
On the Progression Semantics and Boundedness of Answer Set Programs

Yan Zhang and Yi Zhou
Intelligent Systems Laboratory

School of Computing and Mathematics
University of Western Sydney, Australia
Email: {yan,yzhou}@scm.uws.edu.au

Abstract

In this paper, we propose a progression semantics for first-
order answer set programs. Based on this new semantics, we
are able to define the notion of boundedness for answer set
programming. We prove that boundedness coincides with the
notions of recursion-free and loop-free under program equiv-
alence, and is also equivalent to first-order definability of an-
swer set programs on arbitrary structures.

Introduction

In recent research on Answer Set Programming (ASP), the
concept of first-order answer set programs has been de-
veloped, whereas second-order logic was used to define
the underlying semantics (Ferraris, Lee, & Lifschitz 2007;
Lin & Zhou 2007). While it provides a precise mathematic
representation and also generalizes the traditional proposi-
tional ASP, this semantics, however, does not reveal much
information about the expressiveness of first-order answer
set programming. For instance, it is unclear whether we can
provide a complete characterization for the first-order defin-
ability (expressiveness) of first-order ASP.

In this paper, we propose a progression semantics for first-
order answer set programs. Intuitively, this semantics may
be viewed as a generalization of Gelfond-Lifschitz trans-
formation (Baral 2003) to the first-order case. We show
that this new semantics is equivalent to the general stable
model semantics proposed by Ferraris, Lee and Lifschitz
(2007). Using the proposed progression semantics, we are
able to define the notion of boundedness for first-order an-
swer set programs. We prove that boundedness coincides
with the notions of recursion-free and loop-free under pro-
gram equivalence, and is also equivalent to first-order defin-
ability of answer set programs on arbitrary structures. We
believe that results in this aspect will establish a foundation
for the further study of the expressiveness and related prop-
erties of first-order ASP. We also address the differences be-
tween our work developed in this paper and earlier work in
Datalog, relevant results in situation calculus and Wallace’s
first-order based semantics for normal logic programs.

The paper is organized as follows. Section 2 proposes
the progression semantics and investigates its relationship to

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

existing semantics. Section 3 defines the notion of bounded-
ness for first-order answer set programs and discusses its ba-
sic properties. Section 4 further defines notions of recursion-
free and loop free programs, and provides the main theo-
rem of this paper stating that the three notions of bound-
edness, recursion-free and loop-free are actually equivalent,
and they all coincide with the concept of first-order defin-
ability of answer set programs on arbitrary structures. Sec-
tion 5 presents technical details of proving this theorem.
Section 6 discusses related work, specifically addresses dif-
ferences between our work developed in this paper and ear-
lier work in datalog, and relevant results in situation calcu-
lus and Wallace’s first-order alike semantics for normal logic
programs. Finally, section 7 concludes this paper with some
discussions.

Progression on Answer Set Programs

In this section, we will provide a progression based se-
mantics for first-order answer set programs, which may be
viewed as a generalization of Gelfond-Lifschitz’s transfor-
mation for propositional answer set programs (Baral 2003),
but different from existing semantics of first-order logic pro-
grams such as the ones presented in (Ferraris, Lee, & Lifs-
chitz 2007; Lin & Zhou 2007).

Logical preliminaries

We start with necessary logic notions and concepts. We con-
sider a second-order language without function symbols but
with equality. A vocabulary τ is a set that consists of rela-
tion symbols (or predicates) including the equality symbol
= and constant symbols (or constants). Each predicate is as-
sociated with a natural number, called its arity. Given a vo-
cabulary, term, atom, substitution, (first-order and second-
order) formula and (first-order and second-order) sentence
are defined as usual. In particular, an atom is called an equal-
ity atom if it has the form t1 = t2, where t1 and t2 are terms.
Otherwise, it is called a proper atom.

A structure A of vocabulary τ (or a τ -structure) is a tuple
A = (A, cA1 , · · · , cAm, PA

1 , · · · , PA
n), where A is a nonempty

set called the domain of A (sometimes we use Dom(A) to
denote A’s domain), cAi (1 ≤ i ≤ m) is an element in A
for every constant ci in τ , and PA

j (1 ≤ j ≤ n) is a k-ary

relation over A for every k-ary predicate Pj in τ . PA
j is also

518

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

called the interpretations of Pj in A. A structure is finite
if its domain is a finite set. In this paper, we consider both
infinite and finite structures.

Let A be a structure of τ and A = Dom(A). An assign-
ment in A is a function η from the set of variables to A.
An assignment can be extended to a corresponding function
from the set of terms to A by mapping η(c) to cA, where c
is an arbitrary constant. Let P (−→x) be an atom, η an assign-
ment in structure A. We also use P (−→x)η ∈ A to denote
η(−→x) ∈ PA. The satisfaction relation |= between a struc-
ture A and a formula φ associated with an assignment η,
denoted by A |= φ[η], is defined as usual. Let −→x be the set
of free variables occurring in a formula φ. Then, the satis-
faction relation only relies on the assignment of −→x . In this
case, we write A |= φ(−→x /−→a) to denote the satisfaction re-
lation, where −→a is a tuple of elements in A. In particular, if
φ is a sentence, then the satisfaction relation is independent
from the assignment. In this case, we simply write A |= φ
for short.

Given a structure A of τ and an assignment η in A, if Q is
a predicate in τ , then we use A∪{Q(−→x)η} to denote a new
structure of τ which is obtained from A by expanding the
interpretation of predicate Q inA (i.e. QA) to QA∪{η(−→x)}.

Let A1 and A2 be two structures of τ sharing the same
domain, i.e. Dom(A1) = Dom(A2), and for each constant
c in τ , cA1 = cA2 . By A1 ⊆ A2, we simply mean that for
each predicate P ∈ τ , PA1 ⊆ PA2 . By A1 ⊂ A2, we mean
that A1 ⊆ A2 but not A2 ⊆ A1. We write A1∪A2 to denote
the structure of τ where the domain of A1 ∪ A2 is the same
as A1 and A2’s domain, each constant c is interpreted in the
same way as in A1 and A2, and for each predicate P in τ ,
PA1∪A2 = PA1 ∪ PA2 .

