, 1984.

A. Cali, G. Gottlob, and M. Kifer. Taming the infinite chase: Query
answering under expressive relational constraints. In KR, pages
70-80, 2008.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering in
description logics: The DL-Lite family. J. Autom. Reasoning,
39(3):385-429, 2007.

A. Cali, G. Gottlob, and T. Lukasiewicz. A general datalog-
based framework for tractable query answering over ontologies. In
PODS, pages 77-86, 2009.

A. Cali and M. Kifer. Containment of conjunctive object meta-
queries. In VLDB, pages 942-952, 2006.

A. K. Chandra, H. R. Lewis, and J. A. Makowsky. Embedded im-
plicational dependencies and their inference problem. In STOC,
pages 342-354. ACM, 1981.

B. Courcelle. The monadic second-order logic of graphs. i. recog-
nizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990.

A. Deutsch and V. Tannen. Reformulation of xml queries and con-
straints. In /CDT, pages 225-241, 2003.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
Semantics and query answering. In /CDT, pages 207-224, 2003.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci., 336(1):89—
124, 2005.

P. Hayes, editor. RDF Semantics. W3C Recommendation. W3C,
2004.

D.S. Johnson and A.C. Klug. Testing containment of conjunc-
tive queries under functional and inclusion dependencies. JCSS,
28(1):167-189, 1984.

475

C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering
in the description logic el using a relational database system. In
IJCAI, pages 2070-2075, 2009.

E. Salvat and M.-L. Mugnier. Sound and Complete Forward and
Backward Chainings of Graph Rules. In ICCS’96, LNAI 1115,
pages 248-262. Springer, 1996.

J. F. Sowa. Conceptual Structures: Information Processing in Mind
and Machine. Addison-Wesley, 1984.

R. Thomas. The tree-width compactness theorem for hypergraphs.
http://people.math.gatech.edu/ thomas/PAP/twcpt.pdf, 1988.

Appendix

Proof of Th. 9: DEDUCTION remains undecidable if R is
composed of frl-rules and rr-rules.
Proof: We consider the halting problem of a Turing ma-
chine: given a Turing machine M (with an infinite tape and
a single final state) and a word m, s.t. the head of M ini-
tially points to the first symbol of m, does M accept m, i.e.
is there a sequence of transitions leading M to the final state
? We build a reduction from this problem to DEDUCTION,
such that each rule obtained is frl or rr. Let us call config-
uration a global state of the Turing machine, i.e. its current
control state, the content of the tape and the position of the
head. The basic idea of the translation is that each transition
is translated into a logical rule. However, whereas transi-
tions can be seen as rewriting rules, logical rules are only
able to add atoms. To simulate the rewriting of a configu-
ration, we add a library of eight rules, called hereafter the
copy rules. The rule assigned to a transition creates three
new cells (a copy of the current cell, that contains the new
symbol, and neighboring cells with the new position of the
head), and the copy rules build the other relevant cells at the
right and at the left of these new cells.

Let (M, m) be an instance of the halting problem. We
build an instance (F, R, Q) of DEDUCTION as follows.

The vocabulary is composed of:

e binary predicates: Succ to encode the succession of cells
(Suce(z,y) means that the cell x is followed by the
cell y); Value to indicate the content of a given cell
(Value(x,y) means that the cell = contains the symbol
y); Head to indicate the current position of the head and
the current control state (Head(x, y) means that the head
points to cell z and the current state is y); Next to en-
code the rewriting of a cell (Next(z,y) means that cell
x is rewritten as cell y); Copy, (resp. Copy;) to rebuild
the right (resp. the left) part of the word after a transition:
Copy,(x,y) and Copy,;(z,y) both mean that cell y is a
copy of cell x in the next configuration;

e constants: each state 7; and each symbol v; are translated
into constants with the same name. Furthermore, there are
three special constants, noted [] (the value of an empty
cell), B (for Begin) and E (for End).

Let m = my...my and let T be the initial state. F' is
obtained from this initial configuration. m is translated into
a path of atoms with predicate Succ (a “Succ-path”) on
variables 7 ... x, as well as atoms with predicate Value
that relate each x; with the symbol m;; for the needs of the
copy mechanism, we actually translate the following word:
“Om;y...my O, and add special markers B and E at the
extremities of this word. More precisely:

F = {Suce(B, o),

Suce(zo, 1), . .. Suce(xg, Tpy1),

Suce(xpi1, E),
Value(zg,0), Value(xg1,0),
Value(z1,mq),...Value(xy, my),
Head(z1,T0)}-

Note that there are no atoms Value(B,...) and
Value(E,...).

476

Let 0 = (Tj,vp) — (Tj,vq,d) be a transition, with d €
{r,1} indicating a move to the right (r) or to the left (I): ¢
can be read as “if the current state is 7; and the head points
to the symbol v, then take state 7}, replace v, by v, and
move to the right/left”. Let R(J) be the logical rule assigned
to 4. If d = r, we have:

R(0) = Head(z,T;) A Value(z,v,) — Next(z,y) A
Suce(z,y) A Suce(y, t) ANValue(y, vg) AHead(t, T;). This
rule is fr1. The case d = [is symmetrical: the head moves
to the left.

To implement the copy mechanism, we have four rules to
copy the right part of the word, and four symmetrical rules
to copy its left part. Here are the four “right-copy” rules:
R Suce(x,y) N Next(x,z) N Succe(z,u) A
Value(y,v) — Copy,(y,u) A Value(u,v)

R.o = Copy,(x,y) — Succ(y, z)

Ry3 Suce(z,y) N Copy,(x,z) N Suce(z,u) A
Value(y,v) — Copy,(y,u) A Value(u,v)

R,y Suce(z, E) N Copy,(z,y) N Succ(y, z)
Value(z,0) A Succe(z, E).

R,o is frl and the other rules are rr (with R,4 begin also
frl). In the “left-copy” rules, say Ry ... R4, Copy, is used
in an obvious way instead of Copy,., with B replacing E. R
contains these eight copy rules and one rule R(d) per tran-
sition d. Finally,) encodes the fact that the head is in the
final state: Q = {Head(z,Ty)}, where T} is the final state.

The proof relies on the following equivalence: there
is a derivation of F' that contains a “Succ-path” from B
to E encoding a word O*m/0*, with Head(x,T) and
Value(x,m)), where x is a variable at a “position” k (with
0 being the position of the variable containing the beginning
of m’) iff there is a sequence of transitions of M from the
initial configuration to a configuration with m’ on the tape,
the head pointing to a cell containing m/ at a position & (with
0 being the position of the cell containing the beginning of
m’) and with control state T'. The = direction of this equiv-
alence is proven by induction on the length of a derivation
sequence. The <« direction is proven by induction on the
number of transition applications.

—

O

