
One Hundred Prisoners and a Lightbulb — Logic and Computation

Hans van Ditmarsch
D. Logic

University of Sevilla, Spain
Email: hvd@us.es

Jan van Eijck
CWI, Amsterdam & OTS

University of Utrecht, Netherlands
Email: jve@cwi.nl

William Wu
Electrical Engineering

Stanford University, USA
Email: willywu@stanford.edu

Abstract

This is a case-study in knowledge representation. We analyze
the ‘one hundred prisoners and a lightbulb’ puzzle. In this
puzzle it is relevant what the agents (prisoners) know, how
their knowledge changes due to observations, and how they
affect the state of the world by changing facts, i.e., by their
actions. These actions depend on the history of previous ac-
tions and observations. Part of its interest is that all actions
are local, i.e. not publicly observable, and part of the problem
is therefore how to disseminate local results to other agents,
and make them global. The various solutions to the puzzle are
presented as protocols (iterated functions from agent’s local
states, and histories of actions, to actions). The computational
aspect is about average runtime termination under conditions
of random (‘fair’) scheduling.

The paper consists of three parts. First, we present dif-
ferent versions of the puzzle, and their solution. This in-
cludes a probabilistic version, and a version assuming syn-
chronicity (the interval between prisoners’ interrogations is
known). The latter is very informative for the prisoners, and
allows different protocols (with faster expected termination).
Then, we model the puzzle in an epistemic logic incorporat-
ing dynamic operators for the effects of information changing
events. Such events include both informative actions, where
agents become more informed about the non-changing state
of the world, and factual changes, wherein the world and the
facts describing it change themselves as well. Finally, we give
the expected termination results of several protocols when as-
suming random scheduling.

This paper integrates the literature and presents novel contri-
butions. Novel are: Firstly, Protocol 2 and Protocol 4. Sec-
ondly, the modelling in dynamic epistemic logic in its entirety
— we do not know of a case study that combines factual and
informational dynamics in a setting of non-public events, or
of a similar proposal to handle asynchronous behaviour in a
dynamic epistemic logic. Thirdly, our computational results
on Protocol 2 and results from manuscript (Wu 2002).

Protocols
A group of 100 prisoners, all together in the prison dining
area, are told that they will be all put in isolation cells and
then will be interrogated one by one in a room containing
a light with an on/off switch. The prisoners may communi-
cate with one another by toggling the light-switch (and that

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is the only way in which they can communicate). The light
is initially switched off. There is no fixed order of interroga-
tion, or fixed interval between interrogations, and the same
prisoner may be interrogated again at any stage. When in-
terrogated, a prisoner can either do nothing, or toggle the
light-switch, or announce that all prisoners have been in-
terrogated. If that announcement is true, the prisoners will
(all) be set free, but if it is false, they will all be executed.
While still in the dining room, and before the prisoners go
to their isolation cells, can the prisoners agree on a proto-
col that will set them free (assuming that at any stage every
prisoner will be interrogated again sometime)?

Origin This riddle is known as the ‘one hundred pris-
oners and a lightbulb’ problem. We made some investi-
gations on the puzzle’s origin, but we did not find refer-
ences before 2001. On an IBM Research 2002 website
(IBM Research 2002) a 23 prisoner version is given and it
is mentioned that “this puzzle has been making the rounds
of Hungarian mathematicians’ parties”. See also (Dehaye,
Ford, and Segerman 2003; Winkler 2004; Wu 2002) and
http://wuriddles.com/.

Knowledge Knowledge plays a crucial role in the formu-
lation of the riddle and in its analysis. To solve the riddle it
is only required that some prisoner knows that all prisoners
have been interrogated, not that all prisoners know that, and
certainly not that this is common knowledge. It is impos-
sible to satisfy the latter (and even any growth of common
knowledge is impossible, see the logical analysis) — unless
the interval between interrogations is known in advance.

Solution with counter and non-counter Of course, the
answer to the riddle is: “Yes, they can.” The typical problem
solver thinks that all prisoners must have the same role. But
because the prisoners are all together prior to the execution
of a protocol, they can assign themselves different roles. For
n > 2 prisoners, a protocol to solve the riddle with two
different roles for prisoners is as follows:

Protocol 1 The n prisoners appoint one amongst them as
the counter. All non-counting prisoners follow the following
protocol: the first time they enter the room when the light is
off, they turn it on; on all other occasions, they do nothing.

90

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

The counter follows a different protocol. The first n − 2
times that the light is on when he enters the interrogation
room, he turns it off. The next time he enters the room when
the light is on, he (truthfully) announces that everybody has
been interrogated. �

Non-counters can count too A non-counter may learn
that all have been interrogated before the counter. Consider
the case of three prisoners 0, 1, and 2, where 0 is the counter,
and the event sequence (state of light, prisoner interrogated,
. . .)

−1 + 0− 1− 2 + 1 + 0−

Non-counter 1 is interrogated and turns on the light. Next
time he is interrogated the light is off: he concludes that
the counter must have been interrogated. Then he is interro-
gated again and sees the light on: this can only be because
prisoner 2 has now been interrogated for the first time. He
therefore knows that all have been interrogated, and could
announce so. This is before the counter is able to make that
announcement: in the above sequence, next.

Protocol 2 As protocol 1, plus for the non-counters two
cases: (i) if your first interrogation the light is off, then
(turn it on according to 1 and) count the number of times you
subsequently see the sequence ‘light off – light on’, and an-
nounce that all have been interrogated after observing this
sequence n−2 times; (ii) if your first interrogation the light
is on, then after being interrogated again when the light is off
(turn it on according to 1 and) count the number of times you
subsequently see the sequence ‘light off – light on’, and an-
nounce that all have been interrogated after observing this
sequence n− 3 times. �

When the initial state of the light is not known The rid-
dle can also be solved when it is not known if the light is
initially on or off. This is not trivial. Assume that the light
was initially on, and execute Protocol 1. One of the counter’s
n− 1 observations that the light is on, is then due to the ini-
tial state of the light. One of the non-counters may never
have been interrogated. In that case, the counter will falsely
announce that every prisoner has been interrogated. But if
we were to increase the count by 1 in Protocol 1, and count
to n instead of to n − 1, assume that the light was initially
off. Now the protocol will not terminate, because the counter
will observe only n− 1 times that the light is on.

That it is not known what the state of the light is, creates
an uncertainty in the count. We can overcome this by having
each non-counter count more than the amount of uncertainty.

Protocol 3 The n prisoners appoint one amongst them as
the counter. All non-counting prisoners follow the following
protocol: the first two times they enter the room when the
light is off, they turn it on; on all other occasions, they do
nothing. The counter follows a different protocol. The first
2n− 3 times that the light is on when he enters the inter-
rogation room, he turns it off. Then the next time he enters
the room when the light is on, he (truthfully) announces that
everybody has been interrogated. �

For example, in the situation where there are 3 prisoners, the
counter has to count until 2 ·3−2 = 4. This comprises three
cases: light originally off, and both non-counter 1 and non-
counter 2 turn it on twice; light originally on, non-counter 1
turns it on twice, non-counter 2 turns it on once; light origi-
nally on, non-counter 2 turns it on once, non-counter 2 turns
it on twice.