The progression semantics

A rule r is of the following form:

α ← β1, . . . , βm, not γ1, . . . , not γl, (1)

where α is a proper atom or the falsity ⊥, βi (1 ≤ i ≤ m),
and γj (1 ≤ j ≤ l) are atoms. We say that α is the head of
r, denoted by Head(r); {β1, . . . , βm} the positive body of
r, denoted by Pos(r); and {not γ1, . . . , not γl} the negative
body of r, denoted by Neg(r). In addition, we use Body(r)
to denote Pos(r) ∪ Neg(r).

A normal logic program, also called (first-order) answer
set program or simply program, is a finite set of rules. Given
a program Π, predicates that occur in the head of one of the
rules in Π are said to be intentional; all other predicates are
said to be extensional. For a given program Π, we use τ(Π)
to denote the vocabulary of Π; τext(Π) to denote all the ex-
tensional predicates in Π together with all the constants in Π;
τint(Π) to denote all the intentional predicates of Π. Clearly,
τ(Π) = τext(Π)∪ τint(Π). In addition, τint(Π) contains no
constants. We also use ΩΠ to denote the set of all inten-
tional predicates of Π. Although ΩΠ is the same as τint(Π),
we use two notations to make a difference because the for-
mer denotes a set of predicates whilst the latter presents a
vocabulary.

Without loss of generality, we may assume that all rules
are presented in a normalized form. That is, each in-

tentional predicate Q is associated with a tuple of distin-
guishable variables −→xQ so that the head of each rule is
of the form Q(−→xQ). For instance, if for some rule with
an intentional predicate Q of its head, there is a constant
c occurring in Q, i.e. Q(x1, · · · , xi−1, c, xi+1, · · · , xn),
we simply introduce a new variable xi to replace c:
Q(x1, · · · , xi−1, xi, xi+1, · · · , xn), and add atom xi = c in
the body of this rule. We say that a variable x is a local
variable of a rule r if it does not occur in the head of r. For
convenience in our proofs, we assume that the sets of local
variables in rules are pairwise disjoint.

The semantics of first-order answer set programs is de-
fined through a generalization of stable model semantics on
propositional answer set programs, and can be specified by
a second-order sentence, as shown in (Ferraris, Lee, & Lif-
schitz 2007; Lin & Zhou 2007). Now we propose a new
semantics of first-order answer set programs based on the
notion of progression.

Definition 1 (Evaluation stage) Let Π be a program and
ΩΠ = {Q1, . . . , Qn} the set of all the intentional predicates
of Π. Consider a structure M of τ(Π). The t-th simultane-
ous evolution stage of Π based on M, denoted as Mt(Π),
is a structure of τ(Π) defined inductively as follows:

M0(Π) = (Dom(M), cM
0

1 , · · · , cM
0

r , PM0

1 , · · · , PM0

s ,

QM0

1 , · · · , QM0

n), where cM
0

i = cMi for each

constant ci of τ (1 ≤ i ≤ r), PM0

j = PM
j for

each extensional predicate Pj in τext(Π)

(1 ≤ j ≤ s), and QM0

k = ∅ for each intentional
predicate Qk in ΩΠ (1 ≤ k ≤ n);

Mt+1(Π) = Mt(Π) ∪ {Qi(−→x)η | there exists
Qi(−→x) ← β1, . . . , βm, not γ1, . . . , not γl ∈ Π
and an assignment η such that for all
j (1 ≤ j ≤ m), βjη ∈ Mt(Π), and for all
k (1 ≤ k ≤ l), γkη �∈ M}.

Let us take a closer look at Definition 1. First, it is easy to
see that M0(Π) is just taking all extensional relations as the
initial input, while all relations corresponding to intentional
predicates in τint(Π) are set to be empty in M0(Π).

Second, for each intentional predicate Q ∈ ΩΠ, if we

use QMt(Π) to denote the relation that corresponds the
interpretation of Q in structure Mt(Π), then for the se-
quence M0(Π), M1(Π), M2(Π), · · ·, as specified above,

we have a sequence QM0(Π), QM1(Π), QM2(Π), · · ·, for

each Q ∈ ΩΠ. We also use Qi(Π,M) to denote QMi(Π).
It is easy to see that sequence Q0(Π,M), Q1(Π,M),
Q2(Π,M), · · ·, always increases, that is, Qj(Π,M) ⊆
Qi(Π,M) for j < i. So a convergence for the sequence of
Q0(Π,M), Q1(Π,M), Q2(Π,M), · · ·, always exists. We
call Q∞(Π,M) =

⋃
1≤j≤∞ Qj(Π,M) the intended value

of Q on M with respect to Π. Consequently, the conver-
gence of the sequence M0(Π), M1(Π), M2(Π), · · ·, also
exists: M∞(Π) =

⋃
1≤j≤∞ Mj(Π).

If Q(a1, . . . , an) ∈ M∞(Π), then we say that
Q(a1, . . . , an) is a link of M with respect to Π. In addition,
the evolution time of Q(a1, . . . , an) on M with respect to Π
is the least number t such that Q(a1, . . . , an) ∈ Mt(Π). In

519

particular, if Q(a1, . . . , an) is not a link of M, we treat the
evolution time of Q(a1, . . . , an) is ∞.

Definition 2 (Progression semantics) Let Π be a first-
order answer set program and M a structure of τ(Π). M is
called a stable model (or answer set) of Π iff M∞(Π) = M.
For convenience, we use AS(Π) to denote the set of all an-
swer sets of Π.

Two programs are said to be equivalent if they have the same
set of stable models.

Intuitively, the progression semantics for answer set pro-
grams may be viewed as a generalization of Gelfond-
Lifschitz transformation (Baral 2003) to the first-order case.
First, we guess a structure M. Then, we evaluate the
intended values of all intentional predicates based on the
guessed structure. Finally, if all the intended values are the
same as the ones specified in the guessed structure M, then
M is a stable model (answer set) of the underlying program.

Example 1 Consider the following program ΠG:

GoShopping(x, y) ← Friends(x, y),
GoShopping(x, y) ← GoShopping(x, z),

Likes(z, y), notHate(x, y).

Note that GoShopping is the only intentional predicate in
program ΠG. We consider a finite structure M, where

Dom(M) = {alice, carol, jane, sue},
FriendsM = {(alice, carol), (jane, sue)},
LikesM = {(carol, sue)},
HateM = {(alice, jane), (jane, alice)},
GoShoppingM = {(alice, carol), (jane, sue),

(alice, sue)}.

