
Similarity Measures in Hierarchical Behaviours from a Structural Point of View ∗

Gonzalo Florez-Puga and Belen Diaz-Agudo and Pedro Gonzalez-Calero
Dep. de Ingenieria del Software e Inteligencia Artificial

Universidad Complutense de Madrid
28040, Madrid, Spain

Abstract

Case-Based Reasoning (CBR) systems dealing with complex
object-based case representation structures need to employ
complex structured-based similarity measures. However, ob-
taining such similarity requires to solve problems on graphs
are known to be NP-complete. In this paper, we show that, in
spite of its theoretical complexity, structured-based similarity
is of practical use and can be incorporated into the CBR tool-
box. We analyze, in terms of quality and efficiency, three
different methods for assessing similarity between graphs,
which we apply in the domain of behaviour generation for a
soccer simulation environment (SoccerBots). Our implemen-
tation of such methods has been incorporated into jCOLIBRI,
a general framework for CBR development, and ready to be
tested on other applications.

Introduction
Although simple similarity measures through feature vec-
tors is the most common approach to assess similarity in
Case-Based Reasoning Systems, more complex case rep-
resentations requiring more sophisticated similarity mech-
anisms have been investigated (see (Cunningham 2009) for
a taxonomical review).

In particular we are interested in similarity measures for
cases represented as graphs. A case representation lan-
guage based on graphs is more expressive than one based
on feature vectors, but, unfortunately, the problem of assess-
ing similarity between two graphs is essentially intractable
when using methods taking the graph structure into account.
The methods for assessing similarity between two graphs
are based on finding a subgraph isomorphism, which is an
NP-complete problem (Garey and Johnson 1979), or com-
puting some measure of the graph edit distance between the
two graphs which is also NP-complete (Bunke and Messmer
1994).

The question that we try to answer in this work is whether
we can find, for a particular application, any meaningful dif-
ference in terms of quality or execution time of the results
between three methods used for graph-based similarity mea-
sures. To estimate the quality of the similarity, we compare
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with a high level description produced by an expert, in the
domain of behaviour generation for a soccer simulation en-
vironment (SoccerBots).

The rest of the paper runs as follows. The next section
briefly describes the methods for structured-based similarity
between graphs. Section 3 describes the experiment and its
results, while last Section presents the conclusions of the
experiments.

Similarity Measures
We have proposed an approach to the similarity problem
in graphs, and more specifically in finite state machines
(Flórez-Puga, Dı́az-Agudo, and González-Calero 2008) that
is based in both the structure of the graph and the labeling in
the nodes and edges. The labels associated to the nodes are
used to express the functionality of the behaviours contained
in them.

The next subsections deal with three different approaches
to assess this similarity measure.

Edit Distance Based Similarity
This approach is based on the calculation of the edit dis-
tance between two graphs (Bunke and Messmer 1994). The
distance is obtained as the sum of the operations needed to
transform one graph into the other. The set of edit opera-
tions we are using is: adding a node (A), deleting a node (D)
and editing the label of a node (E), and adding an edge (A’),
deleting an edge (D’) and editing an edge(E’)).

Each operation has an associated cost (CA, CD, CE , etc.).
Using different sets of cost values will lead us to different
results. In our approach, we are considering the costs of
edit operations, not as constants, but as functions defined
over the source and target nodes or edges. This way, we can
express the intuitive idea that changing one label for another
is cheaper in cost if the labels are more similar.

The edit distance (dist) is the minimum cost among all
sequences of edit operations that transform the source graph
into the target graph. The distance can be converted into a
similarity measure by defining a function that uses the dis-
tance, like:

sim(G1, G2) = [1 + dist(G1, G2)]
−1

We also impose the following restrictions on the possible
values of the cost functions, so the results of the distance
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11: Advanced Goalkeeper
(0.2, 2, 3, 5)

10: Center
(0, 1, 5, 4)

Ball is in my third 
part of field

Not Ball is in my 
third part of field

Ball is in enemy's
third part of field

5: Forward
(0, 1, 4, 5)

1: Goalkeeper
(1, 5, 3, 0)

1: Goalkeeper
(1, 5, 3, 0)

Cover Goal
(0.75, 3, 3, 0)

Ball In My Field

In Goal Area and
Ball In My Field

Not In Goal Area and
Not Ball In My Field

Ball In Goal Area

In Goal Area and
Not Ball In My Field

6: Go To Goal
(0.5, 1.5, 3, 0)

7: Kick Ball
(0.2, 4, 4, 1)

2: Blocker
(0.2, 4, 5, 3)

Goal difference >  1

Goal difference < 1

8: Block
(0, 2, 5, 4)