Uniform role protocol In the protocols so far, different
prisoners perform different roles, and that was the key to
solving the puzzle. There is a protocol where all prisoners
play the same role, but it is probabilistic. It was suggested
by Paul-Olivier Dehaye (in a personal communication). This
protocol is easier to present in terms of tokens:

Imagine each prisoner to hold a token worth a variable
number of points, initially one. Turning the light on if it is
off, means dropping one point. Leaving the light on if it is
on, means not being able to drop one point. (Before, only
a non-counter could drop a point.) Turning the light off if
it is on, means collecting one point. Leaving the light off if
it is off, means not being able to collect one point. (Before,
only the counter collects points.) Protocols terminate once a
prisoner has n points.

Protocol 4 Entering the interrogation room, consider the
number of points you carry. If the light is on, add one. Let
m be this number. Let a function Pr : {0, ..., n} → [0, 1]
be given, with Pr(0) = Pr(1) = 1, 0 < Pr(x) < 1 for
x �= 0, 1, n, and Pr(n) = 0. You drop your point with
probability Pr(m), otherwise you collect it. The protocol
terminates once a prisoner has collected n points. �

Dropping a point if you do not carry one, means doing noth-
ing: therefore also Pr(0) = 1. Under the above conditions,
the protocol terminates. Better odds than any non-zero prob-
ability give a Pr that is decreasing in the 1−

⌊
n
2

⌋
range and

that is zero on the �n
2 � − n range.

Let us explain the example of four prisoners a, b, c, d.
Choose Pr(0) = Pr(1) = 1, P r(2) = 0.5, P r(3) =
0, P r(4) = 0. Consider the following interrogation se-
quence, where the lower index stands for the number of
points plus the state of the light, and where the upper in-
dex stands, for the case of Pr(2), for outcome drop (1) or
collect (0).

−a1 + b1
2 + c0

2 − d1 + b0
2 − c0

2 − c1
2 + b3 − c1 + b4

Prisoner a gets there first, turns on the light (= drops his
point), then b comes in, flips a coin, heads, so does not turn
off the light (= does not collect point), then c comes in, flips
a coin, tails, so does turn off the light, then d, light on, then b
again, who turns the light off this time and now has 3 points.
Crucially, at this point b is designated as the ‘counter’: as
Pr(3) = Pr(4) = 0, b will never drop a point but only
collect them, until termination. Prisoners a and d already
play no role anymore: anyone dropping a single point has
count 0, whether the light is on of off does not matter now
as Pr(0) = Pr(1) = 1 and, as already mentioned, dropping
a point if you do not carry one, means doing nothing. Pris-
oner b now has to wait for c to subsequently drop his token
consisting of two points, subject to chance. In the sequence

91

above, the transition “−c1
2+” means that the light is off, c

throws heads, so drops one of his two points by turning on
the light.

It is important to realize that we cannot define Pr(2) =
0, because then a situation can be reached where (as in the
above sequence) two players ‘stick to their points’ so that
the protocol will never terminate. But we also cannot have
Pr(2) = 1, because then no prisoner will ever get more
than two points, and the protocol will also not terminate.
Probability plays an essential role in this protocol.

Synchronization Assume the prisoners (commonly)
know that a single interrogation per day takes place. This
is very informative. Now we have, for example, that if the
counter is not interrogated on the first day, he still learns
that the light is on, as another prisoner must have been
interrogated and turned on the light. On this assumption
of synchronization other protocols can be conceived, of
which we present a few. The game now becomes one of
minimizing expected termination given random scheduling:
for 100 prisoners, the expected termination of Protocol 1 is
just under 30 years, but this can be reduced to about 10 (see
later).

Dynamic counter assignment This protocol consists of
two stages.

Protocol 5 The protocol is divided in two stages. Stage I
takes n days. During the first n − 1 days of this stage, the
first prisoner to enter the room twice turns on the light. Sup-
pose this is on day m. At day n of stage I: if the light is off,
announce that everybody has been interrogated. Otherwise,
turn off the light. Stage II starts on day n + 1. The desig-
nated counter is the prisoner twice interrogated on day m
in stage I . In stage II , execute Protocol 1, except that: the
counter turns off the light n−m times only and announces
the n− (m − 1)nd time he sees the light on that everybody
has been interrogated (he knows that during the first m days
of stage I already m − 2 other prisoners have entered the
interrogation room); non-counters who only saw the light
off in stage I do nothing; the remaining non-counters act
according to Protocol 1. �

Head counter and assistant counters A more involved
scenario from (Wu 2002) employs a head counter and as-
sistant counters. Again the protocol consists of two stages,
both finite. These are repeated until termination. We de-
scribe them informally.

Assume there are 100 prisoners. There is one head
counter, and there are nine assistants. In each iteration, in
stage I both head counter and assistants act as the counter in
Protocol 1, but they stop turning off lights after they have
reached a maximum count of 9 (together they can there-
fore count all non-counters). The other prisoners act as non-
counters in Protocol 1. In stage II the non-counters do noth-
ing, the assistants act as non-counters in Protocol 1, where
now turning on a light means that they completed their count
to 9, and the counter adds 9 to his current count every time
he sees a light on, and then turns it off. On the final day of

stage II , unless the announcement is made, turn it off, and
repeat stages I and II , until termination. (A further refine-
ment is possible, communicating the results of a stage I+II
cycle to the next iteration.)

Binary tokens protocol The binary tokens scheme gener-
alizes the example in the previous paragraph. It was origi-
nally presented in (Wu 2002; Dehaye, Ford, and Segerman
2003). We can give different roles to different prisoners,
and we can give different meanings to turning on or off the
light on different days. We can think of the prisoners ex-
changing ‘tokens’ with variable point values, as in Proto-
col 4. All prisoners start with a token worth one point. In
the head/assistant counter scenario, counter and assistants
all collect 10 (their own plus 9) in Stage I, and in Stage II
the assistants deposit their 10-point tokens into the room by
turning on the light and the master counter collects these
bigger tokens.

Protocol 6 (Binary tokens scheme) Let n be the total
number of prisoners, and suppose n is a power of 2. Define
a sequence (Pk) of finite length that dictates the number of
points a lighted bulb is worth on day k. Every Pk must be a
nonnegative power of 2. There is one role for all prisoners:

• Keep an integer in your head; call it T . Initialize it to
T = 1.

• Let Tm denote the mth bit of T expressed in binary (where
the first bit is called the 0th bit).

