An Efficient Majority-Rule-Based Approach for Collective Decision Making with CP-Nets

Minyi Li
Swinburne Univ. of Technology
myli@swin.edu.au

Quoc Bao Vo
Swinburne Univ. of Technology
BVo@swin.edu.au

Ryszard Kowalczyk
Swinburne Univ. of Technology
RKowalczyk@swin.edu.au

Abstract

This paper addresses the problem of collective decision making in the case where the agents' preferences are represented by CP-nets (Conditional Preference Networks). Most existing works either do not consider the computational issues, or depend on a strong assumption that all the agents share a common preferential independence structure. To this end, this paper proposes an efficient approach, called CDMCP (Collective Decision Making with CP-nets), for aggregating multiple agents' preferences according to majority rule. The proposed approach allows the agents to have different preferential independence structures and is computationally efficient.

Introduction

In many real world scenarios, we need to represent and reason about the simultaneous preferences of several agents, and to aggregate such preferences (Rossi, Venable, and Walsh 2004). Classical decision theory considers typically agents as having preferences over the outcome space, and the preferences are usually mathematically represented by utility functions. However, in many situations, the utilitybased preference elicitation is not user-friendly (Boutilier et al. 2004). In this paper, we investigate the theory of CP-nets as a formal model for representing and reasoning with the agents' preferences. It specifies individual preference relations in a relatively compact, intuitive, and structured manner (Boutilier et al. 2004). Most existing works on CP-nets focus on individual preference reasoning, including outcome optimization and comparison (Boutilier et al. 1999; 2004). However, many real world scenarios require aggregating multiple agents' preferences. Rossi et al. (Rossi, Venable, and Walsh 2004) propose various voting semantics for aggregating multiple agents' CP-nets. However, they do not address computational issues. Given the fact that answering dominance query ${ }^{1}$ for an arbitrary CP-net is PSPACEcomplete (Goldsmith et al. 2008). Outcome optimization with multiple agents furthermore requires searching the entire outcome space, and making dominance queries to each

[^0]agent on each pair of outcomes. This problem is likely not a member of NP or coNP, but even harder. Consequently, their approach may not be applicable when the number of possible outcomes from which to choose is large, especially when the set of outcomes has a combinatorial structure ${ }^{2}$ (Chevaleyre et al. 2008). Lang (Xia, Lang, and Ying 2007; Lang and Xia 2009) reconsiders voting and aggregation rules in the case where the agents' preferences have a common preferential independence structure. The author addresses the decompositions with a voting rule following a linear order over variables. Xia et al. (Xia, Conitzer, and Lang 2008) extended the setting in (Xia, Lang, and Ying 2007) such that the CP-nets do not necessarily follow a common order. However, their proposed approach does not come with any practical algorithm for computing the set of majority-optimal outcomes.
To this end, this paper addresses the above drawbacks, proposing an efficient approach, called CDMCP (Collective Decision Making with CP-nets), for aggregating multiple agents' preferences according to majority rule. The proposed approach allows the agents to have different preferential independence structures and is computationally efficient.

Background

CP-nets overview

Let $\mathbf{V}=\left\{X_{1}, \ldots, X_{m}\right\}$ be a set of m variables. For each $X_{k} \in \mathbf{V}, D\left(X_{k}\right)$ is the value domain of X_{k}. A variable X_{k} is binary if $D\left(X_{k}\right)=\left\{x_{k}, \bar{x}_{k}\right\}$. If $\left\{x_{k}, \bar{x}_{k}\right\}$ is a binary domain of X_{k}, then $x_{k}=\neg \bar{x}_{k} ; \bar{x}_{k}=\neg x_{k}$. If $\mathbf{X}=\left\{X_{i_{1}}, \ldots, X_{i_{p}}\right\} \subseteq \mathbf{V}$, with $i_{1}<\cdots<i_{p}$ then $D(\mathbf{X})$ denotes $D\left(X_{i_{1}}\right) \times \cdots \times D\left(X_{i_{p}}\right)$. The assignments of variable values to \mathbf{X} are denoted by \mathbf{x}, \mathbf{x}^{\prime} etc., and represented by concatenating the values of the variables. For instance, if $\mathbf{X}=\left\{X_{1}, X_{2}, X_{3}\right\}$, an assignment $\mathbf{x}=x_{1} \bar{x}_{2} x_{3}$ assigns x_{1} to X_{1}, \bar{x}_{2} to X_{2} and x_{3} to X_{3}. If $\mathbf{X}=\mathbf{V}, \mathbf{x}$ is a complete assignment; otherwise \mathbf{x} is called a partial assignment. For an assignment \mathbf{x}, we denote by $\mathbf{x}\left[X_{k}\right]$ the value $x_{k} \in D\left(X_{k}\right)$ assigned to variable X_{k} by that assignment. We also allow logic operations between the value assignments to binary variables. For instance, $x_{1} \bar{x}_{2}=x_{1} \wedge \bar{x}_{2}=\left(X_{1}=x_{1}\right) \wedge\left(X_{2}=\bar{x}_{2}\right)$. That is, x_{1} is True

