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Abstract

In this paper, we introduce a new class of local consis-
tencies, called �

f -consistencies, for qualitative constraint
networks. Each consistency of this class is based on
weak composition (�) and a mapping f that provides a
covering for each relation of the considered qualitative
calculus. We study the connections existing between
some properties of the introduced mappings and the rel-
ative inference strength of �

f -consistencies. The consis-
tency obtained by the usual closure under weak compo-
sition corresponds to the weakest element of the class,
whereas �

f -consistencies stronger than weak composi-
tion open new promising perspectives. Interestingly, the
class of �

f -consistencies is shown to form a complete lat-
tice where the partial order denotes the relative strength
of every two consistencies. We also propose a generic
algorithm that allows us to compute the closure of qual-
itative constraint networks under any “well-behaved”
consistency of the class. The experimentation that we
have conducted on qualitative constraint networks from
the Interval Algebra shows the interest of these new lo-
cal consistencies, in particular for the consistency prob-
lem.

Introduction
Qualitative Spatial-Temporal Reasoning (QSTR) is an area
of computer science dealing with qualitative information
about configurations of spatial/temporal entities. A calcu-
lus in QSTR introduces particular elements for representing
the entities and a finite set of base relations on these ele-
ments. Each base relation is an abstraction of concrete met-
ric information about the relative position of entities. For
applications in domains such as e.g. geographic informa-
tion systems and natural language understanding, a qualita-
tive description may reveal to be far more appropriate than a
metric description, in particular when precise information is
not necessary or simply not available. In the past twenty
years, numerous QSTR formalisms have been proposed
and studied; see e.g. (Vilain, Kautz, and van Beek 1990;
Randell, Cui, and Cohn 1992; Renz 1999; Pujari, Kumari,
and Sattar 1999; Renz and Nebel 2007).

In QSTR, Qualitative Constraint Networks (QCNs) are
typically used to express information on spatial/temporal sit-
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uations. A constraint represents a set of acceptable qualita-
tive configurations between some variables (entities), and is
then defined by a set of base relations. Given a QCN, the
main problem is to determine whether the information con-
tained in the QCN is consistent. In the general case, this
problem is NP-hard. However, because the worst-case only
arises within a limited range of situations, many studies have
been led to develop efficient practical approaches to solve
this problem.

One such approach is backtrack search combined with a
constraint propagation mechanism based on tractable sub-
classes of relations and the closure of QCNs under weak
composition, which is an operation denoted by � and related
to path consistency (Mackworth 1977). More precisely, at
each step of search, a constraint is split into relations be-
longing to a tractable class and closure under weak com-
position is an inference method applied to filter the search
space (i.e. to reduce its size) by removing some inconsis-
tent base relations. This effective approach, initiated by
Nebel, has been adopted by most of the qualitative constraint
solvers (Condotta, Saade, and Ligozat 2006; Gantner, West-
phal, and Wolfl 2008), and in particular by GQR*, which is
currently the fastest solver. This solver also uses constraint
ordering heuristics based on dynamic weighting (Bousse-
mart et al. 2004) and the concept of eligible constraints
(Condotta, Ligozat, and Saade 2007). On the other hand,
some recent approaches (Pham, Thornton, and Sattar 2006;
Westphal and Wölfl 2009; Li, Huang, and Renz 2009) trans-
late the consistency problem of QCNs into CSP (Constraint
Satisfaction Problem) or SAT (propositional satisfiability)
instances. Published results indicate that these approaches
are promising.

Closure under weak composition is at the heart of the var-
ious approaches that directly handle qualitative constraint
networks. It was the first inference method used to address
the consistency problem of the temporal QCNs in the well-
known Interval Algebra (Allen 1981). Weak composition is
currently recognized as an operation that offers a good bal-
ance between the execution overhead and the filtering bene-
fit. Besides, it has been shown to be a complete approach for
most of the identified tractable classes. Nevertheless, for the
hardest QCNs it may be worthwhile to consider operations
stronger than �, i.e. stronger forms of local consistency.

In this paper, we propose a new class of local consisten-

319

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)



cies adapted to qualitative calculi. Each of them is defined
from � and a mapping f that associates with every relation
r of a qualitative calculus a set of sub-relations of r form-
ing a covering of r. Intuitively, a QCN is �f -consistent if

and only if after substituting any sub-relation defined by f
for the relation associated with a constraint of the QCN, the
obtained QCN is closed under �. We prove that � corre-
sponds to the weakest consistency of the class whereas a lo-
cal consistency similar to SAC, Singleton Arc Consistency
(Debruyne and Bessiere 1997) introduced for CSP, is the
strongest one. Other consistencies of the class are situated
between these two bounds since the class forms a complete
lattice. We also characterize an important subset of the class
of �f -consistencies that contains consistencies under which

closure of QCNs exists, and we propose a general-purpose
algorithm to enforce any of them. A preliminary experimen-
tation carried out using the Interval Algebra shows promis-
ing results.