Then from Definition 1, we obtain the following sequence:

GoShopping0(ΠG,M) = ∅,
GoShopping1(ΠG,M) = {(alice, carol),

(jane, sue)},
GoShopping2(ΠG,M) = {(alice, carol),

(jane, sue), (alice, sue)},
GoShopping3(ΠG,M) = GoShopping2(ΠG,M).

So GoShopping∞(ΠG,M) = {(alice, carol), (jane,
sue), (alice, sue)}. From Definition 2, we can see that M
is also a stable model of ΠG. �

Relationship to other semantics

Now we show that our proposed progression based seman-
tics actually coincides with existing semantics of first-order
answer set programs, such as Ferraris et al.’s general stable
model semantics (Ferraris, Lee, & Lifschitz 2007) under the
restriction to normal logic programs. To this aim, we will
first provide a translational semantics for first-order normal
logic programs based on second-order logic. We then ob-
serve that such translational semantics coincides with cur-
rent existing first-order answer set programming semantics.
Finally, we prove our progression based semantics and trans-
lational semantics coincides.

Given a normal logic program Π, let ΩΠ = {Q1, . . . , Qn}
be the set of all intentional predicates of Π. Let Ω∗

Π =
{Q∗

1, . . . , Q
∗
n} be a new set of predicates corresponding to

ΩΠ, where each Q∗
i in Ω∗

Π has the same arity of predicate
Qi in ΩΠ. Given a rule r in Π of the form

α ← β1, . . . , βm, not γ1, . . . , not γl,

by r̂, we denote the universal closure of the following for-
mula β1 ∧ . . . ∧ βm ∧ ¬γ1 ∧ . . . ∧ ¬γl → α; by r∗,
we denote the universal closure of the following formula
β∗

1 ∧ . . .∧β∗
m ∧¬γ1 ∧ . . .∧¬γl → α∗, where α∗ = Q∗(−→x)

if α = Q(−→x) and

β∗
i , (1 ≤ i ≤ m) =

{
Q∗

j (
−→
tj) if βi = Qj(

−→
tj) and Qj ∈ ΩΠ

βi otherwise.

By Π̂, we denote the first-order sentence
∧

r∈Π r̂; by Π∗, we

denote the first-order sentence
∧

r∈Π r∗. Let Π be a normal
logic program. The stable model semantics of Π, denoted
by SM(Π), is the following second-order sentence:

Π̂ ∧ ¬∃Ω∗
Π((Ω∗

Π < ΩΠ) ∧ Π∗),

where Ω∗
Π < ΩΠ is the abbreviation of the formula∧

1≤i≤n ∀−→x (Q∗
i (
−→x) → Qi(−→x)) ∧

¬
∧

1≤i≤n ∀−→x (Qi(−→x) → Q∗
i (
−→x)).

A structure M of τ(Π) is called a stable model of Π if it is
a model of SM(Π). We call this translational semantics.

Our definition of second-order sentence SM(Π) is some-
what different from Ferraris et al.’s (Ferraris, Lee, & Lif-
schitz 2007), in the sense that in Ferraris et al.’s SM(Π),
program Π is allowed to be an arbitrary first-order sentence,
and there is no distinction between intentional and exten-
sional predicates. Nevertheless, it is not difficult to observe
that these two semantics are actually coincident by restrict-
ing to normal logic programs. In particular, for a given
normal logic program Π and for each extensional predicate
P ∈ τext(Π), we introduce a new predicate P ′ which has
the same arity of P , and add choice rules to Π:

P ′(−→x) ← not P (−→x),
P (−→x) ← not P ′(−→x).

In this way, the newly formed program, say Π′, will have no
extensional predicate. Then it can be showed that there is a
one-to-one correspondence between the stable models of Π′

under our above semantics definition and the stable models
of Π under Ferraris et al.’s semantics.

We have noted that in their later version (Ferraris, Lee, &
Lifschitz 2010), Ferraris et al. have modified their gener-
alized stable model semantics for first-order answer set pro-
grams where intentional and extensional predicates were ex-
plicitly defined. Under their new semantics, it is obvious that
without introducing choice rules, these two semantics are
coincident as well by restricting to normal logic programs.

Theorem 1 Let Π be a program and M a structure of τ(Π).
M is a model of SM(Π) iff M∞(Π) = M.

Proof: In order to prove this theorem, we introduce an al-
ternative semantics for first-order logic programs and show
that it is equivalent to both the progression semantics and the
translational semantics described above.

Let Π be a program and M a structure of τ(Π). We say
that M is a stable model of Π iff

520

1. for every assignment η and every rule r of form (1) in Π, if
for all i (1 ≤ i ≤ m), βiη ∈ M and for all j (1 ≤ j ≤ l),
γjη �∈ M, then αη ∈ M.

2. there does not exist a structure M′ of τ(Π) such that

(a) Dom(M′) = Dom(M),

(b) for each constant c in τ(Π), cM
′

= cM,

(c) for each P ∈ τext(Π), PM′

= PM,

(d) for all Q ∈ τint(Π), QM′

⊆ QM, and for some Q ∈

τint(Π), QM′

⊂ QM,

(e) for every assignment η and every rule r of form (1) in
Π, if for all i (1 ≤ i ≤ m), βiη ∈ M′ and for all j
(1 ≤ j ≤ l), γjη �∈ M, then αη ∈ M′.

We first show that this semantics coincides with the trans-
lational semantics. It is not difficult to verify that Condition

1 holds iff M |= Π̂. Now we prove that Condition 2 does
not hold iff M |= ∃Ω∗

Π((Ω∗
Π < ΩΠ) ∧ Π∗). On the one

hand, suppose that there exists such an M′, we construct n
new relations in M on predicates Ω∗

Π = {Q∗
1, . . . , Q

∗
n} cor-

responding to ΩΠ = {Q1, . . . , Qn} such that each Q∗ ∈ Ω∗
Π

and its corresponding Q ∈ ΩΠ, Q∗M = QM′

. There-
fore, M |= Ω∗ < Ω according to Condition 2(d). In ad-
dition, from Condition 2(e), it is easy to see that M satis-

fies Π∗ where for each Q∗ ∈ Ω∗
Π, Q∗M = QM′

as speci-
fied above, here Q is Q∗’s corresponding predicate in ΩΠ.
Hence, M |= ∃Ω∗

Π((Ω∗
Π < ΩΠ) ∧ Π∗). On the other hand,

suppose that M |= ∃Ω∗
Π((Ω∗

Π < ΩΠ)∧Π∗). We can always
construct M′ in such a way: (1) Dom(M′) = Dom(M);

(2) for each constant c in τ(Π), cM
′

= cM; (3) for each

P ∈ τext(Π), PM′

= PM; and (4) for each Q ∈ ΩΠ and

its corresponding Q∗ ∈ Ω∗
Π, QM′

= Q∗M. Then it is not
difficult to observe that M′ satisfies Conditions 2(c)-(e).

