
An Efficient Majority-Rule-Based Approach for
Collective Decision Making with CP-Nets

Minyi Li
Swinburne Univ. of Technology

myli@swin.edu.au

Quoc Bao Vo
Swinburne Univ. of Technology

BVo@swin.edu.au

Ryszard Kowalczyk
Swinburne Univ. of Technology

RKowalczyk@swin.edu.au

Abstract

This paper addresses the problem of collective decision
making in the case where the agents’ preferences are
represented by CP-nets (Conditional Preference Net-
works). Most existing works either do not consider the
computational issues, or depend on a strong assumption
that all the agents share a common preferential inde-
pendence structure. To this end, this paper proposes an
efficient approach, called CDMCP (Collective Decision
Making with CP-nets), for aggregating multiple agents’
preferences according to majority rule. The proposed
approach allows the agents to have different preferen-
tial independence structures and is computationally ef-
ficient.

Introduction

In many real world scenarios, we need to represent and rea-
son about the simultaneous preferences of several agents,
and to aggregate such preferences (Rossi, Venable, and
Walsh 2004). Classical decision theory considers typically
agents as having preferences over the outcome space, and
the preferences are usually mathematically represented by
utility functions. However, in many situations, the utility-
based preference elicitation is not user-friendly (Boutilier et
al. 2004). In this paper, we investigate the theory of CP-nets
as a formal model for representing and reasoning with the
agents’ preferences. It specifies individual preference rela-
tions in a relatively compact, intuitive, and structured man-
ner (Boutilier et al. 2004). Most existing works on CP-nets
focus on individual preference reasoning, including outcome
optimization and comparison (Boutilier et al. 1999; 2004).
However, many real world scenarios require aggregating
multiple agents’ preferences. Rossi et al. (Rossi, Venable,
and Walsh 2004) propose various voting semantics for ag-
gregating multiple agents’ CP-nets. However, they do not
address computational issues. Given the fact that answer-
ing dominance query1 for an arbitrary CP-net is PSPACE-
complete (Goldsmith et al. 2008). Outcome optimization
with multiple agents furthermore requires searching the en-
tire outcome space, and making dominance queries to each
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1A dominance query, given a pair of outcomes, asks whether
one outcome dominates another.

agent on each pair of outcomes. This problem is likely not
a member of NP or coNP, but even harder. Consequently,
their approach may not be applicable when the number of
possible outcomes from which to choose is large, especially
when the set of outcomes has a combinatorial structure2

(Chevaleyre et al. 2008). Lang (Xia, Lang, and Ying 2007;
Lang and Xia 2009) reconsiders voting and aggregation
rules in the case where the agents’ preferences have a com-
mon preferential independence structure. The author ad-
dresses the decompositions with a voting rule following a
linear order over variables. Xia et al. (Xia, Conitzer, and
Lang 2008) extended the setting in (Xia, Lang, and Ying
2007) such that the CP-nets do not necessarily follow a
common order. However, their proposed approach does not
come with any practical algorithm for computing the set of
majority-optimal outcomes.

To this end, this paper addresses the above drawbacks,
proposing an efficient approach, called CDMCP (Collective
Decision Making with CP-nets), for aggregating multiple
agents’ preferences according to majority rule. The pro-
posed approach allows the agents to have different preferen-
tial independence structures and is computationally efficient.

Background

CP-nets overview

Let V = {X1, . . . , Xm} be a set of m variables. For each
Xk ∈ V, D (Xk) is the value domain of Xk. A variable Xk

is binary if D (Xk) = {xk, x̄k}. If {xk, x̄k} is a binary domain

of Xk, then xk = ¬x̄k; x̄k = ¬xk. If X =
{
Xi1 , . . . , Xip

}
⊆ V,

with i1 < · · · < ip then D (X) denotes D
(
Xi1

)
× · · · × D

(
Xip

)
.

The assignments of variable values to X are denoted by x,
x′ etc., and represented by concatenating the values of the
variables. For instance, if X = {X1, X2, X3}, an assignment
x = x1 x̄2x3 assigns x1 to X1, x̄2 to X2 and x3 to X3. If
X = V, x is a complete assignment; otherwise x is called
a partial assignment. For an assignment x, we denote by
x [Xk] the value xk ∈ D (Xk) assigned to variable Xk by
that assignment. We also allow logic operations between
the value assignments to binary variables. For instance,
x1 x̄2 = x1 ∧ x̄2 = (X1 = x1) ∧ (X2 = x̄2). That is, x1 is True

2The number of all possible outcome is exponential in the num-
ber of variables.
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and x2 is False (i.e. ¬x̄2 = x2). If p = x1 x̄2 and q = x3, then
p ∨ q = (x1 x̄2) ∨ x3 = ((X1 = x1) ∧ (X2 = x̄2)) ∨ (X3 = x3).