The paper is organized as follows. After some prelimi-
naries, we introduce the class of �f -consistencies and study

the closure of QCNs under such consistencies. Next, we de-
scribe a general algorithm to enforce any �f -consistency, and

report some preliminary results. Finally, we conclude and
give some perspectives of this work.

Preliminaries

A qualitative calculus is defined from a finite set B of base
relations on a domain D. Without any loss of generality,
we will only consider binary relations. The elements of D

represent temporal or spatial entities, and the elements of B

represent all possible configurations between two entities.
B is a set that satisfies the following properties (Ligozat
and Renz 2004): B forms a partition of D × D, B con-
tains the identity relation Id, and B is closed under the con-
verse operation (−1). A (complex) relation is the union of
some base relations, but it is customary to represent a re-
lation as the set of base relations contained in it. Hence,
the set 2B will represent the set of relations of the qualita-
tive calculus. The set 2B is equipped with the weak com-
position operation, denoted by � and defined by: ∀a, b ∈
B, a � b = {c ∈ B : ∃x, y, z ∈ D | x a z ∧ z b y ∧ x c y};
∀r, s ∈ 2B, r � s =

⋃
a∈r,b∈s{a � b}. Note that r � s is the

smallest relation of 2B including the usual relational compo-
sition r ◦ s = {(x, y) ∈ D × D : ∃z ∈ D | x r z ∧ z s y}.
In some qualitative algebras (e.g. the Interval Algebra intro-
duced below), r ◦ s and r � s are identical.

A well known temporal qualitative formalism is the In-
terval Algebra, also called Allen’s calculus (Allen 1981).
The domain Dint of this calculus is the set {(x−, x+) ∈
Q × Q : x− < x+} since temporal entities are intervals
of the rational line. The set Bint of this calculus is the
set {eq, p, pi, m, mi, o, oi, s, si, d, di, f, fi} of thirteen bi-
nary relations representing all orderings of the four end-
points of two intervals; see Figure 1. For example, m =
{((x−, x+), (y−, y+)) ∈ Dint × Dint : x+ = y−}.

A Qualitative Constraint Network (QCN) is a pair com-
posed of a set of variables and a set of constraints. Each
variable represents a spatial/temporal entity of the system
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Figure 1: Base relations of the Interval Algebra.

that is modelled. Each constraint represents a set of accept-
able qualitative configurations between two variables and is
defined by a relation. Formally, a QCN is defined as follows:

Definition 1 A QCN is a pair N = (V, C) where:

• V = {v1, . . . , vn} is a finite set of n variables;

• C is a mapping that associates a relation C(vi, vj) ∈ 2B,
also denoted by Cij or N [i, j], with each pair (vi, vj) of

V × V . C is such that Cii ⊆ {Id} and Cij = C−1
ji .

A partial solution of N on V ′ ⊆ V is a mapping σ de-
fined from V ′ to D such that for every pair (vi, vj) of vari-
ables in V ′, (σ(vi), σ(vj)) satisfies Cij , i.e. there exists a
base relation b ∈ Cij such that (σ(vi), σ(vj)) ∈ b. A solu-
tion of N is a partial solution of N on V . N is consistent iff
it admits a solution. Two QCNs are equivalent iff they admit
the same set of solutions. A subQCN N ′ of N , denoted by
N ′ ⊆ N , is a QCN (V, C′) such that C′ij ⊆ Cij , for every

pair (vi, vj) of variables. An atomic QCN is a QCN such
that each constraint is defined by a base relation. A scenario
S of N is an atomic consistent subQCN of N . A base re-
lation b for Cij is inconsistent iff there does not exist any
scenario S of N such that S[i, j] = {b}.

A QCN N = (V, C) is said to be �-consistent or closed
under weak composition if and only if Cij ⊆ Cik � Ckj

∀vi, vj , vk ∈ V . The closure under weak composition of
N , denoted by �(N ), is the greatest (w.r.t. ⊆) �-consistent
subQCN of N ; �(N ) is equivalent to N . This (sub)QCN

can be obtained by iterating the triangulation operation:

Cij ← Cij ∩ (Cik � Ckj), ∀vi, vj , vk ∈ V

until a fixed point is reached. This method can be imple-
mented by an algorithm running in O(n3) time. Weak com-
position admits the following properties:

• �(N ) ⊆ N (� is contracting),

• �(�(N )) = �(N ) (� is idempotent),

• N ⊆ N ′ ⇒ �(N ) ⊆ �(N ′) (� is monotonic).

N[i,j]/r , with vi, vj ∈ V and r ∈ 2B, is the QCN (V, C′)

defined by C′ij = r, C′ji = r−1 and C′kl = Ckl ∀(vk, vl) ∈
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V × V \ {(vi, vj), (vj , vi)}. The union of two QCNs N =
(V, C) and N ′ = (V, C′) is the QCN N ∪ N ′ = (V, C′′)
such that ∀(vi, vj) ∈ V , C′′ij = Cij ∪ C′ij .

