
Pushing the Limits of Reasoning over Ontologies with Hidden Content∗

Bernardo Cuenca Grau and Boris Motik
Oxford University Computing Laboratory

University of Oxford, UK

Abstract

There is currently a growing interest in techniques for hiding
parts of the signature of an ontology Kh that is being reused
by another ontology Kv . Towards this goal, Cuenca Grau,
Motik, and Kazakov (2009) recently proposed the import-by-
query framework, which makes the content of Kh accessi-
ble through a limited query interface. If Kv reuses the sym-
bols from Kh in a certain restricted way, one can reason over
Kv ∪ Kh by accessing only Kv and the query interface. In
this paper, we map out the landscape of the import-by-query
problem. We show that certain restrictions of our original
framework are strictly necessary to make reasoning possible,
we propose extensions that overcome some of the expres-
sivity limitations, we present several novel reasoning algo-
rithms, and we outline the limitations of the new framework.

Introduction

The Web Ontology Language (OWL) and its revision OWL
2 are ontology languages standardized by the W3C, and their
formal underpinning is provided by description logics (DLs)
(Baader et al. 2007)—knowledge representation formalisms
with well understood formal properties. OWL ontologies
are often used to provide a shared vocabulary for a family
of applications, thus making data exchange between the ap-
plications easier. Furthermore, constructing ontologies is a
labor-intensive task, so reusing (parts of) well-established
ontologies when developing new ones is seen as key to re-
ducing ontology development cost. Consequently, the prob-
lem of ontology reuse has recently received significant at-
tention (Stuckenschmidt, Parent, and Spaccapietra 2009).

An OWL ontology Kv can reuse an ontology Kh via im-
porting, and the result is logically equivalent to Kv ∪Kh.
OWL reasoners deal with imports by loading both ontolo-
gies and merging their contents, which requires physical ac-
cess to the axioms of Kh. The vendor of Kh, however, might
be reluctant to distribute (parts of) the contents of Kh, as do-
ing so might allow competitors to plagiarize Kh. Moreover,
Kh might contain information that is sensitive from a privacy
point of view. Finally, one might want to impose a varying
cost on the reuse of different parts of Kh. To stipulate that

∗Bernardo Cuenca Grau is supported by a Royal Society Uni-
versity Research Fellowship.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kh should not be publicly available, we call the ontology
Kh hidden and, by analogy, we call Kv visible.

Motivated by such scenarios, several approaches to hiding
a subset of the signature of Kh have been developed. One
approach is to publish an Υ-interpolant of Kh—an ontology
that contains no symbols fromΥ and that coincides with Kh

on all logical consequences formed using the symbols not in
Υ (Konev, Walter, and Wolter 2009). Once an Υ-interpolant
has been published, it can be imported into Kv without any
restrictions, and one can reason over the union of Kv and
theΥ-interpolant using off-the-shelf DL reasoners. SuchΥ-
interpolants, however, exist only for inexpressive DLs and
under certain syntactic restrictions; furthermore, they can be
of exponential size, which can be problematic in practice.

In our previous work, we proposed an approach in which
Kh is accessible via a limited query interface that we call an
oracle (Cuenca Grau, Motik, and Kazakov 2009). The ora-
cle advertises a public subset Γ of the signature of Kh, and it
can answer queries overKh that are expressed in a particular
query language and that use only the symbols fromΓ. Under
certain assumptions, a so-called import-by-query algorithm
can reason over Kv ∪ Kh (e.g., determine its satisfiability)
without having physical access to the content of Kh, by only
posing queries to the oracle for Kh. The idea of accessing an
ontology through oracles is similar in spirit to the proposal
for query answering in a peer-to-peer setting by Calvanese et
al. (2004); however, the latter approach focuses on reusing
data rather than schema statements.

Our framework minimizes the information flow between
Kv and Kh. Apart from restricting access to Kh, reason-
ing can be performed without Kh having any access to Kv,
which is beneficial as Kv might also contain sensitive in-
formation. Furthermore, unlike interpolation, our frame-
work does not require materializing an exponentially large
Υ-interpolant, and it can be applicable in cases when Υ-
interpolants for Kh do not exist. In contrast to interpolation,
however, our framework imposes restrictions on the way Kv

can reuse the public symbols from Kh.

The formal properties of import-by-query algorithms de-
pend on the oracle query language and the logics used to
express Kv and Kh. In our previous work, we studied the
case when oracles support concept satisfiability queries—
that is, when queries are concepts over Γ in the DL of Kh,
for which the oracle determines their satisfiability w.r.t. Kh.

214

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

We proved that no import-by-query algorithm exists in such
a setting even if Kv and Kh are expressed in the lightweight
description logic EL (Baader, Brandt, and Lutz 2005). To
make reasoning possible, the reuse of the advertised sym-
bols was subjected to the following restrictions.

1. Reuse was required to be modular—that is, Kv could not
change the meaning of the symbols reused fromKh (Lutz,
Walther, and Wolter 2007; Cuenca Grau et al. 2008).

2. Role symbols (i.e., binary predicates) from Kh could be
reused in Kv only in a particular restricted way.

We presented an import-by-query algorithm that can han-
dle Kv and Kh expressed in the DLs SROIQ (Kutz, Hor-
rocks, and Sattler 2006) and SRIQ (Horrocks, Kutz, and
Sattler 2005), respectively, provided that the mentioned as-
sumptions are satisfied. Our algorithm, however, may issue
exponentially many queries to the oracle even if standard
reasoning over Kv ∪ Kh requires only polynomial time.

In this paper, we extend the import-by-query framework
in several important ways. To weaken the restrictions on
the reuse of the role symbols, we employ a more expres-
sive oracle query language: our queries are ABoxes over the
symbols from Γ, for which the oracle decides their satisfi-
ability w.r.t. Kh. ABox satisfiability has been implemented
in most state-of-the-art DL reasoners, so such a query lan-
guage seems like a natural choice. We then study the formal
properties of import-by-query algorithms in such a setting
and prove the following novel results.

1. We show that, even with ABox satisfiability oracles, the
presence of nominals in Kh can preclude the existence of
an import-by-query algorithm.

2. We prove that modular reuse is strictly necessary—that
is, that no import-by-query algorithm exists if Kv does
not reuse the symbols from Γ in a modular way.

3. We present an import-by-query algorithm for the case
when both Kv and Kh are in EL and reuse is modular.

4. Depending on the expressivity of Kv and Kh, we show
that the presence of cyclic axioms can prevent the exis-
tence of an import-by-query algorithm.