Now we show that this semantics also coincides with the
progression semantics. Suppose that M∞(Π) = M. Then,
Condition 1 holds. Otherwise, there exists an assignment
η and a rule r such that, for all i (1 ≤ i ≤ m), βiη ∈ M
and for all j (1 ≤ j ≤ l), γjη �∈ M but αη �∈ M. Since
βiη ∈ M∞(Π), there exists a bound k such that for all i
(1 ≤ i ≤ m), βiη ∈ Mk(Π). Then, αη ∈ Mk+1(Π) by
the definition. This means that αη ∈ M∞(Π). Therefore,
αη ∈ M, a contradiction. In addition, Condition 2 must
hold as well. Otherwise, let us assume that there exists
such an M′. By induction on the evolution stage t, it
can be shown that for all t, Mt(Π) ⊆ M′. Therefore,
M∞(Π) ⊆ M′. Hence, M∞(Π) ⊆ M′ ⊂ M, a
contradiction. On the other hand, suppose that a structure
M satisfies both Conditions 1 and 2. Then, it can be shown
that Mt(Π) ⊆ M by induction on the evolution stage t
by Condition 1. Hence, M∞(Π) ⊆ M. Now we prove
M∞(Π) �⊂ M. Otherwise, we construct a structure M′

of τ(Π) in the following way: Dom(M′) = Dom(M),

for each constant c ∈ τ(Π), cM
′

= cM, for each exten-

sional predicate P ∈ τext(Π), PM′

= PM, and for each

intentional predicate Q ∈ ΩΠ, QM′

= QM∞(Π). So M′

satisfies Conditions 2(a)-(e) as well, a contradiction. Hence,

M∞(Π) = M. �

Boundedness for Answer Set Programming

In this section, we define a notion of boundedness of answer
set programs, which can be viewed as a generalization of
such a notion in datalog programs (Ajtai & Gurevich 1994;
Cosmadakis 1989; Vardi 1988). As we will show in the rest
of this paper, the notion of boundedness plays an essential
role in studying the expressive power of first-order answer
set programs.

Definition 3 (Boundedness) A program Π is bounded if
there exists a natural number k, such that for all inten-
tional predicates Q of Π and all stable models M of Π,
Q∞(Π,M) = Qk(Π,M); or equivalently, M∞(Π) =
Mk(Π). In this case, k is called a bound of Π, and Π is
called a k-bounded program.

Definition 3 is not the same as saying that for all sta-
ble models M, there exists a natural number k such that
M∞(Π) = Mk(Π). It is important to note that the fixed
constant k applies on all stable models, i.e., such k is in-
dependent from specific structures (stable models). Also,
Definition 3 only takes all stable models but not all τ(Π)-
structures into account. Hence, for a k-bounded program Π,
there may exist a τ(Π)-structure M such that M∞(Π) �=
Mk(Π). Certainly, here M is not a stable modal of Π.

Example 2 Consider the following program ΠV :

V isits(x, y) ← Interested(x, y), not Busy(x),
V isits(x, y) ← V isits(z, y), Attraction(y),

not Busy(x).

In program ΠV , V isits is the only intentional predicate. Ac-
cording to Definition 1, it is easy to verify that for any stable
model M of ΠV , the evaluation time for all intended values
of V isits is not more than 2. In other words, program ΠV

is a 2-bounded program. �

The following propositions reveal some basic properties
of boundedness of answer set programs.

Proposition 1 Let Π be a program and M a finite stable
model of Π. There exists t such that Mt(Π) = M∞(Π).

Proposition 2 Boundedness is closed under program equiv-
alence. That is, if two programs Π1 and Π2 are equivalent,
then Π1 is bounded iff Π2 is bounded.

Boundedness, Recursion-free, Loop-free and

First-order Definability

In this section, we investigate the relationships between
boundedness and some important notions in first-order ASP,
including recursion-free, loop-free and first-order definabil-
ity. We show that, under program equivalence, boundedness
coincides with both recursion-free and loop-free. Moreover,
all of them coincide with the concept of first-order definabil-
ity for answer set programs on arbitrary structures.

521

Recursion-free and loop-free programs

A program is recursion-free if no intentional predicates oc-
cur in the positive bodies of any rules in the program. It is
possible that the intentional predicates may occur negatively
in a recursion-free program.

Example 3 Consider the following program ΠV P :

V isits(x, y) ← Interested(x, y),
PossVisit(x, y) ← Attraction(y), not V isits(x, y).

There are two intentional predicates V isits and PossVisit

in program ΠV P . Since none of them positively occurs in
the bodies of two rules, ΠV P is a recursion-free program. �

From previous definitions, it is easy to show that the fol-
lowing result holds.

Proposition 3 If Π is a recursion-free program, then
M∞(Π) = M1(Π) for any structure M of τ(Π).

Proposition 3 states that for recursion-free programs, the
stable models of the program can be verified within one step.
It immediately follows that all recursion-free programs are
bounded.

Now we introduce the notion of loop-free programs. As
shown in (Chen et al. 2006), under answer set semantics,
a logic program can be captured by its completion together
with all its loop formulas on finite structures. This means
that all programs can be captured by a set (maybe infinite)
of first-order sentences on finite structures. More precisely,
given any program, there exists a (maybe infinite) set of first-
order sentences, i.e., the completion together with all the
loop-formulas of the program, such that the finite answer
sets of the program are exactly the same as all the finite mod-
els of this set of sentences.

Let Π be a program. The positive dependency graph of
Π, denoted by GΠ, is an infinite graph (V, E), where V is
the set of atoms of τint(Π), and (α, β) is an edge in E if
(a) there exists a rule r ∈ Π, and α′ and β′ in r such that
α′ is the head of r and β′ is one of the positive atoms of
intentional predicate in the body of r, and (b) there exists a
substitution θ such that α′θ = α and β′θ = β. A finite non-
empty subset L of V is said to be a loop of Π if there exists
a cycle in GΠ that goes through only and all the nodes in L.
A program is called loop-free if it has no loops.