The Class of �

f -consistencies

In this section, we introduce (for qualitative constraint
networks) a general class of local consistencies, called
�
f -consistencies, where f is a mapping that associates a set

of relations of 2B with each relation of 2B. Such a mapping
aims at cutting each constraint into pieces from which some
inferences can be made. Intuitively, a QCN is said to be
�
f -consistent iff for any constraint Cij of the QCN, after sub-

stituting any element r′ of f(r) for the relation r associated
with Cij and computing the closure under weak composi-
tion, the relation r′ associated with Cij is let unchanged.
Before proposing a formal definition of �f -consistencies, we

introduce a set F that exactly contains the mappings f con-
sidered hereafter. More precisely, F is the set of map-

pings f defined from 2B to 22B

associating a set of relations

f(r) ∈ 22B

with each relation r ∈ 2B such that:
⋃

f(r) = r, and ∅ �∈ f(r) if r �= ∅.

Note that f(r) is a covering of r and f({b}) = {{b}}, ∀b ∈
B. Moreover, we have f(∅) = {∅}, which will be always
implicitly assumed whenever we introduce a mapping later.

Definition 2 Let f be an element of F .

• A constraint Cij of a QCN N is �f -consistent iff for every

s ∈ f(N [i, j]), �(N[i,j]/s)[i, j] = s.

• A QCN N is �f -consistent iff every constraint of N is �f -
consistent.

We obtain a new class (or family) of local consistencies
since each mapping f ∈ F determines a new consistency
denoted by �f . The class (set) of all �f -consistencies that can

be built from elements of F is denoted by �F . The following
result shows the practical interest of the new class of con-
sistencies: when a QCN is not �f -consistent, some base re-

lations said to be �f -inconsistent can be identified and safely

removed.

Proposition 1 Let f be an element of F , N = (V, C)
be a QCN, (vi, vj) be a pair of variables of N and s ∈
f(N [i, j]). Any base relation b in s \ �(N[i,j]/s)[i, j] is in-
consistent for Cij .

Proof. Let S be a scenario of N and b′ be the base
relation in S[i, j]. Either we have b′ /∈ s or b′ ∈ s. If
b′ /∈ s, necessarily b′ �= b. On the other hand, if b′ ∈ s
then b′ ∈ �(N[i,j]/s)[i, j] because � preserves scenarios. By

hypothesis, b /∈ �(N[i,j]/s)[i, j], which proves that b′ �= b.
We conclude that vi b vj cannot be true in any scenario. �

The following mappings will be useful to illustrate our
purpose. ∀r ∈ 2B \ {∅}:

• fB associates the set fB(r) = {{b} : b ∈ r} with r.

• f �= associates the set f �=(r) = {r \ {b} : b ∈ r} with r iff
|r| > 1; f �=(r) = {r} otherwise.

• f� associates the set f�(r) = {r} with r.

For example, if r = {p, m, o}, then fB(r) =
{{p}, {m}, {o}} and f �=(r) = {{p, m}, {p, o}, {m, o}}.
Moreover, given a partition P = {r1, . . . , rk} of B, the map-
ping fP is defined as follows: for every relation r ∈ 2B,
f(r) = {r ∩ ri : i ∈ {1, . . . , k}} \ {∅}. Note that �fB

and

partition-based consistencies �fP
can be respectively related

to SAC (Debruyne and Bessiere 1997) and Partition-k-AC
(Bennaceur and Affane 2001), introduced for CSP, but �f�=

(as well as many other �f -consistencies) have no CSP coun-
terpart.

We will consider later the following (representative) par-
titions of Bint:

• P1 = {{p, m, o, fi, s, d}, {pi, mi, oi, f, si, di, eq}}

• P2 = {{p, m, o}, {fi, s, d}, {pi, mi, oi}, {f, si, di, eq}}

• P3 = {{p}, {m, o}, {fi}, {s, d}, {pi}, {mi, oi}, {f, eq},
{si, di}}

In order to compare the inference capability of different
consistencies, we need to introduce a preorder. Let φ and
ψ be two consistencies in �F , φ is stronger than ψ, denoted
by φ � ψ, iff whenever φ holds on a QCN N (i.e. N is φ-
consistent), ψ also holds on N ; φ is strictly stronger than ψ,
denoted by φ � ψ, iff φ is stronger than ψ and there exists at
least one QCN N such that ψ holds on N but not φ. Finally,
φ and ψ are equivalent, denoted by φ ≈ ψ, iff both φ � ψ
and ψ � φ.

First, we can show that a QCN N is �f�
-consistent if, and

only if, N is closed under weak composition.

Proposition 2 The consistency �f�
is equivalent to �.