5. We present an import-by-query algorithm for the case
when both Kv and Kh are in ALCHIQ, the reuse is mod-
ular, and Kv satisfies a particular acyclicity restriction.

Our results thus map out the landscape of the import-by-
query problem, close several important gaps in our previous
work, and provide a starting point for implementation.

Some proofs are given in the full version of this paper (see
http://www.comlab.ox.ac.uk/people/boris.motik/pubs/).

Preliminaries

In this section, we recapitulate the DL notation used in this
paper and present an overview of the hypertableau reasoning
algorthms for DLs (Motik, Shearer, and Horrocks 2009).

Description Logics

We first introduce the description logic ALCHOIQ. A sig-
nature Σ is a disjoint union of countable sets of atomic con-
cepts NC , atomic roles NR, and individuals NI . A role is

either atomic or an inverse role R− for R ∈ NR. For R
and R′ roles, a role inclusion axiom has the form R � R′.
The set of concepts is the smallest set containing �, ⊥, A,
{a}, ¬C, C1 � C2, C1 	 C2, ∃R.C, ∀R.C, ≥n R.C, and
≤n R.C, for A an atomic concept, a an individual, C, C1,
and C2 concepts, R a role, and n a nonnegative integer. A
concept inclusion axiom has the form C1 � C2 for C1 and
C2 concepts, and C1 ≡ C2 is an abbreviation for C1 � C2

and C2 � C1. A TBox T is a finite set of concept and role
inclusion axioms. An assertion has the form C(a), R(a, b),
¬R(a, b), a ≈ b, or a �≈ b, for C a concept, R a role,
and a, b individuals. An ABox A is a finite set of asser-
tions. A knowledge base K = T ∪ A consists of a TBox
T and an ABox A. We use standard definitions of a Σ-
interpretation I , satisfiability of K in I , satisfiability of a
concept C w.r.t. K, and other relevant reasoning problems
(Baader et al. 2007). For α a concept, a role, an axiom, or
a set of axioms, sig(α) is the signature of α—that is, the set
of atomic concepts and atomic roles occurring in α.

The DL ALCHIQ is obtained from ALCHOIQ by dis-
allowing nominal concepts of the form {a}. Furthermore,
the DL EL (Baader, Brandt, and Lutz 2005) (resp. FL0

(Baader et al. 2007)) supports only concepts of the form
�, ⊥, A, C1 � C2, and ∃R.C (resp. �, ⊥, A, C1 � C2, and
∀R.C) for A and R atomic, disallows role inclusion axioms,
and supports only assertions of the form C(a) or R(a, b),
with C an EL (resp. FL0) concept and R an atomic role.

Hypertableau Algorithms for ALCHIQ and EL
The hypertableau algorithm for ALCHIQ starts by prepro-
cessing the input KB into so-called HT-rules. Let NV be a
set of variables disjoint with the set of individuals NI . An
atom is an expression of the form C(s), R(s, t), or s ≈ t,
where s, t ∈ NV ∪ NI , C is a concept, and R is a role. A
rule is an expression of the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn (1)

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. The con-
junction U1∧. . .∧Um is called the body, and the disjunction
V1 ∨ . . . ∨ Vn is called the head. The empty body and the
empty head are written as � and ⊥, respectively. Rules are
interpreted as universally quantified FOL implications in the
usual way. An HT-rule is a rule of the form∧

Ai(x) ∧
∧

Rij(x, yi) ∧
∧

Sij(yi, x)
∧

Bij(yi)→∨
Ci(x) ∨

∨
R′ij(x, yi) ∨

∨
S′ij(yi, x) ∨∨

Dij(yi) ∨
∨

yi ≈ yj

(2)

where Rij , Sij , R′ij , and S′ij are atomic roles; Ai, Bij , and
Dij are atomic concepts; Ci are either atomic concepts or
concepts of the form ≥n R.A, or ≥n R.¬A; and each vari-
able yi occurring in the rule occurs in the rule body. An
HT-rule is Horn if it contains at most one atom in the head.

Any ALCHIQ KB can be transformed into an equisat-
isfiable set of HT-rules and a normalized ABox—that is, an
ABox containing only assertions of the form A(a), ¬A(a),
R(a, b), or ¬R(a, b) with A and R atomic. The following
algorithm checks satisfiability of a set of HT-rules R and a
normalized ABox A. In the rest of this paper, we treat con-
cepts of the form ∃R.C as abbreviations for ≥ 1R.C.

215

Table 1: Hypertableau Derivation Rules
Derivation Rules for ALCHIQ

Hyp-rule

If 1. � ∈ R with � of the form (1) and
2. a mapping σ from the variables in � to

the individuals in A exists such that
2.1 σ(x) is not indirectly blocked for each x ∈ NV ,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) �∈ A for each 1 ≤ j ≤ n,

then A1 = A∪ {⊥} if n = 0;
Aj := A∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-rule

If 1. ≥n R.C(s) ∈ A with s not blocked in A and
2. there are no individuals u1, . . . , un in A s.t.

{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n}∪
{ui �≈ uj | 1 ≤ i < j ≤ n} ⊆ A,

then A1 := A∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n}∪
{ti �≈ tj | 1 ≤ i < j ≤ n}

where t1, . . . , tn are fresh successors of s.

≈-rule

If 1. s ≈ t ∈ A with s �= t
then A1 := mergeA(s → t) if t is named or

s is a descendant of t, and
A1 := mergeA(t → s) otherwise.

⊥-rule

If 1. s �≈ s ∈ A or {A(s),¬A(s)} ⊆ A or
{R(s, t),¬R(s, t)} ⊆ A

with s, t not indirectly blocked and
2. ⊥ �∈ A

then A1 := A∪ {⊥}.

The ∃-rule for EL

∃-rule
If ∃R.C(s) ∈ A and {R(s, aC), C(aC)} �⊆ A
then A1 := A∪ {R(s, aC), C(aC)}

Definition 1. Individuals. For a set of named individuals
NI , the set of all individuals NX is inductively defined as
the smallest set such that NI ⊆ NX and, if x ∈ NX , then
x.i ∈ NX for each integer i. The individuals NX \ NI are
unnamed. An individual x.i is a successor of x, and x is a
predecessor of x.i; descendant and ancestor are the transi-
tive closures of successor and predecessor, respectively.