• Upon entering the room on day k, where Pk = 2m, go
through four steps:

1. If the light is on, set T := T + Pk−1, and turn it off.

2. If T ≥ n, make the announcement.

3. If Tm = 1, turn the light on, and set T := T − Pk.

4. Else, if Tm = 0, leave the light off (i.e., do nothing). �

The protocol is defined for n a power of 2, but it can be
adjusted to any number of prisoners. Notice that Step (1)
amounts to taking a token worth Pk−1 points left over from
the previous day, and Step (3) amounts to depositing a to-
ken worth Pk points. In short, all prisoners will collect and
deposit tokens, where the values of tokens are dictated by
the sequence (Pk). In the computation section we present a
suitable sequence (Pk).

Logic

The riddle and its solution can be modelled in a dynamic
epistemic logic wherein we can model knowledge and also
factual and epistemic change. We need all three. The
counter will make his announcement when he knows that
all prisoners have been interrogated. That is only true after
it is true that all prisoners have been interrogated. Switch-
ing the light changes the truth value of the proposition ‘the
light is on’. This is factual change. When the counter enters
the interrogation room and sees that the light is on, he makes
an informative observation that results in the knowledge that
one more prisoner has been interrogated. This is epistemic
change.

92

Epistemic logic with epistemic and factual change Dy-
namic epistemic logics involving both epistemic and factual
change have been proposed in (Baltag 2002; van Ditmarsch,
van der Hoek, and Kooi 2005; van Ditmarsch 2006; van Ben-
them, van Eijck, and Kooi 2006; Herzig and Lima 2006;
Kooi 2007; van Ditmarsch and Kooi 2008). We base our
summary presentation on (van Ditmarsch and Kooi 2008).

The logical language contains atomic propositions, all
the propositional inductive constructs, and clauses Kaϕ, for
‘agent a knows ϕ’ (for example, the counter knows that all
non-counters have been interrogated), CBϕ, for ‘the agents
in group B commonly know ϕ’ (for example, the prisoners
commonly know that all prisoners have been interrogated),
and the dynamic modal construct [U, e]ϕ, for ‘after every
execution of update (U, e), formula ϕ holds.’ The distinct
events that the counter and non-counters execute in the pro-
tocol will be modelled as such updates, for example, ‘if the
light is on, counter a turns off the light.’ This allows us
to formalize expressions as ‘after the event (if the light is
on, counter a turns off the light), a knows that at least four
prisoners have been interrogated.’ We interpret the language
on pointed Kripke models where the accessibility relations
representing the knowledge of the players are equivalence
relations. Updates (U, e) can also be seen as such structures,
where event e is the designated point of update model U. If
two events cannot be distinguished by an agent, they are in
the same equivalence class in the update model. For exam-
ple, at the time the interrogation takes place, the counter can-
not distinguish any of the distinct events of the non-counters
being interrogated. Each event in an update model has a pre-
condition ϕ for execution and a postcondition consisting of a
set of bindings p := ψ to describe factual change. For exam-
ple, above, the precondition is p for ‘the light is on’ and the
postcondition is p := ⊥ for ‘it becomes false that the light is
on’, i.e., ‘counter a turns off the light’. The execution of an
update model in an epistemic model is the computation of a
restricted modal product, and this resulting structure can be
seen as the state of information after the event. (Figures 1, 2,
3 illustrate event descriptions, an update model and its exe-
cution in the setting of an example.) The Appendix “Logic”
contains details of the logic.

One hundred prisoners in dynamic epistemic logic To
model the solution of the prisoners riddle as a multi-agent
system, we need to specify the set of agents, the set of rele-
vant atomic propositions, provide an initial epistemic model,
and define the updates that are possible in that model. We
focus on the setting of Protocol 1.

Agents, atoms, formulas As agents we take the n pris-
oners: N = {0, . . . , n − 1} (where n ≤ 1). Prisoner 0
is the counter. The other prisoners are called non-counters.
Atomic proposition p stands for ‘the light is on’. Atomic
propositions qi, for 1 ≤ i ≤ n − 1, stand for ‘(now or
at a prior interrogation) non-counter i has turned on the

light’. Formula
∧n−1

i=1 qi—for which we write the short-
hand

∧
i>0 qi—means that all non-counters have been in-

terrogated, and K0

∧
i>0 qi therefore means that the counter

event precond. postcondition

e∅ if
 then ε
e
¬p
i if ¬p then p := qi → p and qi := p→ qi

e
p
i if p then ε

e
¬p
0 if ¬p then ε

e
p
0 if p then p := ⊥

Figure 1: Pre- and postconditions of interrogation events

knows that all non-counters have been interrogated. To ob-
serve the light, the counter must be under interrogation, so
this implies that all prisoners have been interrogated. There-
fore we do not need an atom q0 expressing that the counter
has been interrogated.

Initial epistemic model The initial model In consists of
the single state where all atoms p, q1, . . . , qn−1 are false, and
that is accessible by all prisoners. This represents their state
of knowledge when they are in the dining area together, prior
to the start of the interrogations.

Update model for the interrogation An informal de-
scription of all relevant interrogation events is as follows.
The lower index refers to the name of the prisoner involved
in the event. The variable lower index i runs over all non-
counters 1 ≤ i ≤ n − 1. The ‘nothing happens’ event is
needed to express that the prisoners are uncertain about the
interval between interrogations. We explain it below.

• e∅: nothing happens

• e
¬p
i : if the light is off, then turn it on in case you have not

turned it on before, or else do not change the state of the
light.

• e
p
i : if the light is on, do not change the state of the light.

• e
¬p
0 : if the light is off, do not change the state of the light.

• e
p
0: if the light is on, turn it off.

The formal description of these events is in Figure 1. In the
figure, the identity or empty postcondition ε stands for ‘do
not change the state of the light’ (more precisely: do not
change the value of any fact) , and ‘if
 then ε’ represents
‘nothing happens’: the trivial precondition is always satis-
fied.

The update model In is non-deterministic choice between
all these events, with the obvious partitions for the prisoners
between the events: a prisoner i (counter or non-counter)
can distinguish events involving himself from each other and
from any other event: e

p
i �∼i e

¬p
i , and for x = p,¬p and

e �= ex
i : ex

i �∼i e.

Nothing happens? The ‘nothing happens’ event e∅ en-
sures that the prisoners remain uncertain of the state of the
light, even when they are not interrogated themselves. For
example, suppose that we are in the initial situation and that
the counter is not the first to be interrogated. If the ‘noth-
ing happens’ event were not there, then the counter would

93

know after the first interrogation that the light is on, even if
he did not know which non-counter turned the light on: if
e
¬p
0 did not take place, one of the events e

¬p
1 , . . . , e¬p

n−1 must
have taken place, all of which ensure that p becomes true,
and therefore K0p is true.

‘Nothing happens’ is commonly known as a ‘clock tick’:
nothing happens except that all agents learn that the time
has progressed. This is not an appropriate description in our
setting, because the event that nothing happens is not pub-
lic. For example, as long as a prisoner has not been interro-
gated, then even after spending many weeks in his isolation
cell, that prisoner is uncertain whether the clock has ticked
even once. On the other hand, even when a prisoner is taken
out of his isolation cell for interregation immediately, a few
split seconds after having been brought there, he cannot rule
out that all prisoners have already been interrogated and that
thousands of such clock ticks have taken place.