Example 4 Consider programs ΠV and ΠV P once again in
Examples 2 and 3 respectively. It is easy to see that ΠV

has a loop L = {V isits(x, y), V isits(z, y)}. So ΠV is not
loop-free. On the other hand, program ΠV P in Example 3 is
loop-free obviously. �

Proposition 4 A recursion-free program must be loop-free.

However, the converse of Proposition 4 does not hold in gen-
eral. For example, the following program

V isits(x, y) ← Friends(x, y),
Friends(x, y) ← Likes(x, y), notHate(x, y).

is loop-free but not recursion-free.

First-order definability

We say that a first-order sentence φ of vocabulary τ(Π) de-
fines a program Π if the models of φ are exactly the stable
models of Π. A program Π is said to be first-order definable
if there exists a first-order sentence that defines Π.

Example 5 Let us consider ΠV again in Example 2. It can
be verified that ΠV is defined by the following sentence:

∀xy(V isits(x, y) ↔ (Interested(x, y) ∧ ¬Busy(x) ∨
∃z(z �= x∧ V isits(z, y)∧Attraction(y) ∧ ¬Busy(x)))).
�

For each rule r of form (1), we use Head(r) and ̂Body(r)
to denote α and the formula β1 ∧ · · · ∧ βm ∧ ¬γ1 ∧
· · · ∧ ¬γl respectively. For a given program Π, for each
intentional predicate Q in ΩΠ, we specify the formula:

φQ(−→x) ↔
∨

{r∈Π,Head(r)=Q(−→x)} ∃
−→y ̂Body(r), where −→y

are local variables in the rule r. Then the completion of pro-
gram Π, denoted by Comp(Π), is defined as follows:∧

Q∈ΩΠ

∀−→x Q(−→x) ↔ φQ(−→x).

The following result shows that if a program is loop-free,
then it is defined by its completion, on both arbitrary struc-
tures and finite structures.

Proposition 5 If Π is a loop-free program, then Comp(Π)
defines Π on both arbitrary structures and finite structures.

The main theorem

Now we present the main theorem of this paper. The follow-
ing theorem shows that boundedness exactly captures first-
order definability for Answer Set Programming if infinite
structures are allowed.

Theorem 2 (Main theorem) Let Π be a program. The fol-
lowing four statements are equivalent on arbitrary struc-
tures.

1. Π is bounded.

2. Π is equivalent to a recursion-free program.

3. Π is equivalent to a loop-free program.

4. Π is first-order definable.

Theorem 2 fails on finite structures. That is, there exists
a program which is not bounded but first-order definable on
finite structures (Ajtai & Gurevich 1994) as the following
example shows.

Example 6 Consider program ΠQ from (Ajtai & Gurevich
1994) as follows:

Q(x, y) ← E(x, y),
Q(x, y) ← Q(x, z), Q(z, y),
Q(x, y) ← Q(x, x), Q(y, y).

It is observed that ΠQ is not bounded on both arbitrary and
finite structures. However, Ajtai and Gurevich showed that
program ΠQ can be defined by the following first-order sen-
tence on finite structures (Ajtai & Gurevich 1994):

522

∀xx′yy′z(
(E(x, y) ⊃ Q(x, y)) ∧ ((Q(x, z) ∧ Q(z, y)) ⊃
Q(x, y)) ∧
((Q(x, x′) ∧ Q(x′, x′) ∧ Q(y′, y′) ∧ Q(y′, y)) ⊃
Q(x, y)) ∧
((Q(x, y) ∧ ¬E(x, y)) ⊃ ∃u(E(x, u) ∧ Q(u, y)) ∧
((Q(x, y) ∧ ¬E(x, y)) ⊃ ∃v(E(v, y) ∧ Q(x, y)))).

�

Proof of the Main Theorem

This section presents the proof of the main theorem, i.e.,
Theorem 2. Clearly, 2 ⇒ 3 follows from Proposition 4;
3 ⇒ 4 follows from Proposition 5. So it suffices to prove
1 ⇒ 2 and 4 ⇒ 1.

Given a program Π, we construct a program Π′
t to simu-

late the t-th evolution stage of Π. We define Π′
t inductively

and show that Π′
t is a normalized program as well. Firstly,

set Π′
1 = Π. Since Π is in a normalized form, Π′

1 is normal-
ized too. We now specify Π′

t+1 by giving Π′
t. A rule r∗ is in

Π′
t+1 iff there exists a rule r in Π of the form

α ← β1, . . . , βm, not γ1, . . . , not γl,

and for all i (1 ≤ i ≤ m), if βi = Qi(
−→
t) is an intentional

atomic formula, then there exists a rule ri in Π′
t such that

Head(ri)θi = βi, where θi is the substitution −−→xQi
/
−→
t , and

r∗ is the following rule:

Head(r∗) = Head(r),
Pos(r∗) = Pos(r)\{βi1 , . . . , βin

} ∪ Pos(r1)θ1 ∪ . . .
∪Pos(rn)θn,

Neg(r∗) = Neg(r) ∪ Neg(r1)θ1 ∪ . . . ∪ Neg(rn)θn,

where {βi1 , . . . , βin
} is the set of all intentional atomic for-

mulas in {β1, . . . , βm}, r1, . . . , rn are the corresponding
rules in Π′

t as discussed above, and θi are defined accord-
ingly. In addition, we apply necessary substitutions such
that the sets of local variables in rules in Π′

t+1 are pairwise
disjoint. It is easy to see that Π′

t+1 is a normalized program
as well. Such process is similar to the unfolding in proposi-
tional logic programs, e.g. (Brass & Dix 1998).

Example 7 Consider program ΠV in Example 2. It is easy
to see that (Π′

V)2 consists of the following rules:

V isits(x, y) ← Interested(x, y), not Busy(x),
V isits(x, y) ← Interested(z, y), Attraction(y),

not Busy(z), not Busy(x),
V isits(x, y) ← V isits(z′, y), Attraction(y),

not Busy(z), not Busy(x).

�

Lemma 1 Let Π be a program and k an integer. Then,
Mk(Π) = M1(Π′

k) for any structure M of τ(Π).