Pairwise Anywhere Blocking. The label LA(s) of an in-
dividual s and the label LA(s, t) of an individual pair 〈s, t〉
in an ABox A are defined as follows:

LA(s) = {A | A(s) ∈ A and A is atomic}
LA(s, t) = {R | R(s, t) ∈ A}

Let ≺ be a strict ordering on NX containing the ancestor
relation. By induction on ≺, we assign to each individual s
in A a status as follows:

• s is directly blocked by t iff the following conditions hold,
for s′ and t′ the predecessors of s and t, respectively:

– s and t are unnamed, t is not blocked, and t ≺ s;1

– LA(s) = LA(t) and LA(s′) = LA(t′); and

– LA(s, s′) = LA(t, t′) and LA(s′, s) = LA(t′, t).

• s is indirectly blocked iff its predecessor is blocked.

• s is blocked iff it is either directly or indirectly blocked.

1When reasoning with ALCHOIQ knowledge bases, individ-
uals s′ and t′ are also required to be unnamed; however, this re-
striction is not needed with ALCHIQ knowledge bases.

Pruning and Merging. The ABox pruneA(s) is obtained
from A by removing all assertions containing a descendant
of s. The ABox mergeA(s → t) is obtained from pruneA(s)
by replacing s with t in all assertions.

Clash. An ABox A contains a clash if ⊥ ∈ A; otherwise,
A is clash-free.

Derivation Rules. The algorithm consists of the Hyp-, ≥-,
≈-, and ⊥-rule from Table 1, which, given R and a clash-
free ABox A, derive the ABoxes 〈A1, . . . ,An〉. In the Hyp-
rule, σ(U) is obtained from U by replacing each variable x
with σ(x). For a role R and individuals s and t, the function
ar(R, s, t) returns the assertion R(s, t) if R is atomic, or the
assertion S(t, s) if R is an inverse role and R = S−.

Derivation. A derivation for R and A is a pair (T, ρ)
where T is a finitely branching tree and ρ labels the nodes
of T with ABoxes s.t. (i) ρ(ε) = A for ε the root, and (ii) for
each node t, if a derivation rule is applicable to R and ρ(t),
then t has children t1, . . . , tn s.t. 〈ρ(t1), . . . , ρ(tn)〉 are the
result of applying one derivation rule to R and ρ(t). The
algorithm returns t if some derivation for R and A has a
leaf node labeled with a clash-free ABox, and f otherwise.

The hypertableau algorithm for ALCHIQ can also be ap-
plied to EL KBs. Motik and Horrocks (2008) showed, how-
ever, that a worst-case optimal algorithm can be obtained by
modifying the ≥-rule. This modified algorithm works on a
set R of EL-rules—HT-rules of the form (3), where C is
either atomic, or of the form ∃R.A with A atomic.

k∧
i=1

Ai(x) ∧
m∧

i=1

[
Ri(x, yi) ∧

mi∧
j=1

Bij(yi)

]
→ C(x) (3)

The following algorithm checks satisfiability of R ∪ A,
for R a set of EL-rules and A a normalized ABox.

Definition 2. For each named individual a ∈ NI and each
atomic concept A ∈ NC , let aA be a fresh individual that is
uniquely associated with a and A. The hypertableau algo-
rithm for EL follows Definition 1, but the derivation rules
include the Hyp-, ⊥-, and ∃-rule from Table 1.

Motivating Example and Definitions

To illustrate our framework, consider a medical research
company (MRC) that has developed an ontology about hu-
man anatomy. The ontology contains concepts describing
organs such as Heart and TV (tricuspid valve); medical
conditions such as CHD (congenital heart defect), VSD
(ventricular septum defect), and AS (aortic stenosis); and
treatments such as Surgery. The roles part, con, and
treatment relate organs with their parts, medical conditions,
and treatments, respectively, and they are used to define con-
cepts such as VSD Heart (a heart with a ventricular septal
defect) and Sur Heart (a heart that requires surgical treat-
ment). We focus on reusing schema knowledge, so we as-
sume that the ontology consists only of a TBox Th, given in
Table 2. MRC wants to freely distribute information about
organs and conditions, but wants to charge for the informa-
tion about treatments. To this end, MRC identifies a set Γ
of public symbols of Th; we write these symbols in bold,
and the remaining private symbols in sans serif. MRC does

216

Table 2: Example Knowledge Bases
Hidden Knowledge Base Th

γ1 Heart � Organ � ∃part.TV
γ2 VSD � CHD
γ3 AS � CHD
γ4 VSD Heart ≡ Heart � ∃con.VSD
γ5 VSD Heart � ∃treatment.Surgery
γ6 Sur Heart ≡ Heart � ∃treatment.Surgery
Visible Knowledge Base Kv

δ1 VSD Patient ≡ Patient � ∃hasOrg .VSD Heart
δ2 HS Patient ≡ Patient � ∃hasOrg .Sur Heart
δ3 AS Patient ≡ Patient �

∃hasOrg .(Heart � ∃con.AS)
δ4 Ab TV � TV
δ5 Dis TV � Ab TV
δ6 EA Heart ≡ VSD Heart � ∃part.Dis TV
δ7 EA Patient ≡ Patient � ∃hasOrg .EA Heart
δ8 Ab TV Heart ≡ Heart � ∃part.Ab TV
δ9 TVD Patient ≡ Patient � ∃hasOrg .Ab TV Heart

not want to distribute the axioms of Th, as this might allow
competitors to copy parts of the ontology.

Consider also a health-care provider (HCP) that reuses Th

to describe types of patients such as VSD Patient (patients
with a ventricular septum defect), HS Patient (patients re-
quiring heart surgery), AS Patient (patients with aortic
stenosis), EA Patient (patients with Ebstein’s anomaly),
and TVD Patient (patients with a tricuspid valve defect).
Since the TBox Th does not describe Ebstein’s anomaly,
HCP defines EA Heart as a heart with a ventricular septum
defect and with a displaced tricuspid valve Dis TV ; further-
more, it defines a displaced tricuspid valve as abnormal, and
Ab TV Heart as a heart with an abnormal tricuspid valve.
The ontology is shown in Table 2, and its private symbols
are written in italic. Although our example does not use
ABox assertions, we allow the visible ontology to contain
such assertions in general, so we denote it with Kv . HCP can
use Th ∪ Kv to conclude VSD Patient � HS Patient (pa-
tients with ventricular septum defect require heart surgery)
and EA Patient � TVD Patient (patients with Ebstein’s
anomaly are a kind of patients with a tricuspid valve defect).