Instead of e
¬p
i we also could have distinguished two

events

e
¬p¬q
i : if ¬p ∧ ¬qi then p :=
 and qi :=

e
¬pq
i : if ¬p ∧ qi then ε

They have the same effect as the single event e
¬p
i . Let us

show this now. Assume that p is false. According to p :=
qi → p, if qi is false, then qi → p is true, so p becomes true;
whereas if qi is already true, qi → p is false so p remains
false. According to qi := p → qi, qi becomes true if it was
false, or remains true if it was already true. We prefer the
single event e

¬p
i , because the precondition then corresponds

to the (fresh) observation of the non-counter. Either way,
this does not matter, as the update effect is the same.

There is an inessential discrepancy between our formal-
ization and the formulation of the protocol. When the
counter sees the light on for the n− 1-st time, he announces
that everybody has been interrogated and he does not turn
off the light as before—as there is no reason left to do so.
We could have made the match exact by defining event e

p
0

as ‘if p then p := p →
∧

i>0 qi’, thus ensuring that the light

remains on if
∧

i>0 qi is true.

Public announcement Another inessential discrepancy is
that we do not model the announcement of the counter.
Technically, that would be a so-called public truthful an-
nouncement of the formula K0

∧
i>0 qi. This is a singleton

update model, accessible for all prisoners and the counter,
where the precondition and postcondition of the single event
are: ‘if K0

∧
i>0 qi then ε.’ The result of that announce-

ment is common knowledge that all have been interrogated:
CN

∧
i>0 qi is now true.

Protocol Execution of Protocol 1 consists of iteration of In
until the termination condition K0

∧
i>0 qi is satisfied. The

correctness of our implementation of this protocol cannot
be expressed in the logical language, as the language does
not contain an infinitary modal operator expressing arbitrar-
ily finite iteration of single events (and as in the branching
temporal structure resulting from iterated execution of In we
cannot select or indicate the terminating run). But we can

formulate this on a metalevel. The initial conditions are that
all of p, q1, . . . , qn are false, and that this is common knowl-
edge. Given these conditions, we show that after termination
of the protocol all prisoners have indeed been interrogated.
First note that for each i a pair (p, qi) can only once become
true during a run of Protocol 1. The only way for an atom
qi to become true is the execution of event (In, e¬p

i), and as
the only assignment changing the value of qi occurs in that
event, namely qi := p → qi, its value remains true once it
has become true. Also, because of assignment p := qi → p,
once qi is true p remains false. Now consider the statement
ψk for ‘the counter knows that at least k other prisoners have
been interrogated’, for k < n − 1. If ψk is true, then after
execution of event (In, ep

0) statement ψk+1 is true: the ob-
servation of p is a model elimination of the states with val-
uation where exactly k atoms qi (and thus ¬p) are true. For
k = n− 2, note that ψn−1 equals K0

∧
i>0 qi, which is the

termination condition.

DEMO We can also think of validating the results in a
model checker. The epistemic model checker DEMO, based
on Haskell, has been developed by Jan van Eijck (van Eijck
2007). A minor addition in functionality allows the specifi-
cation of events also involving factual change. With that, we
can model ‘prisoners’ completely in DEMO. The scripting
language of the model checker matches the logic we present
closely. It should therefore not be seen as an independent
way to determine the correctness of the protocol. DEMO
serves our purposes well because it allows us to determine
the truth of a given formula after a given event sequence
very quickly, prior to thinking systematically about a proto-
col with that formula as a postcondition. For details, see the
Appendix on DEMO.

Example: the case of three prisoners Protocol 1 only re-
quires the counter to learn that all prisoners have been inter-
rogated. Therefore, we are not interested in the knowledge
of the non-counters. A solution in a single-agent logic is
sufficient. Because we need not process the consequences
of the observations of the non-counters for their own knowl-
edge, we can merge the two events for a non-counter i into
a single event

ei : if
 then p := qi → p and qi := p → qi

without precondition and with the postcondition of e
¬p
i . This

is, because the trivial postcondition in e
p
i has the same effect

as ‘p := qi → p and qi := p → qi’: if p is true, then
according to p := qi → p the new value of p remains true,
and according to qi := p → qi the new value of qi remains
the old value of qi.

The update model I03 for the case of three prisoners is
depicted is Figure 2, and the execution in initial epistemic
model I0

3 of Protocol 1, consisting of repeated execution
of update I03 until termination, is depicted in Figure 3. We
gave it in a concise graph representation corresponding to
the tree-model generated by the initial state and the update
model, and we identified bisimilar states. The states are indi-
cated by an atomic description. The initial epistemic state is

94

e
¬p
0

e2 e∅

e
p
0

e1

0

0 0

Figure 2: Update model for the interrogation of three prisoners

¬p,q1,q2

¬p,q1,¬q2 p,q1,q2 ¬p,¬q1,q2

¬p,q1,¬q2 ¬p,¬q1,q2

p,q1,¬q2 ¬p,¬q1,¬q2 p,¬q1,q2

¬p,¬q1,¬q2

0 0

0

0 0

e1 e∅e
¬p
0

e2

e1 e2

e
p
0e

p
0

e∅e
¬p
0

e2 e1 e∅e
¬p
0

e2 e1

e
p
0

Figure 3: Depicting the execution of actions for three prisoners

the top state. We assume reflexivity and transitivity of access
for agent 0. Reflexive arrows for (therefore uninformative)
events have not been drawn. For example, in the top-left
state events e1, e2, and e∅ can also be executed but have no
effect. In the bottom state counter 0 knows that non-counters
1 and 2 turned on the light at least once.

The crucial ‘nothing happens’ event e∅ ensures that un-
certainty about the state of the light arises straight after the
prisoners leave the dining area, by way the transition from
the top of the figure to the node below it. It has the same
valuation as the top but different epistemic properties: the
counter now does not know whether the light is on, because
he is uncertain if nothing happened, or 1 has been interro-
gated, or 2 has been interrogated. Imagine that the counter
is in fact the first to be interrogated. He then finds the light
still off. This is an execution of e

¬p
0 , the transition back to

the top state of the model.

Logic of other protocols In Protocol 2 all the prisoners
count. We can adjust the event models by changing ter-
mination condition K0

∧
i>0 qi into one for all prisoners:∨n−1

j=0 Kj

∧
i>0 qi.

In Protocol 3 the initial state of the light is unknown. We
can adjust the epistemic model and the update model by hav-
ing additional atoms ri, for ‘non-counter i has turned on the

light twice’. The events for the non-counter now become:

e
¬p
i if ¬p then p := (qi ∧ ri) → p, qi := p → qi

and ri := (p ∨ ¬qi)→ ri

e
p
i if p then ε

Asynchronous behaviour For the synchronized setting
where the interval between interrogations is known, the log-
ical modelling of the problem becomes simpler, because dy-
namic epistemic logic assumes synchronization (van Ben-
them et al. 2009). In the update model In, simply remove the
‘nothing happens’ event e∅. This non-deterministic update
model can be said to represent random scheduling, namely
between n executable events e

p
0, e

p
1, ..., e

p
n−1 if the light is

on, or between n executable events e
¬p
0 , e¬p

1 , ..., e¬p
n−1 if the

light is off, respectively.

