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Abstract

We demonstrate the role of commonsense inference toward
the modeling of qualitative notions of space and spatial
change within a dynamic setup. The inference patterns are
connected to those that are required to handle the frame prob-
lem whilst modeling inertia, and the causal minimisation of
(Lin 1995) that is required to account for the ramifications of
occurrences. Such patterns are both useful and necessary in
order to operationalize a domain-independent qualitative spa-
tial theory that is re-usable in arbitrary dynamic spatial sys-
tems, e.g., for spatial planning and causal explanation tasks.
The illustration, grounded in the context of embedding arbi-
trary ‘qualitative spatial calculi’ within the situation calculus,
utilizes topological and orientation calculi as examples.

1. Introduction

Research in the qualitative spatial reasoning domain has fo-
cused on the representational aspects of spatial information
conceptualization and the construction of efficient computa-
tional apparatus for reasoning over those by the application
of constraint-based techniques (Cohn and Renz 2007). For
instance, given a qualitative description of a spatial scene, it
is possible to check for its consistency along arbitrary spa-
tial domains (e.g., topology, orientation and so forth) in an
efficient manner by considering the general properties of a
qualitative calculus (Ligozat and Renz 2004). So an impor-
tant question that may be posed is: how do we integrate these
specializations, which allow us to efficiently reason about a
static spatial configuration, within a dynamic spatial system
(Bhatt and Loke 2008) where spatial configurations undergo
changes as a result of actions and events occurring within the
system? More generally, how do we embed a specialized
commonsense theory of space and spatial change within a
general formalism to describe and reason about change? In-
deed, this is closely connected to the agenda described by
(Shanahan 1995), and is also related to the broader theme
of the sub-division of endeavors and their integration in AI.
Shanahan describes it aptly:

‘If we are to develop a formal theory of commonsense, we
need a precisely defined language for talking about shape,
spatial location and change. The theory will include axioms,
expressed in that language, that capture domain-independent
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truths about shape, location and change, and will also incor-
porate a formal account of any non-deductive forms of com-
monsense inference that arise in reasoning about the spatial
properties of objects and how they vary over time’

This paper complements the results in (Bhatt 2009), where
commonsense inference from the viewpoint of phenome-
nal and reasoning requirements is presented. Here, we
demonstrate the utility of commonsense inference within the
framework of the situation calculus for representing and rea-
soning about changing spatial domains. The reasoning tasks
are directly connected to fundamental epistemological as-
pects concerning the frame and ramification problems, and
are necessary for consistently preserving some of the high-
level axiomatic aspects that characterize a generic qualita-
tive spatial calculus (Section 2). Although we do not ex-
plicitly address all aspects pertaining to the task of ‘spa-
tial calculus embedding’ (within situation calculus) herein,
that is essentially the overall context. Here we solely focus
on demonstrating the use of commonsense reasoning in the
context of (AI–AII):

AI maintaining compositional consistency of sets of spatial rela-
tions pertaining to an arbitrary number of integrated / non-
integrated spatial calculi, i.e., calculi with / without integrated
composition theorems. Here, compositional consistency for
each spatial calculus is defined by the properties that are intrin-
sic to it and does not depend on the default reasoning approach.
This aspect is connected to the ramification problem (Section
3.1).

AII inertial aspects of a dynamic spatial system determining what
remains unchanged, one instance of this being characterized by
the intuition that the qualitative spatial relationship between two
primitive spatial entities typically remains the same. Indeed,
these aspects are connected to the frame problem (3.2).

Reasoning about changing spatial configurations in the
presence of actions and events is useful in several scenarios
of which the domain of cognitive robotics is a prime exam-
ple. For instance, spatial re-configuration may be formulated
as a planning task: given compositionally consistent mod-
els of an initial and desired spatial configuration, regress a
situational-history (i.e., a sequence of actions) that would
produce the goal configuration. Similarly, given an initial
situation description and a temporally ordered set of partial
observations denoting configurations of objects, abduce an
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Figure 1: Topological and Orientation Calculi

explanation that entails the observations. Indeed, the em-
bedding and/or integration of commonsense notions of space
and spatial change (e.g., qualitative spatial calculi) within
the formal apparatus to reason about action and change is
a necessary endeavor for operationalizing (spatial) calculi
in practical application domains and for realizing the afore-
mentioned spatial planning and causal explanation tasks.