To support such scenarios, in our previous work we pro-
posed the import-by-query framework (Cuenca Grau, Motik,
and Kazakov 2009). Instead of publishing (a subset of) the
axioms of Th, MRC can publish an oracle for Th—a service
that can answer queries over Th provided that the queries use
only the public symbols of Th. We presented an import-by-
query algorithm that allows HCP to reason over Kv ∪ Th by
using the axioms of Kv and the oracle. Our framework was
based on oracles that decide the satisfiability of a concept C
in the DL of Th, provided that sig(C) ⊆ Γ. For reasoning to
be possible, we imposed the following restrictions:

R1. Th was not allowed to contain nominals.

R2. The TBox of Kv had to be modular w.r.t. Γ; that is, its
axioms could not affect the meaning of the symbols in Γ.

R3. Let a concept C be Γ-modal if, for R ∈ Γ, it is of the form
∃R.C, ∀R.C, ≥n R.C, and ≤n R.C, and let C be Γ-
restricted if sig(C) ⊆ Γ; then, we required each Γ-modal
concept in Kv to be Γ-restricted.

Restriction R3 is particularly severe, as it prevents mixing
roles from Th with concepts from Kv in modal restrictions.
Axioms δ6 and δ8 from Table 2 violate this restriction.

To overcome these limitations, in this paper we introduce
two new (but closely related) types of oracles, which are
more powerful than the oracles based on concept satisfiabil-
ity. An ABox satisfiability oracle is given an ABox A with
sig(A) ⊆ Γ, and it checks the satisfiability of A∪ Th. An
ABox entailment oracle is given an ABox A and an assertion
α with sig(A) ⊆ Γ and sig(α) ⊆ Γ, and it checks whether
A∪ Th |= α. An ABox entailment oracle can always sim-
ulate an ABox satisfiability oracle, and the converse holds
provided that A allows for assertions of the form ¬C(s)
and ¬R(s, t). Assertions of the former type are available
in many DLs; furthermore, assertions of the latter type can
be added to most DLs without any problems, which is why
we included such assertions in the definition of the DLs that
can do so in the previous section. Therefore, we consider in
this paper mainly ABox satisfiability oracles; we use ABox
entailment oracles only when the DL of Th is Horn and thus
does not support assertions of the form ¬C(s).

In practice, it is natural to express a query ABox A in the
same DL as Th. To obtain general results about infeasibility
of reasoning, however, it is useful to allow the DL of A to
be more expressive than the DL of Th, so that Kv can “learn
more about the models of Th.” We therefore parameterize
our oracles with a DL L that determines the types of asser-
tions allowed in A.

Definition 3. Let Th be a TBox, L a description logic, and Γ
a signature. An ABox satisfiability oracle Ωa

Th,Γ,L is a func-

tion that, for eachL-ABox A such that sig(A) ⊆ Γ, returns t
iff Th ∪ A is satisfiable. An ABox entailment oracleΩe

Th,Γ,L

is a function that, for each L-ABox A such that sig(A) ⊆ Γ
and each L-assertion α that mentions only the individuals
in A such that sig(α) ⊆ Γ, returns t iff Th ∪ A |= α.

An import-by-query algorithm takes as input a knowledge
base Kv and an oracleΩTh,Γ,L with sig(Kv) ∩ sig(Th) ⊆ Γ,
and it terminates after a finite number of computation steps
returning t iff Kv ∪ Th is satisfiable.

We use the generic term ABox query oracle (or simply or-
acle) for either an ABox satisfiability or an ABox entailment
oracle. Furthermore, if L is the same as the logic of Th, we
abbreviate ΩTh,Γ,L to ΩTh,Γ.

We finally show that we can without loss of generality
assumeKv to contain no concept that is bothΓ-modal andΓ-
restricted (such as ∃con.AS in axiom δ3). Intuitively, this is
because we can always treat such concepts as “atomic” from
the point of view of Kv and rely on the oracle to compute all
relevant consequences of such concepts.

Theorem 1. Each import-by-query algorithm applicable to
an oracle ΩTh,Γ,L and an input knowledge base Kv ∈ DL
that does not contain concepts that are both Γ-modal and
Γ-restricted can be converted into an import-by-query algo-

217

rithm that handles input knowledge bases containing such
concepts, provided that L allows for DL-concepts.

Proof. Let IbQ′ be an import-by-query algorithm satisfying
the assumptions of the theorem. For C a concept and α a
concept, axiom, or knowledge base, let us say that C is Γ-
outermost in α if C is Γ-modal and it does not occur in α as
a proper subconcept of another Γ-modal subconcept D.

Let ΩTh,Γ,L be an oracle and Kv ∈ DL a knowledge base

that could be handled by IbQ′ if each Γ-outermost concept
in it were replaced with an atomic concept. Let S be the
set of Γ-outermost concepts in Kv , and let XC be a fresh
atomic concept for each C ∈ S. We define Γ′, T ′h, and
K′v as follows: Γ′ = Γ ∪ {XC | C ∈ S}; K′v is obtained
from Kv by replacing each concept C ∈ S with XC ; and
T ′h = Th ∪ {XC ≡ C | C ∈ S}.

Clearly, Kv ∪ Th is equisatisfiable with K′v ∪ T ′h, and

IbQ′ is applicable to ΩT ′

h
,Γ′,L and K′v . Now let IbQ be the

algorithm that on ΩTh,Γ,L and Kv behaves as follows.

• IbQ simulates the steps of IbQ′ on ΩT ′

h
,Γ′,L and K′v while

treating all concepts in S as if they were atomic.

• Whenever IbQ′ queries ΩT ′

h
,Γ′,L with an ABox A′, IbQ

queries ΩTh,Γ,L with an ABox A obtained from A′ by
replacing each concept XC with C.

Algorithm IbQ clearly returns on ΩTh,Γ,L and Kv the same

value as IbQ′ on ΩT ′

h
,Γ′,L and K′v; hence, if L allows

for DL-concepts, IbQ is an import-by-query algorithm for
ΩTh,Γ,L and Kv .

Limits of ABox Query Oracles

In this section we revisit restrictions R1–R3 from our pre-
vious work and explore the limitations of the framework
based on ABox query oracles. We first justify R1, which was
adopted in our previous work for technical reasons, without
a formal justification.

Theorem 2. No import-by-query algorithm based on ABox
query oracles exists if Kv is in a DL without the finite model
property and the DL of Th provides for nominals and dis-
junction, even if L = ALCHOIQ and Γ = ∅.