Proof. N is �-consistent ⇔ �(N ) = N ⇔ for every pair
(vi, vj) of variables of N , �(N )[i, j] = N [i, j] ⇔ for every
pair (vi, vj) of variables of N and for every s ∈ f�(N [i, j]),
�(N[i,j]/s)[i, j] = s (because f�(r) = {r} for each relation

r ∈ 2B) ⇔ N is �f�
-consistent �

The finer the covering of relations by an element f of F
is, the stronger the consistency �f is. In particular, to relate
�
f -consistencies, we have the following result:

Proposition 3 Let f, f ′ be two elements of F . If for every
r ∈ 2B and for every s′ ∈ f ′(r), there exists a set of rela-
tions S ⊆ f(r) such that s′ =

⋃
S, then �f � �

f ′ .

Proof. We suppose that we have a QCN N that is
�
f -consistent. Let vi, vj be two variables of N , r = N [i, j]

and s′ be an element of f ′(r). By hypothesis, there
exists a set of relations S ⊆ f(r) such that s′ =

⋃
S.

For every relation s ∈ S we have s ⊆ s′, and be-
cause N[i,j]/s ⊆ N[i,j]/s′ and � is monotonic, we have

�(N[i,j]/s)[i, j] ⊆ �(N[i,j]/s′ )[i, j]. We can deduce that⋃
{�(N[i,j]/s)[i, j] : s ∈ S} ⊆ �(N[i,j]/s′ )[i, j]. Since N is

�
f -consistent (by hypothesis), for every relation s ∈ S, we

have �(N[i,j]/s)[i, j] = s. Hence,
⋃

S ⊆ �(N[i,j]/s′ )[i, j],
and as s′ =

⋃
S, we obtain s′ ⊆ �(N[i,j]/s′ )[i, j]. On the

other hand, we also know that �(N[i,j]/s′)[i, j] ⊆ s′ because
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� is contracting. We can conclude that s′ = �(N[i,j]/s′ )[i, j]
and consequently that N is �f ′ -consistent. �

For example, for the Interval Algebra, we have �fB
� �

fP3

� �
fP2

� �
fP1

� �
f�

. The following corollary stipulates that �fB

is the strongest consistency (of �F ) and �f�
is the weakest one.

Corollary 1 For every element f ∈ F , �fB
� �

f � �
f�

.
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Figure 2: N3 ⊂ N2 ⊂ N1.

From this result, we can deduce in particular that �fB
� �

f�=

� �
f�

. Now, let us consider the three QCNs of the Interval

Algebra depicted in Figure 2. On each of these graphs, a
variable is represented by a node, and a constraint by an arc
labelled with the associated relation; note that, for simplic-
ity, there is no arc going from vi to vj when either there is
already an arc going from vj to vi or i = j. We can check
that:

• N1 is �f�
-consistent but not �f�=

-consistent because di /∈

�(N1[0,1]/{di,m})[0, 1],

• N2 is �
f�=

-consistent but not �
fB

-consistent because

�(N2[1,3]/{fi})[1, 3] = ∅,

• N3 is �fB
-consistent.

From Corollary 1 and QCNs N1 and N2, we deduce that
(for the Interval Algebra) �fB

� �f�=
� �f�

(note the strict order).

The equivalence classes of ≈ form a partition of �F ; the set
of all equivalence classes is denoted by �F |

≈. Note that �F |
≈

is a finite set since the set B of base relations is considered
to be finite. The relation �≈ defined on �F |

≈ by ∀[φ], [ψ] ∈
�
F |
≈, [φ] �≈ [ψ] iff φ � ψ where φ and ψ are any represen-

tatives (elements) in [φ] and [ψ], is a partial order. We have
the following result:

Proposition 4 (�F |
≈, �≈) is a complete lattice with [�fB

] as

greatest element and [�f�
] as least element.

Proof.
(Existence of binary joins) Let �f1

and �f2
be two elements of

�
F , and let us define f as ∀r ∈ 2B, f(r) = f1(r) ∪ f2(r).
First, we can observe that f ∈ F by construction. From
Proposition 3, we deduce that �f � �

f1
and �

f � �
f2

. Now,

let us consider a mapping f ′ ∈ F such that �f ′ � �
f1

and
�
f ′ � �

f2
. By definition, any �

f ′-consistent QCN N is �f1
-

consistent and �f2
-consistent. Hence, for every pair (vi, vj)

of variables of N , s ∈ f1(N [i, j]) ⇒ �(N[i,j]/s)[i, j] = s
and s ∈ f2(N [i, j]) ⇒ �(N[i,j]/s)[i, j] = s. So, for every

s ∈ f1(N [i, j]) ∪ f2(N [i, j]), �(N[i,j]/s)[i, j] = s. We

deduce that N is �f -consistent, and �f ′ � �
f . Then, [�f ] is the

least upper bound of [�f1
] and [�f2

].
(Existence of binary meets) Let �f1

and �f2
be two elements

of �F , and let us define the set E as E = {f ′ ∈ F : �
f1

� �
f ′ ∧ �

f2
� �

f ′}. Note that E �= ∅ since f� ∈ E. Next,

let us define f as ∀r ∈ 2B, f(r) =
⋃
{f ′(r) : f ′ ∈ E}.