This suggests that the standard solution is an asyn-
chronous version, and that the ‘nothing happens’ event e∅
makes the difference. We think that this is indeed the case,
and that this is of general interest for dynamic epistemics.
Asynchronous behaviour in multi-agent systems can be sim-
ulated in dynamic epistemics by adding such a ‘nothing hap-
pens’ event to an event model and making it indistinguish-
able from other events. The reason why e∅ has a temporal
effect is that histories of events of different length are in-
distinguishable if they are the same except for occurrences
of e∅ events. For example, sequences e

p
1, e∅, e

p
1, e∅, e∅ and

e
p
1, e

p
1 are indistinguishable for prisoner 1. He therefore can-

not tell, so to speak, if the clock has ticked five or two times
(or any other amount): he does not know what time it is.

Growth of common knowledge? For the original setting
of the riddle, common knowledge of factual propositions
cannot grow, until the moment the announcement is made
that everybody has been interrogated. The proof is simple.
Let ϕ be a boolean proposition of interest that is not initially
commonly known. (Examples are p—the light is on, and
ψk—at least k prisoners have been interrogated.) Assume
that ϕ is not yet commonly known. Therefore (S5 property)
all prisoners consider it possible that ϕ is not commonly
known. Execute any of the events e

p
i , e

¬p
i , ep

0, e
¬p
0 . If one

of the first two is executed, prisoner 0 considers it possible
that nothing happened, and therefore still considers it pos-
sible that ϕ is not commonly known. If one of the last two
happened, take a non-counting prisoner, e.g. prisoner 1, then
1 considers it possible that nothing happened, and therefore
still considers it possible that ϕ is not commonly known.
The result can be extended from boolean to modal formulas,
but we do not know if it holds for all modal formulas.

If the interval between interrogations is known, common
knowledge can grow. For example, after one day it is com-
mon knowledge that the light is on. And it can shrink: on
day two this knowledge has been lost again. Some common
knowledge is preserved after being obtained: after one day
it is common knowledge that at least one prisoner has been
interrogated, and that remains common knowledge forever.

95

Computation

For each of the presented protocols, we can ask what the
time complexity is of expected termination, given a schedul-
ing policy of interrogation. For the original number of 100
prisoners and for the scheduling policy where prisoners are
randomly selected for interrogation, this question has been
addressed. (This policy is fair: Consider an interrogation se-
quence produced with it. With probability 1, this sequence
has the property that at any time, every prisoner will be inter-
rogated again—fairness.) It is unknown what the minimum
is of expected termination.

Before we jump in, note that for 100 prisoners: the min-
imum number of days for all prisoners to be interrogated
is 100; the minimum duration of Protocol 1 is 200 days,
namely with interrogation sequence 1, 0, 2, 0, 3, 0, ...99, 0;
and the expected duration for all prisoners to be interrogated
once, given random scheduling, is roughly 100 ln 100 = 460
days. For a prisoner to learn that all prisoners have been in-
terrogated, takes much longer.

Expected termination for protocol 1 Let n = 100 and
consider again Protocol 1. A single interrogation per day
takes place. For the light to be turned on, a non-counter
has to be interrogated. Assuming random scheduling, the
probability of a non-counter to be interrogated is 99

100 . Then
the counter has to be interrogated. The probability of that
is 1

100 . Then another non-counter, probability 98
100 , etc. The

expectations of those events are 100
99 , 100

1 , 100
98 , Their

sum is easily computed:∑99
i=1(

100
i + 100

1) = 99 · 100 + 100 ·
∑99

i=1
1
i

≈ 9, 900 + 518 = 10, 418 days

This amounts to approximately 28.5 years.

Expected termination for protocol 3 In Protocol 3 the
non-counters also keep count, namely of sequences off/on,
just in case they can announce success before the counter.
Let us call a non-counter lucky if he announces success be-
fore the counter. For the case of three prisoners, keeping
count makes sense. We have prisoners 0, 1, and 2. Distin-
guish the case that 1 is interrogated (‘called’) before 2 from
the case that 2 is interrogated before 1. In the first case, 1
gets lucky if, after 0, he is called before 2, even odds, and af-
ter that is called before 0, even odds again: 0.5 · 0.5 = 0.25.
In case 2 is initially called before 1, 1 has to be called before
0, even odds, and after 0 has then been called, 1 has to be
called before 2, even odds again, so this is also a probability
of 0.25. To this we have to add the equal probability that 2
is lucky. Together this gives a 50% chance that 1 or 2 an-
nounces success before 0. For larger n it is extremely rare
that a non-counter gets lucky. A long computation (omitted)
demonstrates that an upper bound for that probability, for
n = 100, is 5.63× 10−72.

Expected termination for protocol 5 For n = 100, if the
room is entered twice first on day m, in phase II the counter
only has to count up to 100− (m−1), for example if m = 2

we get the original solution where the counter has to count
all 99 other prisoners. The expected number of days before
a prisoner enters the room twice is 13. This is the proof:

Let K be a random variable for the number of days be-
fore a prisoner enters the room twice, let E [K] be the ex-
pectation of its value. Then P (K = k) = 1 · 99

100 ·
98
100 ·

· · · · 100−k+2
100 · k−1

100 = 100!(k−1)
100k·(100−k+1)! such that E [K] =

Σ101
k=1k

100!(k−1)
100k·(100−k+1)!

= 13.21 which is about 13 days.

This means that this prisoner knows that 11 other pris-
oners have already been interrogated. In phase II, instead of
counting to 99, it therefore suffices to count to 99−11 = 88.
The expected termination of Protocol 5 is then about 25
years, which we can informally show as follows:

What counts most is the obligation for the counter to be
interrogated again, and again, each time with an expectancy
of 100 days. So 11 days less, means 1100 days off the pre-
vious estimate, plus a bit extra given the non-counters that
have no job to perform. This shaves off nearly four years

from prison. This is therefore the result of
∑88

i=1(
100
i + 100

1)

instead of, as before,
∑99

i=1(
100
i + 100

1), plus of course the
13 days to be expected for stage I, but that is negligable.

The expected duration of protocols for 100 prisoners can
be much further reduced, down to about 10 years (see (Wu
2002)). This is e.g. the case for binary tokens protocol with
the point sequence as below. It is unknown whether much
less than 10 years is possible.

Expected termination for protocol 6 Given Protocol 6 it
remains to specify what the point sequence (Pk) should be.
The sequence should start with a block of consecutive ones,
since everyone starts with only one point. We now prove
using a coupon collection analysis (below) that the following
sequence has an average runtime of O(n(ln n)2).