Proof. Assume that an import-by-query algorithm exists,
and let Kv be any knowledge base satisfiable only in infinite
models. Since the algorithm terminates, the maximum size
of the query ABoxes is bounded; furthermore, since these
ABoxes are in ALCHOIQ, an integer n depending only on
Kv andΓ exists such that each satisfiable ABox passed to the
oracle has a model containing at most n objects. Let T 1

h = ∅
and T 2

h = {� � {a1} 	 . . . 	 {an}}. Clearly, Kv ∪ T 1

h is
satisfiable, but Kv ∪ T 2

h is not. Consider now an arbitrary
L-ABox A such that sig(A) ⊆ Γ. Clearly, Ωa

T 1

h
,Γ
(A) = t

impliesΩa

T 2

h
,Γ
(A) = t, and the converse holds by the mono-

tonicity of first-order logic. Thus, Ωa

T 1

h
,Γ
(A) = Ωa

T 2

h
,Γ
(A)

for any A, so our algorithm returns the same result when ap-
plied to the oracles for T 1

h and T 2

h ; however, this contradicts
the fact that Kv ∪ T 1

h is satisfiable but Kv ∪ T 2

h is not.

We next revisit R2. In this paper, we use the deductive
notion of modularity (Lutz, Walther, and Wolter 2007) and
say that Kv is modular w.r.t. Γ if, for all concepts C and
D in the DL of Kv such that sig(C) ⊆ Γ and sig(D) ⊆ Γ,
Kv |= C � D implies ∅ |= C � D. Previously, we adopted
modularity as a “reasonable” assumption, without formal
justification. We next present a very strong result: modu-
larity is necessary for the existence of an import-by-query
algorithm. Intuitively, without modularity Kv can arbitrarily
influence the models of Th, and the oracle cannot take this
into account since it has no access to the axioms of Kv.

Theorem 3. For any logic DL containing at least the con-
structors of EL and at most the constructors of ALCHIQ,
no import-by-query algorithm based on ABox query oracles
exists if Kv and Th are in DL and L = ALCHIQ, unless
Kv is modular in the public signature Γ of Th.

Proof. Consider any signature Γ and any ALCHIQ knowl-
edge base Kv such that Kv is not modular w.r.t. Γ. Then,
possibly complex DL concepts C and D exist such that
sig(C) ⊆ Γ, sig(D) ⊆ Γ, Kv |= C � D, and ∅ �|= C � D.
Assume now that an import-by-query algorithm exists that
terminates on Kv , Γ, and any Th in a DL as specified in the
theorem. Without loss of generality, we can assumeKv to be
satisfiable; otherwise, the import-by-query problem is triv-
ial. Let T 1

h and T 2

h be as follows, where R �∈ Γ and A �∈ Γ.

T 1

h = ∅
T 2

h = {� � ∃R.(A � C), A � D � ⊥}

Clearly, Kv ∪ T 1

h is satisfiable, but Kv ∪ T 2

h is not. Con-
sider now an arbitrary L-ABox A such that sig(A) ⊆ Γ. If
A∪ T 1

h is unsatisfiable, so is A ∪ T 2

h . Conversely, assume
that A ∪ T 1

h is satisfiable in a model I . Since ∅ �|= C � D,

an interpretation IC and a domain element x ∈ �IC exist
such that x ∈ CIC but x �∈ DIC . Let I ′ be the following
interpretation:

�I′

= �I ∪�IC

RI′

= {〈o, x〉 | o ∈ �I′

}
XI′

= XI ∪ XIC for each atomic concept X �∈ Γ

AI′

= {x}

Clearly, I ′ |= T 2

h ; furthermore, since the concepts in A are
in ALCHIQ and do not contain R, we have I ′ |= A as well.
Hence,Ωa

T 1

h
,Γ,L

(A) = Ωa

T 2

h
,Γ,L

(A), which proves our claim

as in the proof of Theorem 2.

We finally focus on R3. The proof of nonexistence of
an import-by-query algorithm from our previous work uses
an EL ontology Kv that entails a cyclic axiom of the form
A � ∃R.A with R ∈ Γ but A �∈ Γ. We introduced R3 as a
possible way of invalidating this proof.

Later in this paper, we provide an import-by-query algo-
rithm based on ABox query oracles for Kv and Th in EL,
and where R3 is not required to hold. This shows the advan-
tage of ABox-based over concept-based oracles. However,
we next show that ABox query oracles are not sufficiently
expressive if is allowed to Th contain universal quantifiers.

218

Theorem 4. No import-by-query algorithm based on ABox
query oracles exists for Kv in EL and Th in FL0, even if the
TBox of Kv is modular, Th is Horn, and L = ALCHIQ.

Proof. Assume that an import-by-query algorithm exists,
and let Kv = {A(a), Z(a), A � ∃R.A} and Γ = {R, Z}.
The TBox of Kv is modular w.r.t. Γ: for each interpreta-
tion I for Γ, the interpretation J such that XJ = XI for
each X ∈ Γ and XJ = ∅ for each X �∈ Γ is a model of the
TBox of Kv, which implies deductive modularity.

Since the algorithm terminates on Γ and Kv , there is a
bound on the number of questions posed to an oracle that
depends only on Γ and Kv . Thus, the number of individu-
als (resp. the number of existentially quantified concepts) in
each ABox passed to the oracle is bounded by some inte-
ger n (resp. m). Let k = n+m+ 1 and let C1, . . . , Ck be
distinct and fresh atomic concepts. Consider the following
Horn-FL0 TBoxes:

T 1

h = {Ci � Cj � ⊥ | 1 ≤ i < j ≤ k} ∪ {Z � C1} ∪
{Ci−1 � ∀R.Ci | 1 < i ≤ k} ∪ {Ck � ∀R.C1}

T 2

h = T 1

h ∪ {Ck � ⊥}

Clearly, Kv ∪ T 1

h is satisfiable, whereas Kv ∪ T 2

h is not.
We next show that, for each L-ABox A with sig(A) ⊆ Γ
with at most n individuals and concepts of quantifier depth
at most m, we have Ωa

T 1

h
,Γ
(A) = Ωa

T 2

h
,Γ
(A), which proves

our claim as in the proof of Theorem 2. Due to the mono-
tonicity of first-order logic, satisfiability of A∪ T 2

h implies
satisfiability of A∪ T 1

h , and we next show the converse.
We say that an individual c in A is j steps away from b0

if {Z(b0), R(b0, b1), . . . , R(bj−1, bj)} ⊆ A for some indi-
viduals b1, . . . , bj with bj = c; in such a case, we have

A ∪ T 1

h |= Cj(c). Let R1

h and A′ be the result of transform-

ing T 1

h and A into HT-rules. Since the algorithm from Def-
inition 1 is sound and complete, there is a clash-free ABox
A′′ labeling a leaf of a derivation for R1

h and A′. Since
A contains at most m existentially quantified concepts, A′′

contains at most m unnamed individuals. But then, A′′ ∪ T 2

h

can only be unsatisfiable if individuals b and c exist such
that c is k steps away from b. Since A contains at most
n+m individuals and n+m < k, an individual d exists
that is both j1 and j2 steps away from b, where j1 �= j2. But
then, A′′ ∪ T 1

h is unsatisfiable, and A ∪ T 1

h is unsatisfiable
as well, which is a contradiction.