Proof: We prove this assertion by induction on k. Clearly,
this assertion holds when k = 1. Suppose that for all k < t,
this assertion holds. Now we prove that it holds when k = t
as well.

We first prove that Mt(Π) ⊆ M1(Π′
t). Let

(a1, . . . , an) ∈ Qt(M), where Q is an intentional predi-
cate of Π. If the evolution time of Q(a1, . . . , an) is less than

t, then Q(a1, . . . , an) ∈ M1(Π′
t) by induction assumption.

If the evolution time of Q(a1, . . . , an) is exactly t, then ac-
cording to the definition, there exists a rule r ∈ Π of form
(1) and an assignment η such that (a) −→xQη = (a1, . . . , an),
(b) for all i (1 ≤ i ≤ m), βiη ∈ Mt−1(Π), and (c) for all j
(1 ≤ j ≤ l), γjη �∈ M. By induction assumption, for all i

(1 ≤ i ≤ m), βiη ∈ M1(Π′
t−1). If βi is of the form Q′(

−→
t),

where Q′ is an intentional predicate, then according to Def-
inition 1, there exists a rule ri ∈ Π′

t−1 such that βiη can be
computed by ri within one step by assuming M. Therefore,
αη can be computed by the following rule r∗ within one step
(note that Π′

k is normalized for all k).

Head(r∗) = Head(r),
Pos(r∗) = Pos(r)\{βi1 , . . . , βin

} ∪ Pos(r1)θ1 ∪ . . .
∪Pos(rn)θn,

Neg(r∗) = Neg(r) ∪ Neg(r1)θ1 ∪ . . . ∪ Neg(rn)θn,

where βi1 , . . . , βin
are the atoms discussed above, and

ri and θi are defined accordingly. This shows that
Q(a1, . . . , an) ∈ M1

t (Π
′
t).

We now prove M1(Π′
t) ⊆ Mt(Π). Suppose that

Q(a1, . . . , an) can be computed from Π′
t within one step

by assuming M, where Q is an intentional predicate of Π.
Then there exists a rule r∗ ∈ Π′

t, and an assignment η such
that Head(r∗)η = Q(a1, . . . , an). Suppose that r∗ has the
form

Head(r∗) = Head(r),
Pos(r∗) = Pos(r)\{βi1 , . . . , βin

} ∪ Pos(r1)θ1 ∪ . . .
∪Pos(rn)θn,

Neg(r∗) = Neg(r) ∪ Neg(r1)θ1 ∪ . . . ∪ Neg(rn)θn,

where r ∈ Π, ri ∈ Π′
t−1, and the others are defined ac-

cordingly. Then, βij
η can be computed from ri within one

step by assuming M. So βij
η ∈ Mt−1(Π) by induction

assumption. Consequently, αη ∈ Mt(Π) since it can be
computed through rule r. �

For a given program Π, having specified program Π′
k as

described above, we now further define Πk as the program
obtained from Π′

k by deleting all rules whose positive bod-
ies contain some intentional predicates. Clearly, Πk is a
recursion-free program.

Lemma 2 Let Π be a program and k an integer. Then,
M1(Πk) = M1(Π′

k) for any structure M of τ(Π).

Proof: This result follows from the definition since for
the given structure M of τ(Π) and for each intentional
predicate Q of Π, Q0(M) is empty in any case. �

Now we show that 1 ⇒ 2 follows from Proposition 3,
Lemma 1 and Lemma 2. Let Π be a k-bounded program and
M a structure of τ(Π). Then, M is an answer set of Π iff
M = M∞(Π) (by Definition 2) iff M = Mk(Π) (since
M∞(Π) = Mk(Π) by Definition 3) iff M = M1(Πk) (by
Lemma 1 and 2) iff M = M∞(Πk) (by Proposition 3) iff
M is answer set of Πk.

Next, we turn into proving 4 ⇒ 1. For this purpose,
we need to introduce some background knowledge on least

523

fixed-point logic. Let τ be a vocabulary and P a new pred-
icate not in τ with the arity n. Let φ(−→x , P) be a first-order
formula, where −→x is the tuple of all free variables in φ with
length n, and P only occurs positively in φ (i.e. every oc-
currence of P in φ is in the scope of even numbers of nega-
tions1). Given a structure A of τ , the formula φ(−→x , P) de-
fines an operator Φ(T) from n-ary relation T on Dom(A) to
n-ary relation on Dom(A):

Φ(T) = {−→a ∈ Dom(A)n : A |= φ(−→x /−→a , T)}.

The least-fixed point formula φ∞(−→x , P) (φ∞ for short) on
A is constructed inductively as follows:

φ0(−→x , P) = ∅;
φt(−→x , P) = Φ(

⋃
r<t φr(−→x , P)).

Given −→a ∈ Dom(A)n, A |= φt(−→x /−→a , P) iff −→a ∈
φt(−→x , P); A |= φ∞(−→x /−→a , P) iff −→a ∈ φ∞(−→x , P). Since
P only positively occurs in φ, the sequence φ1, . . . , φt, . . .
always increases. Thus, there exists a least ordinal k such
that φk = φt = φ∞, where t > k.

The notion of definability and boundedness can be defined
for least fixed-point logic as well. Let K be a class of τ -
structures. We say that a formula ψ(−→y), where −→y is the
tuple of all free variables in ψ with length n, of τ defines the
fixed-point φ∞(−→x , P) on K iff for every A ∈ K and every
−→a ∈ Dom(A)n,

A |= φ∞(−→x /−→a , P) iff A |= ψ(−→y /−→a).

We say that the least-fixed point formula φ∞(−→x , P) is
bounded on K if there exists a fixed natural number k such
that for all A ∈ K and every −→a ∈ Dom(A)n, A |=
φ∞(−→x /−→a , P) iff A |= φk(−→x /−→a , P).

Barwise and Moschovakis (1978) revealed the important
correspondence between definability and boundedness on
arbitrary structures in least fixed-point logic.

Theorem 3 (Barwise & Moschovakis 1978) Let K be a
class of τ -structures which is first-order finitely axiomati-
zable2. A least fixed-point formula is bounded on K iff it is
defined by a first-order formula on K.