(Pk) = (1, 1, . . . , 1︸ ︷︷ ︸
n ln n+n ln ln n

, 2, 2, . . . , 2︸ ︷︷ ︸
n ln n+n ln lnn

,
n

2
,
n

2
, . . . ,

n

2︸ ︷︷ ︸
n ln n+n ln ln n

).

Notice that (Pk) consists of log2 n blocks each of size
n lnn+n ln lnn, where the terms in the kth block are set to
2k, and where k indexes from 0 to (log2 n)− 1.

Lastly, if we do not succeed by the time this sequence of
length (log2 n)(n ln n+n ln lnn) expires, the prisoners still
maintain the integers in their heads, and the (Pk) sequence
restarts on itself. That is, we can see it as an infinite se-
quence of (Pk) sequences. So we can think of the protocol
as going through cycles, where each cycle has log2 n stages.

Proof of coupon collection analysis Let C be a random
variable denoting the number of cycles till victory is de-
clared. A cycle of the binary tokens protocol is said to
succeed if victory is declared in that cycle, and is deemed
a failure otherwise. Each cycle lasts for at most τ =
(log2 n)(n ln n + n ln lnn) days, so we can estimate the
average runtime of the protocol by computing E [C]. If pi

be the probability that the ith cycle succeeds, then the (pi)
sequence is non-decreasing. This is the case since mental

96

counts are saved from one cycle to the next, which only re-
duces the competition amongst prisoners to flip the bulb to
the ON state. Thus, if C′ is the number of cycles when men-
tal counts are erased, then C ≤ C′, and we have the upper
bound E [C] ≤ E [C′]. Since C′ is a geometric random vari-
able, it only remains to bound the probability that one cycle
of the protocol succeeds.

To analyze one cycle, observe that if the mth bit of a pris-
oner’s mental count is 1, then he can only clear this bit by
turning on the light bulb in the mth stage, since that is the
only stage in which the bulb is worth 2m points. Thus, the
protocol succeeds in one cycle if and only if at every stage,
every prisoner with a nonzero mental count is chosen at least
once, where the number of prisoners in Stage k with is n/2k.
Hence, each stage reduces to a coupon collection problem.
In the kth stage, we collect n/2k coupons (tokens), and we

have n lnn+n ln lnn days to do it. If P

[
F

(k)
j

]
is the prob-

ability of failing to collect the jth coupon at the kth stage,
where j ∈ {1, . . . , n/2k}, then

P

[
F

(k)
j

]
=

(
1−

1

n/2k

)n ln n+n ln ln n

≤
(
e−2k

)lnn+ln ln n

= (n ln n)−2k

≤
1

n lnn
.

Invoking the union bound, P
[
F (k)

]
, the probability of the

kth stage failing, is

P

[
F (k)

]
= P

⎡
⎣n/2k⋃

j=1

F
(k)
j

⎤
⎦ ≤ n/2k∑

j=1

P

[
F

(k)
j

]
≤

1

2k

1

ln n
.

Let F denote the event that the first cycle fails. Since failure
occurs if and only if at least one of the log2 n stages fails,
we can again invoke the union bound:

P [F] = P

⎡
⎣(log

2
n)−1⋃

k=0

F (k)

⎤
⎦ ≤ (log

2
n)−1∑

k=0

P

[
F (k)

]
≤

(log
2

n)−1∑
k=0

1

2k

1

ln n
≤

2

ln n
.

Let S be the event that the first cycle succeeds. Then
P [S] = 1−P [F] ≥ 1− 2

ln n . Thus,

E [C] ≤ E [C′] =
1

P [S]
≤

1

1− 2
lnn

−→ 1

Conclusively, the expected number of days till the prisoners
escape is upper bounded by

E [C′] · τ =

(
1

1− 2
ln n

)
· (log2 n)(n ln n + n ln lnn)

−→ O(n(ln n)2).

This finishes the proof.

Further research

Puzzle We keep discovering and designing more versions
of the riddle. Protocol 4 was a recent addition. The authors
of (Dehaye, Ford, and Segerman 2003) mention generaliza-
tions to the computation of any Turing-computable function
with n arguments by n prisoners communicating this way—
termination is when a prisoner declares the output of the
computation.

Logic For our modelling purposes, the logic we presented
has restrictions: we cannot refer to past events in precondi-
tions, we can simulate but not really express asynchronous
behaviour (although this largely depends on the meaning of
the word ‘really’), we cannot express arbitrary finite execu-
tion (‘Kleene-star’) of events, and we cannot select single
runs of a protocol. It is worthwhile to live with such restric-
tions, as the underlying logic is axiomatizable, as there are
model checking tools for verification, etc. Let us explore
what is needed to lift these restrictions.

The protocol prescribes that a non-counter i turns the light
on, except when he has done so before. We have introduced
atomic propositions qi in the language that are initially false,
become true when non-counter i turns on the light, and then
remain true forever. The protocol then prescribes that a non-
counter turns the light on, except when qi is true. An intu-
itively more appealing proposal would not use such auxiliary
variables qi. If a dynamic epistemic logic with (arbitrary)
past operators were to exist..., then we could express directly
that a non-counter will turn on the light unless he has done
it before, such that a single atom suffices to model the entire
riddle. Works reporting progress in this area are (Sack 2007;
Aucher and Herzig 2007; Renne, Sack, and Yap 2009).

In a linear temporal modal logic (LTL) fair scheduling of
prisoners and correctness of the protocol can be expressed
directly, unlike in dynamic epistemic logic. Temporal logics
are also suited to express asynchronous behaviour. An alter-
native modelling in temporal epistemic logics seems there-
fore worthwhile to investigate. A relation between dynamic
epistemic logics and branching time temporal logics is by
way of tree models (forests) à la (van Benthem et al. 2009)
that are induced by repeated update model execution.

Computation It is not known what the minimum expected
termination time is of protocols to solve the riddle (for 100
prisoners). This has already been investigated with extensive
simulations and trials, without a conclusive answer.

Acknowledgements

We thank Barteld Kooi for his contributions to and for his
comments on this work. We also thank ESSLLI’08 partic-
ipants Andrew Priddle-Higson and Stefan Minica for their
solutions in DEMO of the prisoners riddle. We thank the
KR 2010 anonymous reviewers for their comments. Hans
van Ditmarsch is also affiliated to Computer Science, Uni-
versity of Otago, New Zealand.

97

References

Aucher, G., and Herzig, A. 2007. From DEL to EDL :
Exploring the power of converse events. In Mellouli, K.,
ed., ECSQARU, LNCS 4724, 199–209. Springer.

Baltag, A. 2002. A logic for suspicious players: Epistemic
actions and belief updates in games. Bulletin of Economic
Research 54(1):1–45.

Dehaye, P.; Ford, D.; and Segerman, H. 2003. One hun-
dred prisoners and a lightbulb. Mathematical Intelligencer
25(4):53–61.

Herzig, A., and Lima, T. D. 2006. Epistemic actions and
ontic actions: A unified logical framework. In Sichman, J.,
et al., eds., IBERAMIA-SBIA 2006, LNAI 4140, 409–418.
Springer.