The proof of Theorem 4 again assumes that Kv entails
an axiom A � ∃R.A with R ∈ Γ and A �∈ Γ, which implies
A � ∃Rn.A for arbitrary n. Through universal quantifica-
tion, Th can now “propagate” information along an R-chain
to an unknown level m. An import-by-query algorithm can-
not determine up to which depth the model ofKv needs to be
examined, which prevents termination. Later in this paper,
we present a sufficient acyclicity restriction on the axioms
of Kv that bounds n and thus ensures termination.

Finally, the proof of the following theorem shows that
acyclicity and modularity are not sufficient if Kv can propa-
gate statements about the symbols private to Kv into a model
of Th; this can be achieved, for example, using universal
quantifiers. In a subsequent section, we introduce a safety

condition that prevents such propagation and, ultimately, al-
lows us to devise an import-by-query algorithm.

Theorem 5. No import-by-query algorithm based on ABox
query oracles exists for Kv in FL0 and Th in EL, even if the
TBox of Kv is modular and L = ALCHIQ.

Proof. Assume that an algorithm exists. Let Γ = {R, B, Z}
and let Kv = {A(a), Z(a), A � ∀R.A, A � B}. That the
TBox of Kv is modular w.r.t. Γ can be shown as in the proof
of Theorem 4. Since the algorithm terminates, there is a
bound on the number of oracle queries that depends only
on Γ and Kv . Let n be maximum quantifier depth of an L-
concept in a query ABox, and let T 1

h and T 2

h be as follows:

T 1

h = {Z � ∃R . . . ∃R︸ ︷︷ ︸ .D } T 2

h = T 1

h ∪ {B � D � ⊥}

n+ 1 times

Clearly, Kv ∪ T 1

h is satisfiable, whereas Kv ∪ T 2

h is not.
We show that Ωa

T 1

h
,Γ,L

(A) = Ωa

T 2

h
,Γ,L

(A) for each L-ABox

A with sig(A) ⊆ Γ and with concepts of quantifier depth at
most n. This clearly holds if T 1

h ∪ A is unsatisfiable, so
assume that T 1

h ∪ A is satisfiable. Let R1

h and A′ be the
result of transforming T 1

h and A into a set of HT-rules and
a normalized ABox. Since the algorithm from Definition 1
is sound and complete, there is a clash-free ABox A′′ la-
beling a leaf of a derivation for R1

h and A′. Since D does
not occur in A′, if D(s) ∈ A′′, then s is at least n+ 1 steps
away from any individual a such that Z(a) ∈ A′′. Since A
contains concepts with quantifier depth at most n, we have
that D(s) ∈ A′′ implies B(s) /∈ A′′; but then, no derivation
rule is applicable to R2

h ∪ A′′ for R2

h the result of trans-
forming T 2

h into HT-rules, so T 2

h ∪ A is satisfiable. Thus,
Ωa

T 1

h
,Γ,L

(A) = Ωa

T 2

h
,Γ,L

(A) = t, which proves our claim as

in the proof of Theorem 2.

Import-by-Query Algorithms

We next identify positive cases for which an import-by-
query algorithm exists. For simplicity, in all algorithms we
assume that Kv does not contain concepts that are both Γ-
modal and Γ-restricted; by Theorem 1 this is without loss
of generality. Our algorithms extend the hypertableau algo-
rithms for ALCHIQ and EL given in the preliminaries.

Import-by-Query in EL
In this section we present an import-by-query algorithm
based on ABox entailment oracles that is applicable when
Kv and Th are in EL. The only relevant negative result is
given in Theorem 3, so Kv must be modular w.r.t. Γ. We use
a stronger condition and require Kv to be local w.r.t. Γ; for
Kv in EL, this is the case if sig(C) �⊆ Γ for each concept in-
clusion C � D ∈ Kv (Cuenca Grau et al. 2008). While the
design of an import-by-query algorithm that requires only
modularity is an open problem, we do not believe locality to
be a severe limitation in practice: determining modularity of
Kv w.r.t. Γ is EXPTIME-complete (Lutz and Wolter 2009),
and no practical algorithm is presently known. Note that our
running example satisfies the locality requirement.

Our algorithm is based on the hypertableau framework, so
Kv must first be converted into a set Rv of EL-rules and a

219

normalized ABox Av . It is straightforward to see that, if Kv

is local and does not contain concepts that are Γ-modal and
Γ-restricted, then Rv is EL-safe, as specified next.

Definition 4. A set Rv of EL-rules is EL-safe w.r.t. a sig-
nature Γ if, for each rule � ∈ Rv ,

• � contains a body atom α such that sig(α) �∈ Γ, and

• for each body atom in � of the form R(x, yi) with R ∈ Γ,
there is a body atom in � of the form B(yi) with B �∈ Γ.

Our algorithm takes a set Rv of EL-safe rules and a nor-
malized ABox Av . It applies the standard EL hypertableau
derivation rules, as well as an additional rule that, given an
ABox Ai in a derivation, asks the oracle to “complete” Ai

with the relevant assertions entailed by Th ∪ Ai.

Definition 5. The EL Ωe-algorithm takes a set Rv of EL-
rules, a normalized ABox Av, and an ABox entailment ora-
cle Ωe

Th,Γ such that Rv is EL-safe w.r.t. Γ. The algorithm is
obtained by extending the algorithm in Definition 2 with the
following derivation rule, where A|Γ is constructed from A
by removing each assertion α ∈ A such that sig(α) �⊆ Γ:

(Ωe-rule): If for some C ∈ Γ ∪ {⊥} and individual s in
A we have Ωe

Th,Γ(A|Γ, C(s)) = t and C(s) �∈ A, then

A1 := A ∪ {C(s)}.

Our algorithm is indeed an import-by-query algorithm,
and it can be implemented to run in polynomial time, as
shown by the following theorem.

Theorem 6. The EL Ωe-algorithm is an import-by-query
algorithm and it can be implemented such that it runs in
time polynomial in the size of Rv ∪ Av with a polynomial
number of calls to Ωe

Th,Γ.