2. Ontology of Space and Change

The situation calculus formalism used in this work, denoted
Lsitcalc, is a first-order many-sorted language with equality and
the usual alphabet of logical symbols {¬, ∧, ∨, ∀, ∃, ⊃, ≡}.
There are sorts for events and actions (Θ), situations (S), spatial
objects (O) and regions of space (R), with corresponding (lower-
case) variables for each sort. The use of the predicates including,
Holds, Poss, Occurs, Caused and the Result function for a
typical situation calculus theory will be self-evident. With Lsitcalc
as a basis, a situation calculus meta-theory Σsit required from the
viewpoint of the causal minimisation framework of (Lin 1995) is
adopted :

Definition 1 (Foundational Theory Σsit). The foundational
theory Σsit of the situation calculus formalism consists of the fol-
lowing set of formulae: the property causation axiom determin-
ing the relationship between being ‘caused’ and being ‘true’, a
generic frame axiom in order to incorporate the assumption of in-
ertia, uniqueness of names axioms for the fluents, occurrences and
fluent denotations, and domain closure axioms for propositional
and functional fluents. �

The spatial ontology that is required depends on the na-
ture of the spatial calculus that is being modeled. In gen-
eral, spatial calculi can be classified into two groups: topo-
logical and positional calculi. When a topological calcu-
lus such as the Region Connection Calculus (RCC) (Randell
1992) is being modeled, the primitive entities are spatially
extended and could possibly even be 4D spatio-temporal his-
tories (e.g., in a domain involving the analyses of motion-
patterns). Alternately, within a dynamic domain involving
translational motion in a plane, a point-based (e.g., Double
Cross Calculus (Freksa 1992),OPRAm (Moratz 2006) ) or
line-segment based (e.g., Dipole Calculus (Schlieder 1995))
abstraction with orientation calculi suffices. Figure 1(a) is
a 2D illustration of relations of the RCC-8 fragment of the
region connection calculus. This fragment consists of eight
relations: disconnected (dc), externally connected (ec), par-
tial overlap (po), equal (eq), tangential proper-part (tpp) and
non-tangential proper-part (ntpp), and the inverse of the lat-
ter two tpp−1 and ntpp−1. Similarly, Fig. 1(b) illustrates
one primitive relationship for the Oriented Point Relation
Algebra (OPRA) (Moratz 2006), which is a spatial calculus

consisting of oriented points (i.e., points with a direction pa-
rameter) as primitive entities. The granularity parameter m
determines the number of angular sectors, i.e., the number
of base relations. Applying a granularity of m = 2 results
in 4 planar and 4 linear regions (Fig. 1(b)), numbered from
0 to 7, where region 0 coincides with the orientation of the
point. The family of OPRAm calculi are designed for rea-
soning about the relative orientation relations between ori-
ented points and are well-suited for dealing with objects that
have an intrinsic front or move in a particular direction.
Definition 2 (Valid Regions within the Theory). Let U de-
note the universe of the primitive spatial entities, whatever be their
precise geometric interpretation in 	n. When extended, a region
is valid if it has a well-defined spatiality, is measurable using some
notion of n-dimensional measurability that is consistent across
inter-dependent spatial domains (e.g., topology and size) and the
region is convex and of uniform dimensionality. �
Definition 2 is one way to set the basic requirements for
a particular application domain – these are necessary to
accommodate the spatial calculi we use in the examples.
The functional fluent extension(o) denotes the extension
of a physical object in space – to emphasize, this could
be a region of space (for a topological calculus such as
RCC), or a hypothetical entity such as a point or in gen-
eral, an ordered tuple of points (for line-segment based ori-
entation calculi) and also possibly a point with an addi-
tional direction parameter (for modeling a calculus such as
OPRAm) on an absolute frame of reference. We suppose
that the precise semantics vis-à-vis the concrete domain in
�n is provided by a domain-specific qualifier. Finally, let
R = {R1, R2, . . . , Rn} be a finite set of binary base
relationships of a qualitative calculus over U with some
spatial/spatio-temporal interpretation.1 We reify the base re-
lationships inR for representational purposes. i.e., relation-
ships from each R are treated as concrete fluent denotations
for spatial fluents denoting the spatial relationship between
the primitive entities of U – let Γsp = {γ, γ1, . . . , γn} de-
note such a set. For brevity, the object-region equivalence
axiom (1) for spatial fluents (φsp) denoting spatial relation-
ships (γ) between primitive spatial entities is used:

Holds(φsp(o1, o2), γ, s) ≡ (∃ri, rj). extension(o1, s) = ri

∧ extension(o2, s) = rj ∧ Holds(φsp(ri, rj), γ, s)
(1)

From a high-level axiomatic viewpoint, a spatial calculus
defined on R has the following properties:

P1 R has the jointly exhaustive and pair-wise disjoint (JEPD) prop-
erty, meaning that for any two entities in U , one and only one
spatial relationship from R holds in a given situation

P2 the basic transitivity, symmetry or asymmetry or the relationship
space is known

P3 the primitive entities in R have a continuity structure, referred to
its conceptual neighborhood (CND) (Freksa 1991), which deter-
mines the direct, continuous changes in the quality space (e.g.,
by deformation, and/or translational/rotational motion)

1Binary spatial relations are assumed here, but potential scenar-
ios could also involve ternary orientation calculi.
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Figure 2: Complete N-Clique Descriptions

P4 for a calculus with n JEPD relationships, [n × n] composition
theorems are pre-computed

P5 axioms of interaction that explicitly model interactions between
interdependent spatial calculi, when more than one calculi are
being applied in a non-integrated manner (i.e., with independent
composition theorems)

Whereas the JEPD property (P1) is necessary to model
compositional reasoning and consistency maintenance, the
CND structure (P) is useful in either projecting or abducing
potential states for sets of qualitative spatial descriptions. By
definition, for any spatial calculus, we assume that (P1–P5)
are known apriori. Given the scope of this paper, we only
discuss the modeling of requirements (P4) and (P5) herein.
However, note that in order to realize a domain-independent
spatial theory that is re-usable across arbitrary dynamic do-
mains, it is necessary to preserve all the high-level axiomatic
semantics in (P1–P5), and implicitly the underlying alge-
braic properties, that collectively constitutes a ‘qualitative
spatial calculus’ (Ligozat and Renz 2004).

3. Commonsense and (Spatial) Calculi

3.1 Global Compositional Consistency

Corresponding to each situation (within a hypothetical
branching-tree structured situation space), there exists a sit-
uation description that characterizes the spatial state of the
system. Starting with the initial situation, it is necessary that
the spatial component of such a state be a ‘complete specifi-
cation’ without any missing information. Note that by com-
plete specification, we do not imply absence of uncertainty
or ambiguity. Completeness also includes those instances
where the uncertainty is expressed as a set of completely
specified alternatives in the form of disjunctive informa-
tion. From the (spatial) viewpoint, for k spatial calculi be-
ing modeled, the initial situation description involving n do-
main objects requires a complete n-clique specification with
[n(n − 1)/2] spatial relationships for each of the respec-
tive calculi (Fig. 2). Precisely, given that the foundational
theory Σsit (Def. 1) consists of unique names axioms for
fluents (i.e., [φsp(oi, oj) �= φsp(oj , oi)]), static spatial con-
figurations in actuality consist of [(k × [n(n − 1) / 2]) × 2]
unique functional fluents.
CI. Composition Theorems: From an axiomatic viewpoint,
the notion of a spatial calculus, be it topological, orienta-
tional or other, defined on a relationship spaceR is (primar-
ily) based on the derivation of a set of compositions between
the primitive JEPD set R. In general, for a calculus consist-
ing of n JEPD relationships (i.e., n= |R|), [n× n] composi-
tions are precomputed. Each of these composition theorems
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Figure 3: Compositional Consistency and Ramifications

is equivalent to an ordinary state constraint (2), which every
n-clique spatial situation description (Fig.2) should satisfy.