From this definition and Proposition 3, we deduce that �f
� �

f ′ for every f ′ ∈ E. We now prove by contradiction

that �f1
� �

f and �f2
� �

f . Let us suppose that �f1
� �

f does

not hold. This means that there exists a �
f1

-consistent

QCN N that is not �f -consistent. Hence, there exist two

variables vi, vj of N such that �(N[i,j]/s)[i, j] �= s with

s ∈ f(N [i, j]). From construction of f , we know that there
exists a mapping f ′ ∈ E such that s ∈ f ′(N [i, j]). Hence,
N is not �f ′ -consistent. On the other hand, as f ′ ∈ E we

have �f1
� �

f ′ , and N �
f ′ -consistent since N is �f1

-consistent.

This is a contradiction (because N is both �f ′-consistent and

not �f ′ -consistent) so �
f1

� �
f does hold. Similarly, we can

show that �f2
� �

f . Then, [�f ] is the greatest lower bound of

[�f1
] and [�f2

]. �

To conclude this section, let us prove the following result
for atomic QCNs.

Proposition 5 Let f be an element of F , and N be an
atomic QCN. If N is consistent then N is �f -consistent.

Proof. For any element f of F and any base relation b, we
know that f({b}) = {{b}}. It means that all consistencies
in �F are equivalent when restricted to atomic QCNs. As �f�

is equivalent to � (see Proposition 2) and as it is known that
an atomic consistent QCN is necessarily closed under weak
composition (i.e. �-consistent), we deduce that an atomic
consistent QCN is necessarily �f -consistent, whatever f is. �

Closure of QCNs under �

f -consistencies

A consistency φ is well-behaved iff for any QCN N , there
exists a (unique) largest φ-consistent QCN N ′ smaller than
or equal to N (w.r.t. ⊆). N ′ is called the φ-closure ofN , and
denoted by φ(N ). In this section, we are concerned with the
closure of QCNs under �f -consistencies. Are �f -consistencies
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well-behaved? In other words, given a QCN N and a con-
sistency �

f in �
F , does the �f -closure of N exist? We first

show that this is not always the case with an example taken
from the Interval Algebra. We consider f ∈ F such that
f({p, eq, m}) = {{p, eq, m}, {eq}} and f(r) = {r} for
every relation r ∈ 2Bint \ {{p, eq, m}}. Figure 3 shows three
distinct QCNs. The first QCNN4 is not �f -consistent because

�(N4[0,3]/{eq})[0, 3] = ∅. Now let us turn to the two distinct
QCNs N5 and N6: both QCNs are �f -consistent and (strictly)

smaller than N4. Observing that there does not exist any �f -

consistent QCN strictly greater than N5 and N6 and smaller
than N4, we have just proved that �f is not well-behaved.

v0 v1
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v3

{p, pi}

{p, eq,m} {p, eq, d}

{p, eq, d}

{p, eq}

{p, eq}

(a) N4

v0 v1

v2

v3

{p, pi}

{p, eq} {p, eq, d}

{p, eq, d}

{p, eq}

{p, eq}

(b) N5

v0 v1

v2

v3

{p, pi}

{p,m} {p, eq, d}

{p, eq, d}

{p, eq}

{p, eq}

(c) N6

Figure 3: N4 = N5 ∪ N6.

Nevertheless, there exist some mappings f for which the
consistencies �f are guaranteed to be well-behaved. This is

the case for the elements of the set F∗ introduced below.
Roughly speaking, for every relation r, f(r) cannot be finer
than the set of f(r′) with r′ contained in r.

Definition 3 F∗ is the set of mappings f in F such that for
every r, r′ ∈ 2B with r′ ⊂ r and for every s ∈ f(r), we have
s ∩ r′ �= ∅ ⇒ ∃S ⊆ f(r′) such that s ∩ r′ =

⋃
S.

For example, all mappings mentioned in our previous il-
lustrations belong to F∗, except the last one that has been
introduced above to prove that some �f -consistencies are not

well-behaved. We first show the following result.

Proposition 6 Let f be a mapping of F∗. If N1 and N2 are
two �f -consistent QCNs defined on the same set of variables,

then N = N1 ∪N2 is a �f -consistent QCN.