We next explain the intuition behind this result. The EL
Ωe-algorithm is deterministic, so each derivation of the al-
gorithm has a single leaf node labeled with a uniquely de-
fined ABox Ae. We prove that Rv ∪ Av ∪ Th is satis-
fiable iff ⊥ /∈ Ae. To this end, let Rh be the result of
transforming Th into EL-rules, and let AEL be the ABox
obtained by applying the standard EL hypertableau algo-
rithm to Rv, Av , and Rh. Since the latter algorithm is
sound and complete, it suffices to show that ⊥ ∈ Ae iff
⊥ ∈ AEL. It is straightforward to see that Ae ⊆ AEL; thus,
⊥ ∈ Ae implies ⊥ ∈ AEL. For the converse, we prove that
AEL ⊆ Ae ∪ sat(Rh,Ae|Γ), where sat(Rh,Ae|Γ) is the re-
sult of applying the standard EL algorithm to Ae|Γ and Rh;
in other words, we show that the assertions in AEL \ Ae

can be obtained by applying the standard EL algorithm to
Ae|Γ and Rh. Intuitively, this can be done for two reasons:
first, the Ωe-rule “transfers” all relevant consequences of Rh

from AEL into Ae; and second, EL-safety ensures that the
EL-rules in Rv do not propagate information from the visi-
ble into the hidden part.

We illustrate these ideas by means of an example. Let
Γ = {C, R, S} and let Rv and Th be defined as follows:

Rv = { A(x) → ∃R.B(x), B(x) → ∃S.A(x),
A(x) ∧ C(x) → ∃T.C(x) }

Th = { ∃R.� � C, C � ∃S.D }

Figure 1(a) shows the ABox Ae obtained by applying the
EL Ωe-algorithm to Rv and Th. Note that the Ωe-rule intro-
duces assertion C(aA) into Ae. Figure 1(b) shows the ABox
obtained by applying the standard EL algorithm to Rh and
Ae|Γ; this ABox contains the assertions necessary to satisfy
Th. Finally, Figure 1(c) shows the final ABox AEL. Due
to EL-safety, assertions S(aA, aD) and S(aC , aD) cannot
trigger an application of an EL-rule in Rv; hence, the EL-
rules in Rv are “confined” to individuals aA, aB , and aC ,
for which the Ωe-rule adds all relevant assertions to Ae.

Import-by-Query in ALCHIQ
In this section we present an import-by-query algorithm
based on ABox satisfiability oracles that is applicable to Kv

and Th in ALCHIQ. Our algorithm is based on the hy-
pertableau framework, so Kv must first be converted into a
set Rv of HT-rules and a normalized ABox Av. To ensure
modularity as required by Theorem 3, we require Rv to sat-
isfy the safety condition from Definition 4. We next devise
further restrictions on Rv that allow us to overcome the neg-
ative results of Theorems 4 and 5.

Safety and Acyclicity To overcome the negative result of
Theorem 5, we extend the notion of safety to prevent the
transfer of information private to Rv into Th. This pre-
vents, for example, Kv from containing axioms of the form
A � ∀R.B where R ∈ Γ and {A, B} ∩ Γ = ∅.

Definition 6. A set of HT-rules Rv is HT-safe w.r.t. a sig-
nature Γ if each rule � ∈ Rv is EL-safe w.r.t. Γ and, in
addition, for each atom in the body of � of the form R(x, yi)
or R(yi, x) with R ∈ Γ, the body of � contains atoms of the
form A(x) and B(yi) such that A �∈ Γ and B �∈ Γ.

As to the negative result of Theorem 4, note that this re-
sult relies on the fact that the visible knowledge base can en-
tail a cyclic axiom A � ∃R.A with R ∈ Γ and A �∈ Γ. We
next present a sufficient test for the detection of such cycles.
The test first constructs a graph-like structure G that “sum-
marizes” the models of Rv ∪ Th ∪Av; more precisely, the
projection of each model of Rv ∪ Th ∪ Av to the symbols
in sig(Rv) can always be homomorphically embedded into
G. The structure G satisfies the conditions from Table 3.
Intuitively, since the axioms of Th are not physically avail-
able, Conditions 4–7 reflect in G any possible consequence
of Th. Conditions 1–3 reflect in G the information that could
be derived using Rv ∪ Av and the possible consequences of
Th. The proof of Proposition 1 shows that G can be obtained
from Rv and Av as the least fixpoint of a monotonic opera-
tor that mimics the conditions from Table 3.

Definition 7. Let Γ be a signature, R a set of HT-rules, A
an ABox, and let V = V1 ∪ V2 be defined as follows:

V1 = { va | a is an individual occurring in A }
V2 = { vA, v¬A | A is a concept in sig(R) ∪ sig(A) }

A structure G = (∼, E, λ) for R∪A w.r.t. Γ is a triple with
the following elements:

• ∼ is an equivalence relation on V . Let W be the set of
equivalence classes of ∼ and [·]∼ : V → W the function
that assigns to each v ∈ V its equivalence class [v]∼.

220

A, C B

C

aA aB

aC

R

S

T

(a) Ae

A, C B

C D

aA aB

aC aD

R

S

S

S

(b) sat(Rh,Ae|Γ)

A, C B

C D

aA aB

aC aD

R

S

T S

S

(c) AEL

Figure 1: An Illustration of the Completeness Argument for the EL Ωe-Algorithm

Table 3: Conditions for Structure Stability

1. C ∈ λ([va]∼) for each C(a) ∈ A; R ∈ λ([va]∼, [vb]∼) for
each R(a, b) ∈ A; and A ∈ λ([vA]∼) and ¬A ∈ λ([v¬A]∼)
for each A ∈ sig(R) ∪ sig(A).

2. If ≥n R.C ∈ λ(w), then 〈w, [vC]∼〉 ∈ E and
• R ∈ λ(w, [vC]∼) if R is an atomic role, or

• S ∈ λ([vC]∼, w) if R is an inverse role with R = S−.

3. For each � ∈ R of the form (2) and each w, w1, . . . , wn ∈ W ,
if for all body atoms of � we have Ai ∈ λ(w), Rij ∈ λ(w, wi),
Sij ∈ λ(wi, w), and Bij ∈ λ(wi), then for each head atom
of ρ we have Ci ∈ λ(w), R′

ij ∈ λ(w, wi), S′
ij ∈ λ(wi, w),

Dij ∈ λ(wi), and wi = wj .