(∀s). [Holds(φsp(o1, o2), γ1, s) ∧ Holds(φsp(o2, o3), γ2, s)

⊃ Holds(φsp(o1, o3), γ3, s)]
(2)

CII. Axioms of Interaction: Axioms of interaction are only
applicable when more than one spatial domain is being mod-
eled in a non-integrated manner. Such axioms provide an
explicit characterization of the relative entailments that ex-
ist between inter-dependent aspects of space. For instance,
a spatial relationship of one type may directly entail or con-
strain a spatial relationship of another type (3a). Such ax-
ioms could also possibly be compositional in nature, mak-
ing it possible to compose spatial relations pertaining to two
different aspects of space in order to yield a spatial relation
of either or both spatial types used in the composition (3b).

(∀s). [Holds(φsp1(o, o
′
), γ, s) ⊃ Holds(φsp2(o, o

′
), γ

′
, s)] (3a)

(∀s). [Holds(φsp1(oa, ob), γ′
sp1, s) ∧ Holds(φsp2(ob, oc), γ′

sp2, s)

⊃ Holds(φsp(oa, oc), γsp, s)]

(3b)

We further exemplify (CI–CII) for topological, size and ori-
entation relationships in (4–5). Here, the following notion
of global compositional consistency accounting for (CI–CII)
suffices:
Definition 3 (C-Consistency). A situation is C-Consistent, i.e.,
compositionally consistent, if the n-clique state or spatial situation
description corresponding to the situation satisfies all the composi-
tion constraints of every spatial domain (e.g., topology, orientation,
size) being modeled, as well as the relative entailments as per the
axioms of interaction among inter-dependent spatial calculi when
more than one spatial calculus is modeled.

Although the details do not pertain here, it is instructive
to point out that C-Consistency is a key (contributing) no-
tion in operationalizing the principle of ‘physically realiz-
able/plausible’ situations for spatial planning and causal ex-
planation tasks.

C-Consistency and Ramifications Spatial situation de-
scriptions denoting configurations of domain objects must
be C-Consistent (Def. 3). To re-emphasize, in addition to
the compositional constraints overR, C-Consistency also in-
cludes those scenarios when more than one aspect of space
is being modeled in a non-integrated way, i.e., relative de-
pendencies between mutually dependent spatial dimensions

10



that are modeled explicitly too should be satisfiable. En-
suring these two aspects of global consistency of spatial in-
formation is problematic because both compositional con-
straints as well as axioms of interaction contain indirect ef-
fects in them, thereby necessitating a solution to the ramifi-
cation problem (Finger 1987). In the context of the situation
calculus, (Lin 1995) illustrates the need to distinguish or-
dinary state constraints from indirect effect yielding ones,
the latter being also referred to as ramification constraints.
This is because when ramification constraints are present,
it is possible to infer new effect axioms from explicitly for-
mulated (direct) effect axioms together with the ramification
constraints. Simply speaking, ramification constraints lead
to what can be referred to as ’unexplained changes’, which
is clearly undesirable within a qualitative theory of spatial
change. These are further illustrated in examples (E1–E2):
E1. Motion and/or Deformation: Consider the basic case
of compositional inference with three objects a, b and c:
when a and b undergo a transition to a different qualitative
state (either by translational motion and/or deformation),
this also has an indirect effect, although not necessarily, on
the spatial relationship between a and c since the relation-
ship between the latter two is constrained by at least one of
the [n × n] compositional constraints (2) of the relational
space. As one example, consider the illustration in Fig. 3(a)
– the scenario depicted herein consists of the topological re-
lationships between three objects ‘a’, ‘b’ and ‘c’. In the
initial situation ‘S0’, the spatial extension of ‘a’ is a non-
tangential part of that of ‘b’. Further, assume that there is a
change in the relationship between ‘a’ and ‘b’, as depicted
in Fig. 3(a), as a result of a direct effect of an event such as
growth or an action involving the motion of ‘a’. Indeed, as
is clear from Fig. 3(a), for the spatial situation description
in the resulting situation (either ‘S1’ or ‘S2’), the composi-
tional dependencies between ‘a’, ‘b’ and ‘c’ must be adhered
to, i.e., the change of relationship between ‘a’ and ‘c’ must
be derivable as an indirect effect from the underlying com-
positional constraints. The new relationship between a and
c in situation S2 can either result in: increased ambiguity,
decreased ambiguity and in some cases no change at all.2
In the case of the RCC-8 topological calculus, there exist a
total of 64 composition theorems, 27 of which provide un-
ambiguous information as to the potential relationship. All
other compositions provide disjunctive information that may
further be refined by the inclusion of complementary spatial
calculi (Randell and Witkowski 2004). The support of mod-
eling complementary axioms of interaction (3) is included
for this purpose.
E2. Interdependent Calculi: The relative entailments be-
tween the topological and the size domains serve as the sim-
plest example of interacting spatial calculi. Consider Table
1, which illustrates the mutual entailments between size re-
lationships and the RCC-8 topological primitives (Gerevini
and Renz 2002). For instance, size equality rules out all con-
tainment (tpp, ntpp and their inverses) relationships. Simi-
larly, if it is known that object o is a tangential part of object