We prove 4 ⇒ 1 in Theorem 2 based on Theorem 3. The
basic ideas are divided into two steps. First, we show that
for each program, we can construct a program with a single
intentional predicate to simulate the original program. Then
we show that each program with a single intentional predi-
cate can be translated to an equivalent fixed-point formula.

Let Π be a program. Let {P1, . . . , Pn} be the set of in-
tentional predicates of Π. Suppose that k is the maximal
arity among all Pi, (1 ≤ i ≤ n). Let 0, 1, . . . , n be n + 1
distinguishable new constants. Construct a new predicate P
whose arity is k + 1. Let ΠS be the program obtained from
Π by simultaneously replacing each atom Pi(

−→
ti) in Π with

P (
−→
ti , 0, . . . , 0, i), where the number of occurrences of 0 is

equal to k − |
−→
ti |. We show that ΠS simulates Π.

1Here we assume that φ is constructed only from connectives
of ¬, ∧ and ∨, while → and ↔ are defined in terms of ¬, ∧ and ∨.

2That is, there exists a first-order sentence φ on τ whose models
are exactly captured by K.

Lemma 3 Let Π be a program and ΠS be the program con-
structed above. Let M be a structure of τ(Π). We construct
a structure MS on τext(Π) ∪ {P} such that

• the domain of is MS is M ∪ {0, 1, . . . , n};

• for all extensional predicates Q of Π, QMS

= QM;

• for all constants c in Π, cM
S

= cM;

• for all intentional predicates Pi, Pi(−→a) ∈ M iff
P (−→a , 0, . . . , 0, i) ∈ MS .

Then, for any integer k, Pi, and −→a that matches the arity of
Pi, Pi(−→a) ∈ Mk(Π) iff P (−→a , 0, . . . , 0, i) ∈ (MS)k(ΠS).

Proof: This assertion follows from the constructions and
definitions by induction on k. �

Lemma 3 shows that ΠS can simulate Π in the sense that
every intentional atom Pi(

−→
ti) in Π is associated with the

intentional atom P (
−→
ti , 0, . . . , 0, i) in ΠS .

Now we show that each program with a single intentional
predicate can be equivalently transferred into a fixed-point
formula on a class of axiomatizable structures. Let Π be
a program that only contains a single intentional predicate,
say P . Then, all the heads of rules in Π are of the form
P (−→x) since Π is normalized. Let P ∗ be a new predicate
that has the same arity as P . Let ψ(Π, P ∗) be the first-order
formula obtained from Π and P ∗ by two steps: (1) construct
a program Π∗ by replacing every occurrence of P (

−→
t) in

the negative bodies of any rules in Π with P ∗(
−→
t), (2) let

ψ(Π, P ∗) be the formula
∨

r∈Π∗ ∃−→y ̂Body(r), where −→y is

the set of local variables in rule r. Clearly, ψ(Π, P ∗) is a
first-order formula of the vocabulary τ(Π)∪{P ∗}, where P
only occurs positively and −→x are all the free variables.

Let M be a τ(Π)-structure. By M∗, we denote the struc-
ture of the vocabulary τ(Π) ∪ {P ∗} such that

• Dom(M∗) = Dom(M);

• for all −→a , P ∗(−→a) ∈ M∗ iff P (−→a) ∈ M;

• the interpretations of all constants and other predicates are
the same as those in M.

The fixed-point formula ψ(Π, P ∗)∞(−→x , P) simulates the
program Π on all answer sets of Π. By induction on k, the
following lemma holds.

Lemma 4 Let Π be a program that has a single inten-
tional predicate P , and M an answer set of τ(Π). Sup-
pose that ψ(Π, P ∗) and M∗ are constructed as above.
Then, for any integer k and any −→a , P (−→a) ∈ Mk(Π) iff
−→a ∈ ψ(Π, P ∗)k(−→x , P).

Now we show 4 ⇒ 1. From Lemma 3, it suffices to prove
the case in which the program only contains a single inten-
tional predicate. Let Π be such a program, which has a sin-
gle intentional predicate P and is defined by a first-order
sentence φ. Let K = {M∗ | M ∈ AS(Π)}. Then, K
is first-order axiomatized by φ ∧ ∀−→x (P (−→x) ↔ P ∗(−→x)).
By Lemma 4, the fixed-point formula ψ(Π, P ∗)∞(−→x , P)
on K is defined by the formula φ∗ ∧ P ∗(x), where φ∗

is obtained from φ by simultaneously replacing each oc-
currence of P (

−→
t) with P ∗(

−→
t). Then, by Theorem 3,

524

ψ(Π, P ∗)∞(−→x , P) is bounded on K. Again, by Lemma 4,
Π is bounded.

Related Work
In this section, we discuss the relationships between our pro-
gression semantics for answer set programs and other pro-
gression or progression-like semantics for datalog and nor-
mal logic programs. We address the main difference be-
tween our progression semantics definition and others.

Progression semantics for datalog programs

As showed from Definitions 1 and 2, our progression se-
mantics for first-order answer set programs is defined based
on the simultaneous evaluation stage of a given program Π,
which may be viewed as a generalization of the stage eval-
uation for intentional predicates for datalog programs (Ajtai
& Gurevich 1994). However, since intentional predicates
do not occur in the negative bodies of rules in a datalog pro-
gram, datalog simultaneous evaluation stage definition is not
applicable for defining the progression semantics of answer
set programs.

In fact, even for non-standard datalog programs where
intentional predicates are allowed in the negative bodies
of rules, their evaluation stage definition will not result in
the answer set semantics, unlike ours developed in this pa-
per (see Theorem 1). In particular, consider datalog pro-
grams under well-founded semantics, named WF-datalog
programs, where intentional predicates are allowed to oc-
cur in the negative bodies of rules. The evaluation stage for
intentional predicates for a WF-datalog program is defined
quite differently from our Definition 1, in the sense that dur-
ing each evaluation stage, the interpretations for negative in-
tentional predicates in the rule bodies are not fixed by the
given structure M, instead, they are assigned by the values
obtained from the previous evaluation stage (see Chapter 9
in (Ebbinghaus & Flum 1999) for details).

Situation calculus and Wallace’s semantics for
normal logic programs

Lin and Reiter have developed a situation calculus semantics
to capture the answer set semantics of first-order (normal)
logic program (Lin & Reiter 1997). In their approach, a rule
of the form (1) in a logic program Π is rewritten as an effect
axiom under the framework of situation calculus as follows:

Poss(A(−→x), s) → ((β1(s) ∧ · · · ∧ βm(s) ∧ ¬γ1(s) ∧
· · · ∧ ¬γl(s)) → α(−→x , do(A(−→x), s))).