9: Defender
(0, 4, 5, 4)

3: Center Forward
(0, 2, 3.5, 4)

Goal difference >  -2

Goal Difference < -2

10: Center
(0, 1, 5, 4)

5: Forward
(0, 1, 4, 5)

4: Guard
(0, 3, 5, 3)

Losing

Not Losing

9: Defender
(0, 4, 5, 4)

5: Forward
(0, 1, 4, 5)

5: Forward
(0, 1, 4, 5)

Cover Goal
(0.75, 3, 3, 0)

Lead Ball To Goal
(0, 0, 5, 4)

Closer to ball 
than to goal

Closer to goal
than to ball

6: Go To Goal
(0.5, 1.5, 3, 0)

Walk Towards Goal
(0.5, 1, 4, 0)

Wait
(0.1, 1, 0, 0)

Close To Goal

Far From Goal

7: Kick Ball
(0.2, 4, 4, 1)

Walk Towards Ball
(0, 2.5, 5, 2.5)

Kick
(0.5, 2, 0, 2)

Can Kick

Can't Kick

8: Block
(0, 2, 5, 4)

Block goalkeeper
(0, 2, 3, 4)

Lead ball to goal
(0, 0, 5, 4)

Goal difference <  -2

Goal difference > -2

9: Defender
(0, 4, 5, 4)

Block forward
(0.5, 4, 3, 0)

Lead ball to goal
(0, 0, 5, 4)

Closer to ball

Not closer to ball

10: Center
(0, 1, 5, 4)

Go To Center
(0, 1, 3, 0)

Lead Ball To Goal
(0, 0, 5, 4)

Closer To Ball

Not Closer To Ball

Figure 1: Graphs used in the experiment

function are reasonable:

1. CE ≤ CA + CD and CE′ ≤ CA′ + CD′

This means that editing the label of a node is cheaper than
an addition and a deletion of the same node with different
labels.

2. CA = CD and sim(X, Y ) = sim(Y, X)
These two restrictions give symmetry to our distance mea-
sure.

Correspondence Based Similarity
This approach is based in the definition of a correspondence
between the nodes of the query and the case graphs. It is
based in the similarity measure proposed by (Champin and
Solnon 2003).

Each graph G is defined by a triplet 〈V, rV , rE〉 where
V is the finite set of nodes, rV is a relation that associates
vertices with labels, and rE is a relation that associates pairs
of vertices (i.e. edges) with labels. rV and rE is called the
set of features of the graph. A correspondence C between

G1 and G2 is a subset of V1 × V2, that associates, to each
vertex of one graph, 0, 1 or more vertices of the other.

Given a correspondence C between G1 and G2, the sim-
ilarity is defined in terms of the intersection of the sets of
features (rV and rE) of both graphs with respect to C.

We add a value β to each tuple in the intersection. This
value represents the similarity between the labels of the
nodes or edges:

descr (G1) ∩C descr (G2) =

{(v, v′, β) | (v, v′) ∈ C ∧ (v, l) ∈ rV 1 ∧ (v′, l′) ∈ rV 2∧
β = sim (l, l′)}∪

{((vi, vj), (v′i, v
′
j), β

) | (vi, v
′
i) ∈ C ∧ (

vj , v
′
j

) ∈ C∧
(vi, vj , l) ∈ rE1∧

(
v′i, v

′
j , l
′) ∈ rE2∧

β = sim (l, l′)}
simC (G1, G2) =

f (descr (G1) ∩C descr (G2)) − g(splits(C))
F
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Where splits(C) is the set of vertices from V1∪V2 which
are associated to two or more vertices by the correspondence
C.

The similarity degree of two graphs G1 and G2 is the
maximum similarity of G1 and G2 over all the possible cor-
respondences:

sim (G1, G2) = max
C

{simC (G1, G2)}
The similarity value β is used by the function f to ob-

tain the final similarity value, and the constant F is an upper
bound of f that maintains the result in the interval [0, 1].

To simplify this approach, we can consider only the nodes
and edges whose β is greater than a certain threshold.

Weighted Similarity
The third approach is also based in defining the possible cor-
respondences between the graphs being compared, and is
based on the one proposed by (Wang and Ishii 1997).

This method doesn’t use the intersection, but an algebraic
formula to obtain the final similarity measure. As in the pre-
vious approach, the similarity degree of two graphs G1 and
G2 is the maximum similarity of G1 and G2 over all the
possible correspondences.