[^1]and x_{2} is False (i.e. $\neg \bar{x}_{2}=x_{2}$). If $\mathbf{p}=x_{1} \bar{x}_{2}$ and $\mathbf{q}=x_{3}$, then $\mathbf{p} \vee \mathbf{q}=\left(x_{1} \bar{x}_{2}\right) \vee x_{3}=\left(\left(X_{1}=x_{1}\right) \wedge\left(X_{2}=\bar{x}_{2}\right)\right) \vee\left(X_{3}=x_{3}\right)$.

Let \mathbf{X}, \mathbf{Y}, and \mathbf{Z} be nonempty sets that partition \mathbf{V} and \rangle a preference relation over $D(\mathbf{V}) . \mathbf{X}$ is (conditionally) preferentially independent of \mathbf{Y} given \mathbf{Z} if and only if, for all $\mathbf{x}, \mathbf{x}^{\prime} \in D(\mathbf{X}), \mathbf{y}, \mathbf{y}^{\prime} \in D(\mathbf{Y}), \mathbf{z} \in D(\mathbf{Z}):$

$$
\mathbf{x y z}>\mathbf{x}^{\prime} \mathbf{y z} \text { iff } \mathrm{xy}^{\prime} \mathbf{z}>\mathbf{x}^{\prime} \mathbf{y}^{\prime} \mathbf{z}
$$

A CP-net \mathcal{N} (Boutilier et al. 2004) over \mathbf{V} is an annotated directed graph \mathcal{G} over X_{1}, \ldots, X_{m}, in which nodes stand for the problem variables. Each node X_{k} is annotated with a conditional preference table $C P T\left(X_{k}\right)$, which associates a total order $>^{X_{k} \mid P a\left(X_{k}\right)=\mathbf{p}}$ with each instantiation \mathbf{p} of X_{k} 's parents $P a\left(X_{k}\right)$. For instance, let $\mathbf{V}=\left\{X_{1}, X_{2}, X_{3}\right\}$, all three being binary, and assume that preference of a given agent over all possible outcomes can be defined by a CPnet whose structural part is the directed acyclic graph $\mathcal{G}=$ $\left\{\left(X_{1}, X_{2}\right),\left(X_{1}, X_{3}\right),\left(X_{2}, X_{3}\right)\right\}$; this means that the agent's preference over the values of X_{1} is unconditional, preference over the values of X_{2} (resp. X_{3}) is fully determined given the values of X_{1} (resp. the values of X_{1} and X_{2}). The conditional preference statements contained in these tables are written with the usual notation, that is, $x_{1} \overline{x_{2}}$ means that when x_{1} is true and x_{2} is false then $X_{3}=x_{3}$ is preferred to $X_{3}=\overline{x_{3}}$.

Majority rule

Given a set of outcomes, we need to aggregate multiple agents' preference and decide on one as the final outcome. Rossi et al. (Rossi, Venable, and Walsh 2004) propose a Majority Voting Semantics for aggregating multiple agents’ preferences which are represented by CP-nets. Given two outcomes o_{1} and o_{2}, let $\mathbf{S}_{\succ}, \mathbf{S}_{<}, \mathbf{S}_{\approx}, \mathbf{S}_{\bowtie}$ be the sets of agents who say, respectively, that $o_{1}>o_{2}, o_{1} \prec o_{2}, o_{1} \approx o_{2}$ (indifferent), and $o_{1} \bowtie o_{2}$ (incomparable).

Definition 1 (Majority). Given two outcomes o_{1} and o_{2}, o_{1} is majority better than o_{2} (written as $o_{1}>_{\text {maj }} o_{2}$) if and only if there is a majority of agents who prefer o_{1} to o_{2} (i.e. $\left.\left|\boldsymbol{S}_{\succ}\right|>\left|\boldsymbol{S}_{<}\right|+\left|\boldsymbol{S}_{\bowtie}\right|\right)$. Two outcomes are majority incomparable if and only if they are not ordered in either way. Moreover, an outcome is majority-optimal if and only if no other outcome is majority better than that outcome.