Intuitively, this formula interprets the head of the underly-
ing logic program rule as a result by performing some action
at a situation where all atoms in the body hold. Here term
do(A(−→x), s) is viewed as a resulting situation from situa-
tion s by performing action A(−→x). In this sense, we may
think that a concept of progression stage is employed in this
semantics.

However, the situation calculus semantics differs from
our progression semantics because the former is based on
second-order logic3, while the later is defined on a basis of

3Recall that the induction axiom in the situation calculus is a
second-order sentence.

the fixed-point of a structure sequence.

Besides Lin and Reiter’s situation calculus approach,
Wallace proposed a so-called tightened completion seman-
tics based on classical first-order logic to capture the answer
set semantics of logic programs where an idea of progres-
sion is presented (Wallace 1993). In Wallace’s approach, a
program Π is translated into a tightened program Π′, where
each rule of the form (1) in Π is rewritten as the following
form in Π′:

α(−→x , s(n)) ← β1(−→y1, n), · · · , βm(−→ym, n),

not γ1, · · · , not γl, (2)

where s(n) is the successor of the natural number n, and for
each predicate P (−→x) in Π, Π′ also contains a rule

P (−→x) ← P (−→x , n).

Wallace showed that the Herbrand models of completion
of tightened program Π′ precisely capture the stable mod-
els of program Π under the restriction to predicates in Π
(Wallace 1993). Wallace further extended this result to non-
Herbrand universes.

By taking a closer look at rule (2), we can see that the
interpretation for a predicate in program Π is progressively
generated through the interpretations of predicates occurring
in the positive bodies of the rules in the previous stage, while
keeping those negative predicate interpretations fixed. This
is similar to our evaluation stage definition (see Definition
1).

Nevertheless, the key difference between Wallace’s se-
mantics and ours is clear: Wallace’s approach introduces the
successor function s(n) where n is a natural number to en-
code the progression process, a consequence of this is: for
non-Herbrand universes, a set of induction axioms has to
be added into the tightened completion to handle negative
atoms:

∀−→x ¬P (−→x , 0) ∧ (∀N¬P (−→x , N) →

¬P (−→x , s(N))) → ∀M¬P (−→x , M). (3)

Since Wallace’s approach involves the reasoning with nat-
ural numbers, though (3) is a first-order sentence, it is not
sufficient to precisely represent the underlying progression
semantics. We will need Peano axioms for natural num-
bers whereas a second-order induction axiom is included
(Mendelson 1987). In this sense, like Lin and Reiter’s the
situation calculus semantics, Wallace’s approach is also in
second-order logic.

Conclusions

The fixed-point style progression semantics proposed in this
paper precisely captures current semantics of first-order an-
swer set programs (see Theorem 1). One main technical is-
sue in developing such semantics for answer set program-
ming is the way of handling negation as failure for inten-
tional predicates, while in standard datalog no such handling
is needed, and in WF-datalog, it is handled differently. On

525

the other hand, in both Lin and Reiter and Wallace’s ap-
proaches (Lin & Reiter 1997; Wallace 1993), the concept
of progression is encoded relying on second-order logic.

The progression semantics enables us to define an explicit
notion of boundedness, therefore to provide a technical ba-
sis to study various fundamental issues in relation to first-
order answer set programming. Our main result (Theorem
2) regarding the equivalence among boundedness, recursion-
free, loop-free and first-order definability on arbitrary struc-
tures sheds new insights for a better understanding of the
expressive power of (first-order) normal logic programs un-
der answer set semantics. Also, the techniques introduced to
prove the two theorems are useful for studying other related
topics in first-order answer set programming.

For future work, an important problem worth pursuing is,
given a fixed natural number k, to identify some sufficient
conditions, particularly tractable syntactical conditions, of
k-bounded programs, whose answer sets could be computed
in certain easier ways.

Acknowledgement

We specially thank Fangzhen Lin for his initial inspiration
on this work. Our results presented in this paper provide a
complete answer to his conjecture on the equivalence among
boundedness, loop-free and first-order definability under an-
swer set semantics.

This research is supported in part by an Australian Re-
search Council Discovery Projects grant DP0988396.

References

Ajtai, M., and Gurevich, Y. 1994. Datalog vs. first order
logic. J. of Computer and System Sciences 49:562–588.

Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. MIT Press.

Barwise, J., and Moschovakis, Y. 1978. Global inductive
definability. Journal of Symbolic Logic 43:521–534.

Brass, S., and Dix, J. 1998. A general framework for se-
mantics of disjunctive logic programs based on partial eval-
uation. Journal of Logic Programming 38:167–213.

Chen, Y.; Lin, F.; Wang, Y.; and Zhang, M. 2006. First-order
loop formulas for normal logic programs. In Proceedings of
KR-2006, 298–307.

Cosmadakis, S. 1989. On the first-order expressibility of
recursive queries. In Proceedings of the 8th ACM SIGACT-
SIGMOD-SIGART Symposium on PODS, 311–323.

Ebbinghaus, H., and Flum, J. 1999. Finite Model Theory.
2nd edition, Springer.

Ferraris, P.; Lee, J.; and Lifschitz, V. 2007. A new per-
spective on stable models. In Proceedings of IJCAI-2007,
372–379.

Ferraris, P.; Lee, J.; and Lifschitz, V. 2010. Stable models
and circumscription. Artificial Intelligence (to appear).

Lin, F., and Reiter, R. 1997. Rules as actions: A situa-
tion calculus semantics for logic programs. Journal of Logic
Programming 31:299–330.

Lin, F., and Zhou, Y. 2007. From answer set logic program-
ming to circumscription via logic of gk. In Proceedings of
IJCAI-2007, 441–661.

Mendelson, R. 1987. Introduction to Mathematical Logic.
3rd edition, Chapman & Hall.

Vardi, M. 1988. Decidability and undecidability results for
boundedness of linear recursive queries. In Proceedings of
the 7th ACM Symp. on Principles of Database Systems, 341–
351.

Wallace, M. 1993. Tight, consistent, and computable com-
pletions for unrestricted logic programs. Journal of Logic
Programming 15:243–273.

526