Let X, Y, and Z be nonempty sets that partition V and �
a preference relation over D (V). X is (conditionally) pref-
erentially independent of Y given Z if and only if, for all
x, x′ ∈ D (X), y, y′ ∈ D (Y), z ∈ D (Z):

xyz � x′yz iff xy′z � x′y′z

A CP-net N (Boutilier et al. 2004) over V is an an-
notated directed graph G over X1, . . . , Xm, in which nodes
stand for the problem variables. Each node Xk is annotated
with a conditional preference table CPT (Xk), which asso-
ciates a total order �Xk |Pa(Xk)=p with each instantiation p of
Xk’s parents Pa (Xk). For instance, let V = {X1, X2, X3}, all
three being binary, and assume that preference of a given
agent over all possible outcomes can be defined by a CP-
net whose structural part is the directed acyclic graph G =
{(X1, X2) , (X1, X3) , (X2, X3)}; this means that the agent’s
preference over the values of X1 is unconditional, prefer-
ence over the values of X2 (resp. X3) is fully determined
given the values of X1 (resp. the values of X1 and X2). The
conditional preference statements contained in these tables
are written with the usual notation, that is, x1 x̄2 means that
when x1 is true and x2 is false then X3 = x3 is preferred to
X3 = x̄3.

Majority rule

Given a set of outcomes, we need to aggregate multiple
agents’ preference and decide on one as the final outcome.
Rossi et al. (Rossi, Venable, and Walsh 2004) propose a
Majority Voting Semantics for aggregating multiple agents’
preferences which are represented by CP-nets. Given two
outcomes o1 and o2, let S�, S≺, S≈, S� be the sets of agents
who say, respectively, that o1 � o2, o1 ≺ o2, o1 ≈ o2 (indif-
ferent), and o1 � o2 (incomparable).

Definition 1 (Majority). Given two outcomes o1 and o2,
o1 is majority better than o2 (written as o1 �ma j o2) if and
only if there is a majority of agents who prefer o1 to o2 (i.e.
|S�| > |S≺|+ |S�|). Two outcomes are majority incomparable
if and only if they are not ordered in either way. Moreover,
an outcome is majority-optimal if and only if no other out-
come is majority better than that outcome.

When the preference ordering of each agent over the out-
come space is linear (total order), the majority-optimal out-
come is unique if it exists. However, due to the incomplete-
ness of preference relations induced by CP-nets, there may
be more than one majority-optimal outcomes in the case
where the agents’ preferences are represented by CP-nets.
Note that any pair of outcomes in the set of majority-optimal
outcomes are majority incomparable.

Assume that there are n agents making decisions over a
set of m binary variables. To test whether an outcome is
majority-optimal we need to compare the given outcome
with all other outcomes (O(2m)) in all CP-nets (n). Con-
sequently, testing majority-optimality has the complexity of
O(n2m) and there are not lower bounds (Rossi, Venable, and

Walsh 2004)3. Moreover, outcome optimization with mul-
tiple agents’ CP-nets is even more challenge. We need to
compare all outcomes (2m) to all other outcomes (2m) in all
CP-nets(n). That means, finding the set of majority-optimal
outcomes has the following complexity: O(n22m). In the fol-
lowing section, we present an approach for finding the set of
possible majority-optimal outcomes more efficiently by re-
ducing the search space into a small subset of outcomes.

The proposed approach

In this section, we present our proposed approach CDMCP

for collective decision making with multiple CP-nets based
on majority rule. The propose approach generates a set of
variable value constraints. We then employ a SAT solver
to compute the set of possible majority-optimal outcomes
which satisfy all these constraints. By doing so, the brute-
force optimality checking can be done only on the remaining
outcomes, and thus the proposed approach is computation-
ally efficient.

Assume that there are a set of n agents A = {A1, . . . , An}

making decisions over a set of m variables V = {X1, . . . , Xm}.
The preference of each agent Ai is captured by a CP-netNi.

Step 1: For each variable Xi with a binary value domain
{xi, x̄i}, each agent A j’s has a conditional preference table
CPT j (Xi) stating the conditional preference on the val-
ues of variable Xi with each instantiation of Xi’s parents
Pa j (Xi). For each agent A j, we separate these instantia-
tions of Pa j (Xi) into the following two categories.

• P
xi�x̄i

A j
=

{
p ∈ D

(
Pa j (Xi)

)
| xi �

Xi|p

A j
x̄i

}
.