The similarity of G1 and G2 over the correspondence C
is

simC (G1, G2) =
Fn + Fe

Mn + Me

Fn =
∑
n∈V1

W (n) + W (C (n))
2

· sim (n, C (n))

Fe =
∑
e∈E1

W (e) + W (C (e))
2

· sim (e, C (e))

Mn + Me = max

{∑
n∈V1

W (n),
∑
n∈V1

W (C (n))

}

+ max

{∑
e∈E1

W (e),
∑
e∈E1

W (C (e))

}

where W is the weight of a node or an edge. The weight is
a value between 0 and 1 that indicates the importance of a
node or an edge in the final similarity result.

Experimental Results
For this experiment we are using Hierarchical Finite State
Machines (HFSMs) that represent behaviours for the Soc-
cerbots simulation environment. HFSMs are an extension
to traditional Finite State Machines. In a HFSM there are
two kind of nodes: atomic nodes, that contain actions that
can be executed, and composite nodes, that contain a sub-
ordinate HFSM. This hierarchical organization can help to
reduce the overall complexity of the state machine, favoring
its legibility.

Figure 1 shows the testing set TS of HFSMs used for the
experiment. The bold-typed ones are composite behaviours
that reference another HFSM. The ones in plain type are
atomic behaviours that cannot be further decomposed.

Each behaviour, wether it is atomic or composite, has a
set of attributes used to describe them. The attributes we are
using for Soccerbots are:
• Goalkeeper: proficiency as goalkeeper. Can take real val-

ues in the interval [0, 1].
• Defender: proficiency as defender. Its valid interval is

[0, 5].
• Mobility: ability to move around the playing field. Can

take real values between [0, 5].
• Attacker: proficiency as attacker. Its valid interval is

[0, 5].
• Description: a natural language description of the be-

haviour. It’s value can be any string.
All the behaviours in TS have been classified by an ex-

pert using this set of attributes. Their values are shown in
Figure 1, under the name of each behaviour. For the sake of
clarity we have omitted the attribute names and the textual
description.

Experimental Similarity Measures
As we have seen, to completely specify a graph similar-
ity function we need two more similarity functions, one for
nodes and another one for edges.

To measure the edge similarity we use a function based
on the Levenshtein distance on the edge labels (Levenshtein
1966).

To obtain node similarity we used two different functions:
• Attribute based similarity: the similarity is given by the

average of the similarity of each attribute of the behaviour
in the node, including the textual description:

simATTR(n1, n2) = simAS(n1.attrSet, n2.attrSet)
simAS(attrSet1, attrSet2) =

=
∑

attr∈
attrSet1∩attrSet2

(
simattr(n1.attr, n2.attr)

max{|attrSet1| , |attrSet2|}
)

simattr(a1, a2) =
|a1 − a2|

L

where n.attrSet is the set of attributes associated to the
behaviour in node n and L is the size of the interval of
valid values for each attribute.

• Structural similarity: since the graphs we are comparing
correspond to HFSMs, if the node is composite it can con-
tain a subordinate HFSM. If this is the case for both of the
nodes, we can use a graph similarity measure to compare
the subordinate HFSMs:

sim(n1, n2) =

=

⎧⎪⎨
⎪⎩

• n1 is composite ∧ n2 is composite:
simSTR(n1.subgraph, n2.subgraph)

• otherwise:
simATTR(n1, n2)

Where n.subgraph is the graph corresponding to the sub-
ordinate behaviour of a composite node and simSTR is
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any of the structure based similarity measures in section :
Edit Distance Similarity, Correspondence Based Similar-
ity or Weighted Similarity.

Another variation axis is the use of flattened HFSMs. The
process of flattening a HFSM consists in transforming it in
another state machine that has the same functionality, and in
which all the nodes are atomic. We can use the following
algorithm to flatten a HFSM:

for each composite node n in HFSM
set G’ to the sub-behaviour
contained in n
for each edge e that enters n
change the destination of e to
the first node of G’cx

end for
for each edge e that leaves n
for each node n’ in G’
create a copy of e and change
its origin to n’

end for
remove e

end for
end for
remove n
add G’ to HFSM

The similarity value is obtained flattening the state ma-
chines before applying any of the similarity functions. In
particular, for our experiment, we flattened the state ma-
chines down to the last but one hierarchy level.

In summary, we are using 10 different similarity mea-
sures, that we will name as follows:

1. ATTR: Attribute based similarity.

2. EDA: Edit distance with attribute based similarity for
sub-behaviours.

3. CSA: Correspondence based similarity with attribute
based similarity for sub-behaviours.

4. WSA: Weighted similarity with attributes based similarity
for sub-behaviours.

5. EDS: Edit distance using structural similarity for
sub-behaviours.

6. CSS: Correspondence based similarity using structural
similarity for sub-behaviours.

7. WSS: Weighted similarity using structural similarity for
sub-behaviours.

8. EDF: Edit distance using structural similarity for
sub-behaviours. The HFSMs are flattened prior to simi-
larity assessing.