2The former two cases involve ramifications whereas the last
case, further discussed in Section 3.2, pertains to inertia.

(a) Topology to Size
φtop φsize φtop φsize

tpp |= < dc |= no-info
ntpp |= < ec |= no-info

tpp−1 |= > po |= no-info

ntpp−1 |= > eq |= =

(b) Size to Topology
φsize φtop

= |= dc ∨ ec ∨ po ∨ eq

> |= dc ∨ ec ∨ po ∨ tpp−1 ∨ ntpp−1

< |= dc ∨ ec ∨ po ∨ tpp ∨ ntpp

Table 1: Mutual Entailments for Topology and Size

o
′
, then it can also be presumed that the size of object o is

less than the size of o
′
. The other forms of interaction are

compositional in nature and may be illustrated with topo-
logical and naive intrinsic orientational primitives. Consider
the illustration in Fig. 3(b) where the composition of topo-
logical and orientation relations front and inside involving
3 objects a, b and c is depicted. Here, topological and ori-
entation relationships between [b,c] and [a,b] respectively
implies an orientation relation between [a,c]. This and other
forms of interactions are formally exemplified in the section
to follow.

Applying Lin’s Causal minimisation A solution to the
problem of ramifications for this particular case (of ensuring
global compositional consistency of spatial scene descrip-
tions) is obtainable from the general works of (Lin and Re-
iter 1994; Lin 1995). The solution basically involves ap-
peal to causality (i.e., modeling all ramification yielding
constraints in the form of causal rules) and applying non-
monotonic reasoning (using circumscription) to minimise
the effects of occurrences whilst deriving the successor state
axioms or the causal laws of the domain. Note that this man-
ner of deriving the successor state axioms is an extension to
the original approach proposed by (Reiter 1991), where only
a solution to the frame problem is included under a general
‘completeness assumption’ stipulating that there are no in-
direct effects within the domain theory.

A reformulation of all ramification yielding state con-
straints as causal rules of the form proposed by (Lin 1995)
is necessary: (4a) and (4b) exemplify one composition the-
orem each for the RCC-8 and the OPRA2 calculi respec-
tively. Similarly, (5a–5c) respectively exemplify the non-
compositional and compositional axioms of interaction with
topological, size and naive orientation primitives.3 Notice
the difference between axioms (5a) and (5b) – whereas the
latter is compositional in nature, the former is not. Further-
more, (5c) represents yet another form where spatial rela-
tionships from two calculi entail a relationship of both types.

(∀s). [Holds(φtop(o1, o2), tpp, s) ∧ Holds(φtop(o2, o3), eq, s)

⊃ Caused(φtop(o1, o3), tpp, s)]

(4a)
(∀s). [Holds(φort(�o1, �o2), 2∠6

2 , s) ∧ Holds(φort(�o2, �o3), 2∠6
1 , s)

⊃ Caused(φort(�o1, �o3), 2∠7
1 , s)]

(4b)

(∀s). [Holds(φtop(o, o
′
), tpp, s)

⊃ Caused(φsize(o, o
′
), <, s)]

(5a)

3For readability, naive labels are used instead of OPRAm

primitives since the latter are non-linguistic and hence, counter-
intuitive.
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(∀s). Holds(φort(oa, ob), front, s) ∧ Holds(φtop(oc, ob), inside, s)

⊃ Caused(φort(oa, oc), front, s)