IBM Research. 2002. Ponder this challenge.
http://domino.watson.ibm.com/Comm/wwwr_

ponder.nsf/challenges/July2002.h%tml.

Kooi, B. 2007. Expressivity and completeness for public
update logics via reduction axioms. Journal of Applied Non-
Classical Logics 17(2):231–254.

Renne, B.; Sack, J.; and Yap, A. 2009. Dynamic epistemic
temporal logic. In He, X.; Horty, J.; and Pacuit, E., eds.,
Logic, Rationality, and Interaction. Proceedings of LORI
2009, 263–277. Springer. LNCS 5834.

Sack, Y. 2007. Adding Temporal Logic to Dynamic Epis-
temic Logic. Ph.D. Dissertation, Indiana University, Bloom-
ington, USA.

van Benthem, J.; Gerbrandy, J.; Hoshi, T.; and Pacuit, E.
2009. Merging frameworks for interaction. Journal of Philo-
sophical Logic 38:491–526.

van Benthem, J.; van Eijck, J.; and Kooi, B. 2006. Logics of
communication and change. Information and Computation
204(11):1620–1662.

van Ditmarsch, H., and Kooi, B. 2008. Semantic results for
ontic and epistemic change. In Bonanno, G.; van der Hoek,
W.; and Wooldridge, M., eds., Logic and the Foundations of
Game and Decision Theory (LOFT 7), Texts in Logic and
Games 3. Amsterdam University Press. 87–117.

van Ditmarsch, H.; van der Hoek, W.; and Kooi, B. 2005.
Dynamic epistemic logic with assignment. In Proceedings
of the Fourth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 05), 141–148.
New York: ACM Inc.

van Ditmarsch, H. 2006. The logic of Pit. Knowledge,
Rationality & Action (Synthese) 149(2):343–375.

van Eijck, J. 2007. DEMO — a demo of epistemic mod-
elling. In van Benthem, J.; Gabbay, D.; and Löwe, B.,
eds., Interactive Logic — Proceedings of the 7th Augustus
de Morgan Workshop. Amsterdam University Press. 305–
363. Texts in Logic and Games 1.

Winkler, P. 2004. Mathematical Puzzles: A Connoisseur’s
Collection. AK Peters.

Wu, W. 2002. 100 prisoners and a lightbulb. Manuscript.

Appendix: Logic

Epistemic model The models to present an information
state in a multi-agent environment are the Kripke models
from epistemic logic. The set of states together with the
accessibility relations represent the information the agents
have. If one state s has access to another state t for an agent
a, this means that, if the actual situation is s, then according
to a’s information it is possible that t is the actual situation.

Let a finite non-empty set of agents N and a countable set
of propositional variables P be given. An epistemic model
is a triple M = (S, R, V) such that

• S is a non-empty set of possible states,

• R : N → ℘(S × S) assigns an accessibility relation to
each agent a,

• V : P → ℘(S) assigns a set of states to each proposi-
tional variable.

A pair (M, s), with s ∈ S, is called an epistemic state.

Update model An epistemic model represents the infor-
mation of the agents. Information change should therefore
be modelled as changes of such a model. One can model
an information-changing event in the same way as an infor-
mation state, namely as some kind of Kripke model: there
are various possible events, which the agents may not be
able to distinguish. This is the domain of the model. Rather
than a valuation, a precondition captures the conditions un-
der which such events may occur.

An update model (event model) for a finite set of agents
N and a language L is a quadruple U = (E, R, pre, post)
where

• E is a finite non-empty set of events,

• R : N → ℘(E × E) assigns an accessibility relation to
each agent,

• pre : E→ L assigns a precondition to each event,

• post : E → (P → L) assigns a postcondition to each
event for each atom.

Each post(e) is required to be only finitely different from
the identity function ε(p) = p. The finite difference is called
the domain dom(post(e)) of post(e). Note that the domain
of ε is empty, which explains its name. A pair (U, e) with
a distinguished actual event e ∈ E is called an update. We
will denote

pre(e) = ϕ and post(e)(p1) = ψ1, ... and post(e)(pn) = ψn

using the expression

for event e: if ϕ, then p1 := ψ1, ..., and pn := ψn.

Execution of update model in epistemic model The ef-
fects of these information changing events on an informa-
tion state are as follows. Given are an epistemic model
M = (S, R, V), a state s ∈ S, an update model U =
(E, R, pre, post) for a language L that can be interpreted
in M , and an event e ∈ E with (M, s) |= pre(e). The result

98

of executing (U, e) in (M, s) is the model (M ⊗U, (s, e)) =
((S′, R′, V ′), (s, e)) where

• S′ = {(t, f) | (M, t) |= pre(f)},

• R′(a) = {((t, f), (u, g)) | (t, u) ∈ R(a) and (f, g) ∈
R(a)},

• V ′(p) = {(t, f) | (M, t) |= post(f)(p)}.

Dynamic epistemic logic Event models can be used to de-
fine a logic for reasoning about information change. An up-
date is associated with a dynamic operator in a modal lan-
guage, based on epistemic logic. The updates are now part
of the language: an update (U, e) is an inductive construct of
type α that should be seen as built from simpler constructs
of type ϕ, namely the preconditions and postconditions for
the events of which the update consists.

Language Let a finite set of agents N and a countable set
of propositional variables P be given. The language L is
given by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CBϕ | [U, e]ϕ

where p ∈ P , a ∈ N , B ⊆ N , and (U, e) is a finite up-
date (i.e., the domain of U is finite) for N and L . We
use the usual abbreviations, in particular for
 (true) and
⊥ (false), we write 〈U, e〉 for ¬[U, e]¬ϕ, and [U]ϕ stands for∧

f∈U
[U, f]ϕ.

Semantics The semantics of this language is standard for
epistemic logic and based on the product construction for the
execution of update models. Below, R(B) is the reflexive
transitive closure of the union of all accessibility relations
R(a) for agents a ∈ B.

Let an epistemic state (M, s) with M = (S, R, V) be
given. Let a ∈ N , B ⊆ N , and ϕ, ψ ∈ L .

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s �|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Kaϕ iff for all t s.t. R(a)(s, t), M, t |= ϕ
M, s |= CBϕ iff for all t s.t. R(B)(s, t), M, t |= ϕ
M, s |= [U, e]ϕ iff M, s |= pre(e) implies

M ⊗ U, (s, e) |= ϕ

A formula ϕ is valid, notation |= ϕ, iff, given an epistemic
model (for agents N and atoms P), it is true in all its states.