Proof. Let vi, vj be two variables of N (and consequently
of N1 and N2), r = N [i, j] and s ∈ f(r). We have to
show that �(N[i,j]/s)[i, j] = s. Let r1 = N1[i, j], r2 =

N2[i, j] and let s1 and s2 be the two relations defined as
s1 = s ∩ r1 and s2 = s ∩ r2. As s ∈ f(r), we have
s ⊆ r and as N = N1 ∪ N2, we have r = r1 ∪ r2. We can
deduce that s = s1 ∪ s2, and also that N1[i,j]/s1

⊆ N[i,j]/s

and N2[i,j]/s2
⊆ N[i,j]/s. Because � is monotonic, we have

�(N1[i,j]/s1
) ⊆ �(N[i,j]/s) and �(N2[i,j]/s2

) ⊆ �(N[i,j]/s).
On the other hand, as f ∈ F∗ there exist S1 ⊆ f(r1)

and S2 ⊆ f(r2) such that
⋃

S1 = s1 and
⋃

S2 = s2 (if
we assume that s1 �= ∅ and s2 �= ∅). From N1 and N2

being �f -consistent, we deduce that �(N1[i,j]/s′
1
)[i, j] = s′1,

∀s′1 ∈ S1 and �(N2[i,j]/s′
2
)[i, j] = s′2, ∀s′2 ∈ S2. More-

over, because � is monotonic, we have �(N1[i,j]/s′
1
)[i, j] ⊆

�(N1[i,j]/s1
)[i, j], ∀s′1 ∈ S1 and �(N2[i,j]/s′

2
)[i, j] ⊆

�(N2[i,j]/s2
)[i, j], ∀s′2 ∈ S2. From this, we obtain s′1 ⊆

�(N1[i,j]/s1
)[i, j], ∀s′1 ∈ S1 and s′2 ⊆ �(N2[i,j]/s2

)[i, j],
∀s′2 ∈ S2. Consequently, s1 ⊆ �(N1[i,j]/s1

)[i, j] and

s2 ⊆ �(N2[i,j]/s2
)[i, j]. As � is contracting, we also have

�(N1[i,j]/s1
)[i, j] ⊆ s1 and �(N2[i,j]/s2

)[i, j] ⊆ s2. Finally,

�(N1[i,j]/s1
)[i, j] = s1 and �(N2[i,j]/s2

)[i, j] = s2.

From what precedes, we obtain s1 ⊆ �(N[i,j]/s)[i, j] and

s2 ⊆ �(N[i,j]/s)[i, j]. So, s = s1 ∪ s2 ⊆ �(N[i,j]/s)[i, j].
The same result can be obtained when s1 = ∅ or s2 = ∅.
Moreover, we also know that �(N[i,j]/s)[i, j] ⊆ s because �
is contracting. We can conclude that �(N[i,j]/s)[i, j] = s,
and consequently that N is �f -consistent. �

From the previous result, we can show that for ev-
ery QCN N and every f in F∗, the QCN

⋃
{N ′ :

N ′ ⊆ N and N ′ is �f -consistent} is the largest �f -consistent

subQCN of N , i.e. the �f -closure of N .

Corollary 2 If �f is a consistency in �
F∗ , then �

f is well-

behaved.

Observing that f �= and fB do belong to F∗, we can show
that the QCNs from Figure 2 are such that �f�=

(N1) = N2

and �fB
(N2) = N3.

Importantly, every consistency in �F∗ preserves the set of
scenarios. This is not very surprising since Proposition 1
already indicates that identified base �f -inconsistent relations

can be safely discarded.

Proposition 7 Let f be an element of F∗. For every QCN

N , �f (N ) is equivalent to N .

Proof. Suppose that there exist two variables (vi, vj) of
N and a base relation b ∈ B such that b ∈ N [i, j], b /∈
�
f (N )[i, j] and a scenario S of N with S[i, j] = {b}. From

Proposition 5, we know that S is �f -consistent, and from

S being a scenario of N , we know that S ⊆ N . Hence,
by closure definition, we have S ⊆ �

f (N ). This leads to a

contradiction since S[i, j] = {b} and b /∈ �
f (N )[i, j]. �

Generic Algorithm

In this section, we present a basic �f -algorithm, that is to say

an algorithm that allows us to compute the �f -closure �f (N )
of any given QCN N . Such a closure is guaranteed to exist
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Function df-revise(Cij): Boolean

in/out : Cij , a constraint of the QCN N
output : true iff the revision of Cij is effective

r ← ∅1

foreach relation s ∈ f(Cij) do2

N ′ ← �(N[i,j]/s) // �
f-check on s3

r ← r ∪ (s \ N ′[i, j]) // �
f-inconsistent4

base relations are collected

if r �= ∅ then5

r′ ← N[i,j] \ r6

N ← N[i,j]/r′ // Cij becomes r′7

return true8

else9

return false10

since f is assumed to belong to F∗; see Corollary 2. We
introduce a constraint-oriented propagation scheme for en-
forcing the consistency �f . The constraint-oriented propaga-

tion scheme is characterized by revision of constraints that
are successively picked from a dedicated set Q called the
queue of the propagation.