When the preference ordering of each agent over the outcome space is linear (total order), the majority-optimal outcome is unique if it exists. However, due to the incompleteness of preference relations induced by CP-nets, there may be more than one majority-optimal outcomes in the case where the agents' preferences are represented by CP-nets. Note that any pair of outcomes in the set of majority-optimal outcomes are majority incomparable.

Assume that there are n agents making decisions over a set of m binary variables. To test whether an outcome is majority-optimal we need to compare the given outcome with all other outcomes $\left(O\left(2^{m}\right)\right)$ in all CP-nets (n). Consequently, testing majority-optimality has the complexity of $O\left(n 2^{m}\right)$ and there are not lower bounds (Rossi, Venable, and

Walsh 2004) ${ }^{3}$. Moreover, outcome optimization with multiple agents' CP-nets is even more challenge. We need to compare all outcomes (2^{m}) to all other outcomes (2^{m}) in all CP-nets(n). That means, finding the set of majority-optimal outcomes has the following complexity: $O\left(n 2^{2 m}\right)$. In the following section, we present an approach for finding the set of possible majority-optimal outcomes more efficiently by reducing the search space into a small subset of outcomes.

The proposed approach

In this section, we present our proposed approach CDMCP for collective decision making with multiple CP-nets based on majority rule. The propose approach generates a set of variable value constraints. We then employ a SAT solver to compute the set of possible majority-optimal outcomes which satisfy all these constraints. By doing so, the bruteforce optimality checking can be done only on the remaining outcomes, and thus the proposed approach is computationally efficient.

Assume that there are a set of n agents $\mathbf{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ making decisions over a set of m variables $\mathbf{V}=\left\{X_{1}, \ldots, X_{m}\right\}$. The preference of each agent A_{i} is captured by a CP-net \mathcal{N}_{i}.
Step 1: For each variable X_{i} with a binary value domain
$\left\{x_{i}, \bar{x}_{i}\right\}$, each agent A_{j} 's has a conditional preference table $C P T_{j}\left(X_{i}\right)$ stating the conditional preference on the values of variable X_{i} with each instantiation of X_{i} 's parents $P a_{j}\left(X_{i}\right)$. For each agent A_{j}, we separate these instantiations of $\operatorname{Pa} a_{j}\left(X_{i}\right)$ into the following two categories.

$$
\begin{aligned}
& \text { - } \mathbf{P}_{A_{j}}^{x_{i}>\bar{x}_{i}}=\left\{\mathbf{p} \in D\left(P a_{j}\left(X_{i}\right)\right)\left|x_{i}\right\rangle_{A_{j}}^{X_{i} \mid \mathbf{p}} \bar{x}_{i}\right\} \text {. } \\
& \text { Let } \left.\rho_{A_{j}}^{x_{i}>\bar{x}_{i}} \triangleq \bigvee_{\mathbf{p} \in \boldsymbol{P}_{A_{j}}^{x_{i}>\bar{x}_{i}}} \mathbf{p} \text {, thus } x_{i}\right\rangle_{A_{j}}^{X_{i} \mid{ }_{A_{j}}^{x_{i} i x_{i}}} \bar{x}_{i} \text {. } \\
& \text { - } \mathbf{P}_{A_{j}}^{\bar{x}_{j_{i}}>x_{i}}=\left\{\mathbf{p} \in D\left(P a_{j}\left(X_{j}\right)\right)\left|\bar{x}_{i}\right\rangle_{A_{j}}^{X_{i} \mid \mathbf{p}} x_{i}\right\} \text {. } \\
& \text { Let } \left.\rho_{A_{j}}^{\bar{x}_{i}>x_{i}} \triangleq \bigvee_{\mathbf{p} \in \mathbf{P}_{A_{j}}^{\bar{x}_{i} i x_{i}}} \mathbf{p} \text {, thus } \bar{x}_{i}\right\rangle_{A_{j}}^{X_{i} \mid \rho_{A_{j}}^{\bar{x}_{i} \times x_{i}}} \quad x_{i} .
\end{aligned}
$$