Let ρ
xi�x̄i

A j
�

∨
p∈P

xi�x̄i
A j

p, thus xi �
Xi|ρ

xi�x̄i
A j

A j
x̄i.

• P
x̄i�xi

A j
=

{
p ∈ D

(
Pa j

(
X j

))
| x̄i �

Xi |p

A j
xi

}
.

Let ρ
x̄i�xi

A j
�

∨
p∈P

x̄i�xi
A j

p, thus x̄i �
Xi|ρ

x̄i�xi
A j

A j
xi.

Let u be an assignment that satisfies ρ
xi�x̄i

A j
(resp. ρ

x̄i�xi

A j
),

such that U is the set of variables assigned by u and W =
V − U − {Xi}, then uxiw �A j

ux̄iw (resp. ux̄iw �A j
uxiw)

for all w ∈ D (W). If a given agent has unconditional

preference over a variable Xi: xi �
Xi

A j
x̄i (resp. x̄i �

Xi

A j

xi), that means the condition ρ
xi�x̄i

A j
(resp. ρ

x̄i�xi

A j
) is always

True. On the other hand, ρ
x̄i�xi

A j
(resp. ρ

xi�x̄i

A j
) is always

False.

Let k = (n + 1)/2. Given two outcomes o1 and o2, we say
that o1 is majority better than o2 (written as o1 �ma j o2)
if and only if |S�| ≥ k. Moreover, there will be a set of(
n

k

)
combinations of agents that satisfy the majority re-

quirement, denoted by qComs; and each combination com
(com ∈ qComs) is a distinct subset of A which contains
k agents. A combination of agents com ∈ qComs prefers
xi to x̄i ceteris paribus under a certain instantiation u such

3Note that in this paper, all the agents are considering the same
set of variables
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that
∧

A j∈com

ρ
xi�x̄i

A j
is True. Let ϕ

xi�x̄i
com denote

∧
A j∈com

ρ
xi�x̄i

A j
,

then:

xi �
Xi|ϕ

xi�x̄i
com

com x̄i (1)

Similarly, let ϕ
x̄i�xi
com denote

∧
A j∈com

ρ
x̄i�xi

A j
, then:

x̄i �
Xi|ϕ

x̄i�xi
com

com xi (2)

Let u be an assignment that satisfies ϕ
xi�x̄i
com (resp. ϕ

x̄i�xi
com ),

such that U is the set of variables assigned by u and W =
V−U−{Xi}, then uxiw �com ux̄iw (resp. ux̄iw �com uxiw)
for all w ∈ D (W).

Based on majority rule, if there exists a combination
com ∈ qComs, such that ϕ

xi�x̄i
com is True, then a majority

number of agents prefer xi to x̄i ceteris paribus. Let γ
xi�x̄i

ma j

denote
∨

com∈qComs

ϕ
xi�x̄i
com , then:

xi �
Xi|γ

xi�x̄i
ma j

ma j
x̄i (3)

Similarly, let γ
x̄i�xi

ma j
denote

∨
com∈qComs

ϕ
x̄i�xi
com , then:

x̄i �
Xi|γ

x̄i�xi
ma j

ma j
xi (4)

Let u be an assignment that satisfies γ
x̄i�xi

ma j
(resp. γ

xi�x̄i

ma j
),

such that U is the set of variables assigned by u and W =
V−U−{Xi}, then ux̄iw �ma j uxiw (resp. uxiw �ma j ux̄iw)
for all w ∈ D (W).

Consequently, for each Xi ∈ V, a majority-optimal out-
come o∗ must satisfy the following constraint S i:

S i =
(
γxi�x̄i ⇒ xi

)
∧

(
γ x̄i�xi ⇒ x̄

)

Let S =
∧

Xi∈V

S i. Then a possible majority-optimal out-

come must be the model of S . We then employ a SAT
solver to this constraint satisfaction problem. The SAT
solver returns a set of models of S , which are the possible
majority-optimal outcomes. Note that any other outcome
that is not a model of S would not be majority-optimal.
Consequently, we can only test the majority-optimality of
the outcomes in this set.

Conclusion and future work

In this paper, we have introduced an efficient approach to
compute the set of majority-optimal outcomes from a collec-
tion of CP-nets. There are not many works for aggregating
multiple agents’ preferences represented by CP-nets. Un-
like previous work where voters’ preferences are required to
satisfy some restrictive conditions on the dependence graph
(such as the existence of a common acyclic graph to all
agent), the proposed method applies to all profiles.

We are now planning to explore more powerful variants
such as TCP-nets for representing agents’ preferences and
investigate techniques to aggregate such preferences.
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