The revision of a constraint Cij removes from Cij some
base relations that are �f -inconsistent (if any). A revision

is said to be effective if it removes at least one base rela-
tion. This is the role of function df-revise. For each ele-
ment s of f(Cij), a �f -check on s is performed, that is to

say, N ′ = �(N[i,j]/s) is computed (line 3), which enables
the identification of �f -inconsistent base relations, those in

s \ N ′[i, j] (line 4). The variable r collects �f -inconsistent

base relations from Cij , and if r is not empty, Cij is updated
(line 7) and true is returned.

The main function, called df-closure, performs one or
several turns (passes) of the main loop. At each pass, all
constraints are revised in turn: constraints are iteratively se-
lected from Q (line 8) and df-revise is called to perform re-
visions (line 9). When an inference is performed (i.e. a re-
vision is effective), the Boolean variable modified is set to
true, which determines that a next pass is necessary. The al-
gorithm stops when no inference is performed during a pass,
or when an inconsistency is detected (lines 3 and 12). Note
that when a QCN N is trivially inconsistent because there
exists an empty constraint in N , we note N = ⊥. Ini-
tially (line 1), and after each effective revision (line 10), �
(closure under weak composition) is applied on N . This
is sound because we know that for any f ∈ F∗, �f (N ) ⊆
�
f�

(N ) = �(N ). When initializing Q (line 6), a constraint

Cji with i < j is ignored because it can be deducted from
Cij by means of the inverse operation. Also, a constraint
Cij such that |f(Cij)| = 1 is ignored because it is necessar-
ily �f -consistent (recall that closure under weak composition

is maintained during search).

We can prove that the algorithm df-closure is correct, i.e.
enforce �f . Indeed, the algorithm is sound because every

base relation removed in df-revise is �f -inconsistent. On the

Function df-closure(N ,f): Boolean

in/out : N = (V, C), a QCN

in : f , an element of F∗

output : true iff �f (N ) �= ⊥

N ← �(N ) // � enforced1

if N = ⊥ then2

return false3

repeat4

modified ← false5

Q ← {Cij ∈ C | i < j ∧ |f(Cij)| > 1}6

while Q �= ∅ do7

select and remove a constraint Cij from Q8

if df-revise(Cij) then9

N ← �(N ) // � maintained10

if N = ⊥ then11

return false12

modified ← true13

until ¬modified14

return true15

other hand, the algorithm is complete because, as soon as
an inference is performed, a new pass is run (and all con-
straints are revised). However, it is important to note that
the function df-revise removes at least one �f -inconsistent

base relation from a given �f -inconsistent constraint. Conse-

quently, this guarantess completeness although the function
df-revise does not systematically render the given constraint
�
f -consistent.

The worst-case time complexity of the function df-revise
is O(sλ) where s is the greatest size (cardinality) of sets
in {f(r) : r ∈ 2B} and λ the worst-case time complexity
of enforcing �, i.e. O(n3) for binary relations. Indeed, at
most s

�
f -checks are performed. At each pass of the func-

tion df-closure, the number of calls to df-revise is O(n2),
so the worst-case time complexity of one pass of df-closure
is O(sλn2). Although the number of passes is bounded by
O(|B|n2) (only one base relation removed at each pass), we
think that it is a small number in practice (this will be con-
firmed in our experimentations). Besides, we believe that the
basic algoritm presented here can be refined so as to make it
incremental (similarly to what is done for SAC (Bessiere et
al. 2010)).

Experiments

In our experimentation, we have focused on qualitative con-
straint networks from the Interval Algebra, randomly gener-
ated following Model A (Nebel 1996). This model involves
the generation of QCNs according to three parameters: n the
number of variables, d the density and s the average num-
ber of base relations in each constraint. First, a graph with
n nodes is built; the average degree of nodes is d. Then,
every edge of the graph is labelled with a relation of s base
relations (on average), randomly generated according to a
binomial distribution. Finally, the graph is transformed into
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Figure 4: Experimental results for series A(75, d, 6.5).
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a QCN: each node becomes a variable, and each edge be-
comes a constraint whose associated relation is given by the
label of the edge. When there is no edge between two nodes
in the graph, a universal constraint (i.e. a constraint whose
associated relation is the total relation) is also introduced in
the QCN. The set (or series) of QCNs that can be generated
from n, d and s is denoted by A(n, d, s). The experimen-
tal results presented in this section concern QCN instances
from series A(75, d, 6.5) and A(100, d, 6.5) for d varying
from 2 to 24 with a step of 0.25. For these series, the hard-
est instances are located in a region where the density ranges
from 8 to 11: this is where a phase transition occurs between
an under-constrained region where all instances are (almost
surely) consistent and an over-constrained region where all
networks are inconsistent. For each series, we generated 100
instances.