Let \mathbf{u} be an assignment that satisfies $\rho_{A_{j}}^{x_{i}>\bar{x}_{i}}$ (resp. $\rho_{A_{j}}^{\bar{x}_{i}>x_{i}}$), such that \mathbf{U} is the set of variables assigned by \mathbf{u} and $\mathbf{W}=$ $\mathbf{V}-\mathbf{U}-\left\{X_{i}\right\}$, then $\mathbf{u} x_{i} \mathbf{w}>_{A_{j}} \mathbf{u} \bar{x}_{i} \mathbf{W}\left(\right.$ resp. $\left.\mathbf{u} \bar{x}_{i} \mathbf{w}>_{A_{j}} \mathbf{u} x_{i} \mathbf{w}\right)$ for all $\mathbf{w} \in D(\mathbf{W})$. If a given agent has unconditional preference over a variable X_{i} : $x_{i} \succ_{A_{j}}^{X_{i}} \bar{x}_{i}$ (resp. $\bar{x}_{i} \succ_{A_{j}}^{X_{i}}$ x_{i}), that means the condition $\rho_{A_{j}}^{x_{i}>\bar{x}_{i}}$ (resp. $\rho_{A_{j}}^{\bar{x}_{i_{j}}>x_{i}}$) is always True. On the other hand, $\rho_{A_{j}}^{\bar{x}_{i}>x_{i}}$ (resp. $\rho_{A_{j}}^{x_{i}>\bar{x}_{i}}$) is always False.
Let $k=(n+1) / 2$. Given two outcomes o_{1} and o_{2}, we say that o_{1} is majority better than o_{2} (written as $o_{1}>_{\text {maj }} o_{2}$) if and only if $\left|\mathbf{S}_{\succ}\right| \geq k$. Moreover, there will be a set of $\binom{n}{k}$ combinations of agents that satisfy the majority requirement, denoted by q Coms; and each combination com (com $\in q C o m s$) is a distinct subset of \mathbf{A} which contains k agents. A combination of agents $\operatorname{com} \in q C o m s$ prefers x_{i} to \bar{x}_{i} ceteris paribus under a certain instantiation \mathbf{u} such

[^2]that $\bigwedge_{A_{j} \in \text { com }} \rho_{A_{j}}^{x_{i} \succ \bar{x}_{i}}$ is True. Let $\varphi_{\text {com }}^{x_{i} \succ \bar{x}_{i}}$ denote $\bigwedge_{A_{j} \in \text { com }} \rho_{A_{j}}^{x_{i} \succ \bar{x}_{i}}$,
then:

Similarly, let $\varphi_{\text {com }}^{\bar{x}_{i}>x_{i}}$ denote $\bigwedge_{A_{j} \in \text { com }} \rho_{A_{j}}^{\bar{x}_{i}>x_{i}}$, then:

$$
\begin{equation*}
\left.\bar{x}_{i}\right\rangle_{i}^{X_{i} \mid \varphi_{i} \overline{x i o m}_{i}^{i} x_{i}} x_{i} \tag{2}
\end{equation*}
$$

Let \mathbf{u} be an assignment that satisfies $\varphi_{\text {com }}^{x_{i} \overline{\bar{x}_{i}}}$ (resp. $\varphi_{\text {com }}^{\bar{x}_{i}>x_{i}}$), such that \mathbf{U} is the set of variables assigned by \mathbf{u} and $\mathbf{W}=$ $\mathbf{V}-\mathbf{U}-\left\{X_{i}\right\}$, then $\mathbf{u} x_{i} \mathbf{W}>_{c o m} \mathbf{u} \bar{x}_{i} \mathbf{W}\left(\right.$ resp. $\left.\mathbf{u} \bar{x}_{i} \mathbf{W}>_{c o m} \mathbf{u} x_{i} \mathbf{w}\right)$ for all $\mathbf{w} \in D(\mathbf{W})$.
Based on majority rule, if there exists a combination com $\in q$ Coms, such that $\varphi_{\text {com }}^{x_{i}>\bar{x}_{i}}$ is True, then a majority number of agents prefer x_{i} to \bar{x}_{i} ceteris paribus. Let $\gamma_{m a j}^{x_{i}>x_{i}}$ denote $\underset{\text { com } q \text { Coms }}{V} \varphi_{\text {com }}^{x_{i}>\bar{x}_{i}}$, then:

$$
\begin{equation*}
x_{i} \succ_{m a j}^{X_{i}| |_{m a j}^{x_{i} i x_{i}}} \bar{x}_{i} \tag{3}
\end{equation*}
$$