Composition Given two update models, their composi-
tion is another update model. Let update models U =
(E, R, pre, post) and U′ = (E′, R′, pre′, post′) and events
e ∈ E and e′ ∈ E′ be given. The composition (U, e) ◦
(U′, e′) of these update models is (U′′, e′′) where U′′ =
(E′′, R′′, pre′′, post′′) is defined as follows

• E′′ = E× E′,

• R′′(a) = {((f, f′), (g, g′)) | (f, g) ∈ R(a) and (f′, g′) ∈
R′(a)},

• pre′′(f, f′) = pre(f) ∧ [U, f]pre′(f′),

• dom(post′′(f, f′)) = dom(post(f)) ∪ dom(post′(f′));
and if p ∈ dom(post′′(f, f′)), then post′′(f, f′)(p) =
post(f)(p) if p �∈ dom(post′(f′)), and [U, f]post′(f′)(p)
otherwise.

We can either sequentially execute two update mod-
els, or compute their composition and execute that: |=
[U, e][U′, e′]ϕ↔ [(U, e) ◦ (U′, e′)]ϕ.

Appendix: DEMO implementation

The following is a literate version of the DEMO program
LB.hs, that specifies the epistemic model I0

3 and the update
model I03 for three prisoners. First we declare the lightbulb
module and import some relevant DEMO files :

module LB

where

import List

import HFKR

import RPAU

import RAMU

import IEMC

Define the relevant formulas p, q1, q2, and the crucial for-
mula Ka(q1 ∧ q2). Counter 0 is called agent a in the pro-
gram. In DEMO, agents cannot be given numbers as names.

p, q1, q2, form :: Form

p = Prop (P 0)

q1 = Prop (Q 1)

q2 = Prop (Q 2)

form = K a (Conj [q1,q2])

Declare the initial model I0
3 for agent a.

type EM = EpistM State

initm :: EM

initm = Mo [0] [a] val acc [0]

where

val = [(0,[])]

acc = [(a,0,0)]

In initm :: EM we specify that EM is the type of the
epistemic modelinitm. It is then created in initm = Mo

[0] [a] val acc [0] stating that its domain consists
of 0 only, that a is the agent, with valuation val and access
acc given on the line below it, and with points (set of des-
ignated states) [0]; then val = [(0,[])] specifies that
no facts are true in state 0, and acc = [(a,0,0)] spec-
ifies that state 0 is accessible by a to itself (i.e., universal
access).

Instead of a single update model I03 we define, only for
convenience, three update models, namely for the interroga-
tion of prisoners 0, 1, 2, where 0 now indeed is the counter.

type UM = FACM State

interrog :: Integer -> UM

interrog 0 = _ -> Acm

[0,1]

[a]

99

[(0,(p,[(P 0,Neg Top)])),

(1,(Neg p,[]))]

[(a,0,0),(a,1,1)]

[0,1]

interrog 1 = _ -> Acm

[0,1,2]

[a]

[(0,(Top, [(P 0,q1 ‘impl‘ p),

(Q 1,p ‘impl‘ q1)])),

(1,(Top, [(P 0,q2 ‘impl‘ p),

(Q 2,p ‘impl‘ q2)])),

(2,(Top, []))]

[(a,x,y) | x <- [0..2], y <- [0..2]]

[0]

interrog 2 = _ -> Acm

[0,1,2]

[a]

[(0,(Top, [(P 0,q1 ‘impl‘ p),

(Q 1,p ‘impl‘ q1)])),

(1,(Top, [(P 0,q2 ‘impl‘ p),

(Q 2,p ‘impl‘ q2)])),

(2,(Top, []))]

[(a,x,y) | x <- [0..2], y <- [0..2]]

[1]

In all DEMO update and epistemic models, domain el-
ements have to be numbered starting from 0. The pair
wherein the first argument is the number (name) for an
event, has as second argument a two-element list contain-
ing the precondition and the postcondition in that order.
Events 0, 1 in interrog 1 correspond to, respectively,
e
p
0 and e

¬p
0 . Events 0, 1, and 2 in interrog 2 (and

also in interrog 3) correspond to e1, e2, and e∅, respec-
tively. For example, (0,(p,[(P 0,Neg Top)])) is as
‘If p then p := ⊥’ for event e

p
0 (p is the placeholder for

actual propositional variable P 0, a syntax peculiarity we
can overlook here), and (0,(Top,[(P 0,q1 ‘impl‘

p),(Q 1,p ‘impl‘ q1)])) states that in e1, with
precondition
, the postcondition is that p := q1 → p and
q1 := p → q1. Note that there is no separate interrogation
event for ‘nothing happens’: this reflects that in actual in-
terrogation sequences we can ignore that event, it is merely
there to model ignorance of the counter appropriately.

Here are some example update results. After interrogation
of prisoners 1 and 0, in that order, the epistemic situation is
like this:

LB> displayS5 (upds initm [interrog 1,

interrog 0])

[0,1]

[(0,[q1]),(1,[q2])]

(a,[[0,1]])

[0]

The light is off (for the counter has switched it off), and
the counter knows that either prisoner 1 or prisoner 2 was
interrogated before him, for he has found the light on. The
actual state of affairs is 0, for in fact it was prisoner 1 who
has switched on the light. The counter knows that the light
is off.

Now assume that after these events prisoner 2 gets inter-
rogated. We get the following epistemic situation:

LB> displayS5 (upds initm [interrog 1,

interrog 0, interrog 2])

[0,1,2]

[(0,[q1]),(1,[p,q1,q2]),(2,[q2])]

(a,[[0,1,2]])

[1]

The light is on now, for prisoner 2 has switched it on. In
fact, prisoners 1 and 2 have now both been interrogated, but
the counter does not know this. He cannot distinguish the
actual situation 1 from the situation where only prisoner 1
has been interrogated and the situation where only prisoner
2 has been interrogated. This changes at the moment where
prisoner 0 gets interrogated again. Now the counter knows
that all have been interrogated:

LB> displayS5 (upds initm [interrog 1,

interrog 0, interrog 2, interrog 0])

[0]

[(0,[q1,q2])]

(a,[[0]])

[0]

Finally, let us define the protocol. The protocol specifies for
every sequence of interrogations what happens to the knowl-
edge state of the counter. Since DEMO is implemented in a
lazy functional language, it can handle infinite sequences as
arguments.

protocol :: [Integer] -> [EM]

protocol = protocol’ initm

where protocol’ m (i:is)

| isTrue m form = [m]

| otherwise =

m : protocol’ (upd m (interrog i)) is

The part protocol given as protocol’ initm applies
to a list [Integer] of integers describing an interroga-
tion sequence. At any stage, given intermediate result epis-
temic model m and remaining sequence (i:is) starting
with the interrogation of prisoner i, first check if the ter-
mination condition form is satisfied, and if so, the protocol
terminates and the model m is output (isTrue m form =

[m]), otherwise, apply the result of the update of m with the
interrogation by prisoner i ((upd m (interrog i)))
to the remaining interrogation sequence is.

A run of the protocol displays how the knowledge state
evolves as the interrogations proceed:

run :: [Integer] -> IO ()

run process = sequence_

(map displayS5 (protocol process))

The program can easily be generalized to the multi-agent
situation where we consider the knowledge of all three pris-
oners and to the version of the riddle where it is unknown
whether the light is on initially.

100