The main objective of our experimental study is to com-
pare both the filtering strength and the time efficiency of
some �f -algorithms (those based on consistencies introduced

in previous sections). The first criterion used for our com-
parisons is the number of QCNs detected as inconsistent,
within the phase transition. This informs us about the rela-
tive filtering strength1 of different consistencies. Note that
the exact number of inconsistent QCNs will be computed
using a complete solving method: this represents the ideal
filtering capability for a consistency. This method, called
solver afterwards, is the solver proposed in (Nebel 1996).
Basically, it performs search by successively reducing each
constraint relation to a tractable one (using a splitting of
the initial relations) and maintaining the QCN closed un-
der weak composition. In our context, we used the tractable
sets of the Ord-Horn relations as split elements, and sought
the best control parameters of solver to solve our instances.
The second criterion used for our comparisons is the CPU
time (given in seconds) taken by �f -algorithms (and solver).

When enforcing �f -consistencies, we may decide to ignore

universal constraints so as to limit the computation effort of
the algorithms. This means that when there is a constraint
between two variables vi, vj such that Cij = B then no
check on Cij is performed by means of f . Pragmatically,
for every mapping f , we can introduce a related so-called
reduced mapping f− defined as: f−(r) = f(r) if r �= B,
and f−(r) = {B} otherwise. Intuitively, we may expect to
save time whereas limiting the loss of inferences due to the
universal nature of these constraints.

Figures 4(a) and 5(a) show the filtering capabilities
of various �

f -consistencies on series A(75, d, 6.5) and

A(100, d, 6.5), respectively. Setting the value 6.5 to s per-
mits us to compare our experimental results with similar
works; e.g. see (Westphal and Wölfl 2009). A first obser-
vation is that consistencies based on reduced mappings are
quite close to unreduced ones. For n = 75 variables, this
was so striking that we decided (for clarity reasons) to not
plot the curves corresponding to reduced mappings (except

1We could also assess the filtering strength of a given local con-
sistency φ in terms of the number of base relations deleted when
applying φ, but this information is closely related to our first crite-
rion.

for f−
B

). For n = 100 variables, a small difference is visi-
ble. This means that for a a given mapping f , the mapping
f− allows us to detect almost the same number of incon-
sistent QCNs. However, we conjecture that this is less and
less true when n increases. A second observation is that
�
fB

(theoretically shown to be the strongest local consistency

in �
F ) is very effective as it almost detects all inconsistent

QCNs (as identified by solver) from series A(75, d, 6.5),
and a lot of them from series A(100, d, 6.5). Other consis-
tencies stronger than � =�f�

are, in order, P3, P2, P1 and �f�=
.

Interestingly, there is even so a significant gap between �f�=

and �, which motivates us to further study each of these new
consistencies. Finally, note that the number of passes exe-
cuted by the function df-closure is very limited (around 3.5
on average).

Figures 4(b) and 5(b) show the CPU time taken by the �f -

algorithms on the same series. Note the use of a log scale
on the y-axis in order to better distinguish between the be-
haviour of all algorithms. For n = 75 variables, the use
of the strongest consistencies such as �fB

, �fP3

and �
fP2

in-

volve a large overhead with respect to solver, but when re-
duced mappings are used the �f algorithms are far faster. For

n = 100 variables, solver becomes clearly slower than all
other algorithms, but recall that solver performs a complete
search whereas �f -algorithms are incomplete since they can

only perform some inferences. However, it is fair to com-
pare solver and �f -algorithms on instances shown to be in-

consistent by both approaches. This is the case for most of
the instances of series A(100, d, 6.5) with d around 11.75 or
higher; see Figure 5(a). For such instances, algorithms such
as �fP1

and �f�=
(and their reduced variants) are about two or-

ders of magnitude faster than solver. Finally, �f�
= � is

clearly the fastest algorithm as it is usually enforced within
0.1s (we did not plot its CPU curves because this flattens
the figures) but remember that it is far weaker than other in-
troduced �f -consistencies as shown in Figures 4(a) and 5(a).

Besides, �
P−

1

and �
f−
�=

are also cheap to enforce.

To summarize, our (preliminary) experimentation shows
how promising �

f -consistencies may be, and in particular

those based on reduced mappings that offer a good compro-
mise between time overhead and filtering capability. Main-
taining such consistencies during search is a perspective that
we envision using a fast solver like GQR*.

Conclusion

In this paper, we have introduced the class of �f -consistencies

for qualitative constraint networks. This class forms a com-
plete lattice and contains original local consistencies (even
when considering their CSP counterparts) such as �f�=

, all be-

ing stronger than weak composition. Looking for the �
f -

consistency that is the most appropriate to solve hard in-
stances (from different qualitative algebras) is a pragmatic
perspective of this work. On the other hand, we may imag-
ine additional new classes built from coverings where � is
substituted by another local consistency. Studying the con-
nections between all these consistencies and the problems of
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(global) consistency and minimality of QCNs is an exciting
theoretical perspective.
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