(5b)
(∀s). [Holds(φtop(o1, o2), ec, , s) ∧ Holds(φort(o1, o2), right, s) ∧
Holds(φtop(o2, o3), ec, s) ∧ Holds(φort(o2, o3), right, s) ⊃
Caused(φtop(o1, o3), dc, s) ∧ Caused(φort(o1, o3), right, s)]

(5c)

Indeed, the basic form of the ramification constraint stays
the same, namely as a causal rule, and from an operational
viewpoint, it is expected that all spatial domain constraints
(both ramification and ordinary) shall be generated automat-
ically from external / high-level (algebraic) specifications of
qualitative spatial calculi. Let Σrc denote the set of all ram-
ification constraints; [Σsit ∪ Σrc] refers to the conjunction
of these constraints with the foundational situation calculus
theory as per Def. 1. Strictly speaking, other aspects con-
cerning a general spatial calculus (Section 2, P1–P3) that are
not included in this paper would also be needed in this theory
for the causal minimisation to work, but these are not con-
ceptually connected to this paper and hence omitted. What is
relevant is that applying causal minimisation results in cau-
sation axioms, explained shortly, determining all potential
ways in which the spatial relationship φsp of any sort (e.g.,
topological, orientational) between two domain objects oi
and oj (within the complete n-clique description) may ac-
quire a particular situation-specific denotation γ. The man-
ner in which these causation axioms get utilized is further
elaborated on in Section 3.2. For now, the following is rele-
vant:

Proposition 1 (C-Consistent Situation Space). All spatial
situation descriptions corresponding to ‘legal’ situations are
C-Consistent as per Def. 3.

Proof. The proof sketch rests on the basic premise that the causal
minimisation results in ‘causation axioms’ of the form in (6) (Lin
1995). Here, (A) and (B) correspond to the direct effects (not in-
cluded in this paper) and indirect effects (Σrc) respectively that are
either explicitly formulated or derivable from the theory.4

CIRC[Σsit ∪ Σrc ; Caused]

↓
Caused(φsp(oi, oj), γ, s) ≡ {(A) ∨ (B)}

(6)

With (6) as a basic result, note that situation ‘legality’ entails that
permissible spatial changes are only those that adhere to the con-
tinuity constraints (Section 2, P3) of the relationship space R and
other domain-specific pre-conditions. The direct effects of such
continuous changes are covered by (A). Additionally, the formula-
tion of all indirect-effect yielding constraints (Section 3.1, CI–CII)
as causal rules, i.e., Σrc, ensures that the indirect effects that arise

4Note that the ternary ‘Caused’ relation always occurs on the
right-side of the ‘⊃’ connective (in all causal rules or explicitly for-
mulated direct effects, and ramification constraints Σrc). Applying
circumscription transforms the material implication to an equiva-
lence – a syntactic transformation that follows from a standard re-
sult in circumscription (Lifschitz 1994, pg. 5). (Lin 1995) presents
step-by-step operational details of the circumscriptive causal min-
imisation and (Lin 2003) realizes an implementation for the propo-
sitional case.

turn_around(b)

B

B
A

A

(a) Property Persistence

A

B

A B

(b) Positional Persistence

Figure 4: Incorporating Inertia

as a result of the permissible changes too are taken into considera-
tion as a result of the causal minimisation. This implies that for all
legal situations, the causation axiom entails all the compositional
constraints and axioms of interactions of the relationship space R.
In other words, the legal situation space satisfies C-Consistency. �

3.2 Incorporating Spatial Persistence

Global compositional consistency in section 3.1 dealt with
the problem of ramifications, where spatial relationships un-
dergo exceptional changes. With spatial persistence, there is
essentially the need to incorporate the commonsense law of
inertia, i.e., typically things stay the same. At least one other
instance, addressing this line of investigation, can be found
in the work of (Shanahan 1995). Within a real-valued co-
ordinate system, Shanahan investigates the default reason-
ing pattern, also connected to the frame problem, required to
model the commonsense law that ‘space is typically empty’.
For instance, an agent would need to make such a default
assumption before moving itself and/or other objects to a
certain region of space or when other domain specific occur-
rences have happened. The patterns in the following com-
plement this for the case where such a real-valued quantity
space is reasoned upon qualitatively using formal spatial cal-
culi.