Similarly, let $\gamma_{\text {maj }}^{\bar{x}_{i}>x_{i}}$ denote $\underset{\text { com } \in q C o m s}{\bigvee} \varphi_{\text {com }}^{\bar{x}_{i}>x_{i}}$, then:

$$
\begin{equation*}
\bar{x}_{i} \succ_{\text {maj }}^{X_{i} \mid \gamma_{i a j}^{\bar{x}_{i}, x_{i}}} x_{i} \tag{4}
\end{equation*}
$$

Let \mathbf{u} be an assignment that satisfies $\gamma_{m a j}^{\bar{x}_{i}>x_{i}}$ (resp. $\gamma_{m a j}^{x_{i}>\bar{x}_{i}}$), such that \mathbf{U} is the set of variables assigned by \mathbf{u} and $\mathbf{W}=$ $\mathbf{V}-\mathbf{U}-\left\{X_{i}\right\}$, then $\mathbf{u} \bar{x}_{i} \mathbf{w}>_{m a j} \mathbf{u} x_{i} \mathbf{w}\left(\right.$ resp. $\left.\mathbf{u} x_{i} \mathbf{W}>_{m a j} \mathbf{u} \bar{x}_{i} \mathbf{w}\right)$ for all $\mathbf{w} \in D(\mathbf{W})$.
Consequently, for each $X_{i} \in \mathbf{V}$, a majority-optimal outcome o^{*} must satisfy the following constraint S_{i} :

$$
S_{i}=\left(\gamma^{x_{i}>\bar{x}_{i}} \Rightarrow x_{i}\right) \wedge\left(\gamma^{\bar{x}_{i}>x_{i}} \Rightarrow \bar{x}\right)
$$

Let $S=\bigwedge_{X_{i} \in \mathbf{V}} S_{i}$. Then a possible majority-optimal outcome must be the model of S. We then employ a SAT solver to this constraint satisfaction problem. The SAT solver returns a set of models of S, which are the possible majority-optimal outcomes. Note that any other outcome that is not a model of S would not be majority-optimal. Consequently, we can only test the majority-optimality of the outcomes in this set.

Conclusion and future work

In this paper, we have introduced an efficient approach to compute the set of majority-optimal outcomes from a collection of CP-nets. There are not many works for aggregating multiple agents' preferences represented by CP-nets. Unlike previous work where voters' preferences are required to satisfy some restrictive conditions on the dependence graph (such as the existence of a common acyclic graph to all agent), the proposed method applies to all profiles.

We are now planning to explore more powerful variants such as TCP-nets for representing agents' preferences and investigate techniques to aggregate such preferences.

References

Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D. 1999. Reasoning with conditional ceteris paribus preference statements. 71-80. Morgan Kaufmann Publishers.
Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D. 2004. CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21:2004.
Chevaleyre, Y.; Endriss, U.; Lang, J.; and Maudet, N. 2008. Preference handling in combinatorial domains: From ai to social choice. AI Magazine, Special Issue on Preferences 29(4):37-46.
Goldsmith, J.; Lang, J.; Truszczynski, M.; and Wilson, N. 2008. The computational complexity of dominance and consistency in CP-nets. J. Artif. Int. Res. 33(1):403-432.
Lang, J., and Xia, L. 2009. Sequential composition of voting rules in multi-issue domains. Mathematical Social Sciences 57(3):304-324.
Rossi, F.; Venable, K. B.; and Walsh, T. 2004. mCP nets: Representing and reasoning with preferences of multiple agents. In McGuinness, D. L., and Ferguson, G., eds., AAAI, 729-734. AAAI Press / The MIT Press.
Xia, L.; Conitzer, V.; and Lang, J. 2008. Voting on multiattribute domains with cyclic preferential dependencies. In AAAI'08: Proceedings of the 23rd national conference on Artificial intelligence, 202-207. AAAI Press.
Xia, L.; Lang, J.; and Ying, M. 2007. Strongly decomposable voting rules on multiattribute domains. In AAAI'07: Proceedings of the 22nd national conference on Artificial intelligence, 776-781. AAAI Press.

[^0]: Copyright © 2010, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
 ${ }^{1} \mathrm{~A}$ dominance query, given a pair of outcomes, asks whether one outcome dominates another.

[^1]: ${ }^{2}$ The number of all possible outcome is exponential in the number of variables.

[^2]: ${ }^{3}$ Note that in this paper, all the agents are considering the same set of variables