9. CSF: Correspondence based similarity using structural
similarity for sub-behaviours. The HFSMs are flattened
prior to similarity assessing.

10. WSF: Weighted similarity using structural similarity for
sub-behaviours. The HFSMs are flattened prior to simi-
larity assessing.
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Figure 2: Similarity results

For the correspondence based similarity measures (CSA,
CSF and CSS) the functions f and g we used were:

f(I) =
∑

for each node n in I

(fN (n)) +
∑

for each edge e in I

(fE(e))

fN ((v, v′, β)) = β

fE(((vi, vj), (v′i, v
′
j), β)) = β

g(S) = |S|
F = max {|rV 1| , |rV 2|} + max {|rE1| , |rE2|}
For the weighted measures (WSA, WSF and WSS) we are

supposing that the weights for nodes and edges are 1.

Procedure and results
For each similarity measure, sim, and each HFSM, Q, from
the test set (TS), our experiment consisted in measuring its
similarity to the remaining individuals in the set. There-
fore, for each similarity measure and HFSM, we got a list,
L(sim,Q), with the rest of HFSMs, sorted by its similarity to
Q.

To compare the results of the different measures, we com-
pared each L(sim,Q) with a list obtained applying experts
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Figure 3: Times measured for the execution of each query

knowledge. In this case, we used the ATTR similarity func-
tion with the expert parameters, L(ATTR,Q).

Both lists being compared are permutations of the set
SS = TS \Q and, thus, they are equal on size. To compare
them, we used the following similarity measure:

simL(l1, l2) =

∑
e∈SS

(1 − dist(e, l1, l2))

|SS|

dist(e, l1, l2) =
|posl1(e) − posl2(e)|

|SS|
Where posl(e) is the position of element e in the list l.
Figure 2 shows the similarity results obtained for each

measure using each graph of TS as query.

Conclusions and Future Work
Regarding quality of the results, we have found no mean-
ingful difference between the three methods. As Figure 2
shows, the three methods provide highly similar results
along all the examples in the corpus.

Regarding efficiency, on the other hand, we can conclude
that for this particular domain, the WSS method consistently
outperform the other two, as can be seen in Figure 3. Never-
theless, further experimentation should be done in order to

characterize the properties of the soccerbots domain that are
responsible for these results.

All three methods follow the general algorithm shown in
Listing 1, differing in the assignment of the initial list of
correspondences (in line 2) and the similarity function used
to obtain the similarity of two graphs given a correspondence
(line 7). Edit distance similarity and weighted similarity use
one-to-one correspondences, that is, each node in the first
graph is mapped to one node in the second (in the event that
one graph has more nodes than the other, the extra nodes
will be mapped to ∅). The correspondence based method
uses a many-to-many correspondence in which each node is
mapped to zero, one or more nodes of the other graph. In the
case of weighted similarity, we also made test using many-
to-many correspondences, which gave similar times to the
ones obtained for the correspondence based methods.

The reason for this is that the similarity function is
evaluated once per correspondence in the correspondence
list LC. Given two graphs, G1 and G2, in the case of
one-to-one correspondences it means that it is evaluated
max{|NG1 |, |NG2 |}!, being NGi

the set of nodes of graph
Gi. On the other hand, for many-to-many correspondences,
the similarity function is evaluated 2|NG1 |·|NG2 | times.

This also explains the peaks found for the goalkeeper and
the advanced goalkeeper behaviours. Both behaviours have
3 nodes each. In the worst case, when they are being com-
pared one against the other, the number of correspondences
is 3! for one-to-one correspondences and 29 for many-to-
many. If we flatten the graphs, this difference is even greater.
The flattened Goalkeeper behaviour has 5 nodes and the Ad-
vanced Goalkeeper, when flattened, has 9. For the one-to-
one correspondences, we have 9! = 362880 different cases,
and for many-to-many correspondences the number grows
to 25·9 = 35.18 · 1012

For the typical cases we are dealing with, with graphs
sizes between two and six nodes, the one-to-one correspon-
dence leads to better results in the number of evaluations of
similarity function.

In any case, heuristic methods can be found to prune the
search space, so we can deal with bigger graphs. These
methods depend on the graph, node and edge similarity
functions and demand further research.

Although in this paper we have focused in similarity, our
work is also related to reuse as more similar cases are more
easily adaptable and more applicable in the query situation.
As future work we will consider if there are dependencies
between how useful and reusable were the structurally sim-
ilar cases. An advantage that the approach discussed in the
paper is that it already takes into account some amount of
the effort needed to transform one case to another.
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