Property/Relational Persistence Spatial property persis-
tence, i.e., the intuition that the topological, orientational
or other spatial relationship between two objects typically
remains the same, is one default reasoning pattern rooted
in the frame problem that is identifiable within the spatial
context. For instance, assuming that dynamic topological
and orientational information constitutes the state descrip-
tions corresponding to the unique ‘situations’, the problem
is that of formalizing the intuition that the topological re-
lationship between two objects or the orientation of an ob-
ject relative to another ‘typically’ remains the same, unless
if there is ‘cause’, whatever be the nature of such cause, to
believe to the contrary. Consider Fig. 4(a), which quali-
tatively depicts the relationship of an agent, modeled as a
directed line-segment (‘b’) to a containing object (‘a’) that
is interpreted as a room. Given that the spatial relationship
of the agent with that of the room is that of containment, the
problem of spatial property persistence is that of formalizing
the intuition that this containment relationship persists in the
situation resulting from the occurrence of an action such as
turn around.

Absolute Positional Persistence In addition to persis-
tence at the qualitative or relational level, absolute positional
persistence at the metric level is also required to formalize
the intuition that the absolute spatial extension of an object,
whatever that may be (Section 2), and its intrinsic orienta-
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tion and/or implicit direction parameter typically stays the
same. Depending on the nature of the spatial ontology that
is adopted, the inertial aspects that need to be accounted for
at the metric-level include:

I1 for spatially extended objects, their planar or volumetric exten-
sion typically stays the same. This implies that the ‘qualified’
region of space occupied by an object typically stays the same
as a result of occurrences.

I2 for point and line-segment approximated objects, its point-
vector(s) and the additional direction parameter stays the same.

I3 for an empty region of space, the intuition that it typically re-
mains empty.

Generic Frame Assumption Given the causal minimisa-
tion determining what changes directly or indirectly as a re-
sult of ramification constraints, the question of what does not
change becomes almost trivial. In the context of the situa-
tion calculus formalism in use, a generic frame assumption
of the form in (7) incorporating the principal of inertia whilst
deriving the standard successor state axioms (Reiter 1991) is
sufficient to handle all forms of persistence. Separate iner-
tial assumptions are required to model each of (I1-I3), how-
ever their generic form remains the same as that required for
property persistence as modeled by (7):

Poss(θ, s) ∨ Occurs(θ, s) ⊃

[¬(∃ γ′
) Caused(φsp(oi, oj), γ

′
, Result(θ, s)) ⊃

Holds(φsp(oi, oj), γ, Result(θ, s)) ≡ Holds(φsp(oi, oj), γ, s)]

(7)

What is essentially required to be done is to compile the
causation axioms (6) within the generic frame axiom (7) to
derive the final causal laws determining all changes as well
as non-changes.

4. Discussion and Outlook

Qualitative spatial methods have primarily remained fo-
cused on reasoning with static spatial configurations. How-
ever, for applications such as cognitive robotics, these meth-
ods require different interpretation, where sets of spatial re-
lations undergo change as a result of named occurrences in
the environment. Consequently, the formal embedding of
arbitrary spatial calculi – whilst preserving their high-level
axiomatic semantics and low-level algebraic properties – has
to be investigated from the viewpoint of formalisms such as
the situation calculus, event calculus and fluent calculus. At
a higher level of abstraction, this will result in the (native)
incorporation of commonsense notions of space and spatial
change within languages such as GOLOG and FLUX for
their use in arbitrary dynamic domains. In general, the areas
of commonsense reasoning, and action and change are ma-
ture and established tools, formalisms and languages from
therein are general enough to be applied to the case of dy-
namic spatial systems, where relational spatial models un-
dergo change as a result of interaction in the environment.
In this paper, we highlighted (some) aspects of embedding
arbitrary spatial calculi within the situation calculus formal-
ism and the utility of commonsense inference patterns, con-

nected to the frame and the ramification problems, whilst
achieving the suggested embedding. This is primarily done
with the aim of consistently preserving the high-level ax-
iomatic properties determining the constitution of a qual-
itative spatial calculus. As research in qualitative spatial
representation and reasoning moves form theory to prac-
tice, it will be necessary to integrated formal spatial calculi
within general logic-based frameworks in AI, and to further
broaden the interpretation of a (re-usable) qualitative spatial
theory.
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