4. A ∈ λ(w) and ¬A ∈ λ(w) for each w ∈ W and A ∈ Γ.

5. If R′ ∈ λ(w, w′) for some R′ ∈ Γ, then R ∈ λ(w, w′) for each
R ∈ Γ.

6. If R ∈ λ(w, w′) for some R ∈ Γ, then R ∈ λ(w′, w).

7. If, for some R ∈ Γ and R′ ∈ Γ, we have that R ∈ λ(w, w1)
and R′ ∈ λ(w, w2), or R ∈ λ(w, w1) and R′ ∈ λ(w2, w), or
R ∈ λ(w1, w) and R′ ∈ λ(w2, w), then w1 = w2.

• E ⊆ W × W is a relation on W .

• λ is a function that assigns to each w ∈ W a possibly
empty set of concepts λ(w) and each 〈w, w′〉 ∈ W × W
a possibly empty set of atomic roles λ(w, w′).

A structure G = (∼, E, λ) for R ∪ A w.r.t. Γ is stable if it
satisfies the conditions in Table 3.

We define the partial order ≤ on structures such that,
for G1 = (∼1, E1, λ1) and G2 = (∼2, E2, λ2), we have
G1 ≤ G2 iff ∼1 ⊆∼2 and, for each v, v′ ∈ V ,

• 〈[v]∼1
, [v′]∼1

〉 ∈ E1 implies 〈[v]∼2
, [v′]∼2

〉 ∈ E2,

• λ1([v]∼1
) ⊆ λ2([v]∼2

), and

• λ1([v]∼1
, [v′]∼1

) ⊆ λ2([v]∼2
, [v′]∼2

).

A dependency structure is each smallest structure (w.r.t. ≤)
that is stable for R∪A w.r.t. Γ.

Proposition 1. The dependency structure for R∪A w.r.t. Γ
is unique.

Proof (Sketch). We define an operator T that maps a struc-
ture G1 = (∼1, E1, λ1) into a structure G2 = (∼2, E2, λ2).
Let W1 be the set of equivalence classes of ∼1. The struc-
ture G2 is obtained by initially setting G2 := G1 and then
modifying G2 as follows:

• λ2 is extended such that it satisfies Conditions 1 and 4
from Table 3.

• For each w ∈ W1 and each concept ≥n R.C ∈ λ1(w),
the pair 〈w, [vC]∼1

〉 is added to E2; if R is atomic, then
R is added to λ2(w, [vC]∼); and if R is of the form S−

with S atomic, then S is added to λ2([vC]∼, w).

• For each HT-rule � ∈ R of the form (2) and each
w, w1, . . . , wn ∈ W1 such that, for each body atom of �,
we have Ai ∈ λ1(w), Rij ∈ λ1(w, wi), Sij ∈ λ1(wi, w),
and Bij ∈ λ1(wi), the following modifications are per-
formed for each head atom of �: Ci is added to λ2(w),
Dij is added to λ2(wi), R′ij is added to λ2(w, wi), S′ij is

added to λ2(wi, w), and relation ∼2 is extended such that
wi becomes equal to wj .

• For each w, w′ ∈ W1 such that R′ ∈ λ1(w, w′) for some
R′ ∈ Γ, R is added to λ2(w, w′) for each R ∈ Γ.

• For each w, w′ ∈ W1 such that R ∈ λ1(w, w′) for some
R ∈ Γ, R is added to λ2(w

′, w).

• For each w, w1, w2 ∈ W1 such that R ∈ λ1(w, w1) and
R′ ∈ λ1(w, w2), or R ∈ λ1(w, w1) and R′ ∈ λ1(w2, w),
or R ∈ λ1(w1, w) and R′ ∈ λ1(w2, w) for some R ∈ Γ
and R′ ∈ Γ, relation∼2 is extended such that w1 becomes
equal to w2.

It is straightforward to check that T is monotone on the lat-
tice of all structures forR∪A w.r.t.Γ, and that if T (G) = G,
then G is stable. Thus, by the well-known Knaster-Tarski
theorem, T has a unique least fixpoint, which corresponds
to the dependency structure for R∪A w.r.t. Γ.

Our test then checks whether the dependency structure G
for Rv and Av contains a “harmful cycle”—that is, a cy-
cle that is not confined to Av and that involves only roles
from Γ. Proposition 2 shows that the overall check can be
performed in polynomial time.

Definition 8. Let G be the dependency structure for R∪A
w.r.t. Γ. A pair 〈w, w′〉 ∈ W × W is harmful in G if
〈w, w′〉 ∈ E, w ∩ V2 �= ∅, w′ ∩ V2 �= ∅, and an atomic role
R ∈ Γ exists such that R ∈ λ(w, w′) or R ∈ λ(w′, w). A
structure G contains a harmful cycle if w1, . . . , wn ∈ W
exist such that 〈wi, wj〉 is harmful for each 1 ≤ i ≤ n and
j = i+ 1 mod n; furthermore, G is acyclic if it does not
contain a harmful cycle. Finally, R∪A is acyclic w.r.t. Γ if
the dependency structure for R∪A and Γ is acyclic.

221

A

B

B,C A

a

b

c d

R

S

S

(a) Canonical Model

A

B

B,C

A

A

a

b

c d

e

R

S
R

S

(b) Extended Canonical Model

A

D

B,C

u

w

v

R,S

S

T

(c) Dependency Structure

A

D

B,C

u

w

v

R,S

S

T

R

(d) Extended Dependency Structure (I)

A

D

B,C

u

w

v

R,S

S

T

R

(e) Extended Dependency Structure (II)

Figure 2: Dependency Structures and Acyclicity

Proposition 2. Acyclicity of R ∪ A w.r.t. Γ can be checked
in polynomial time.

Proof (Sketch). Let V be as specified in Definition 7, let
G = (∼, E, λ) be a structure for R∪A w.r.t. Γ, let W be the
set of equivalence classes of ∼, and let |G| be the size of G
(which we assume to be defined in a straightforward way).
Since |V | is linear in the size of R, A, and Γ, we have that
|W | is linear, and |G| is polynomial. The structure T (G) can
be computed in polynomial time. The only nontrivial case is
the third item in the definition of T , which requires matching
an HT-rule � ∈ R to G. Let n be the number of variables in
�. Each consequent atom has at most two variables and the
body atoms of � are connected in a tree-like manner, so the
relevant consequent atoms of � can be computed in at most
|V |2 × n steps. Thus, the dependency structure for R ∪ A
w.r.t. Γ can be computed by polynomially many applications
of T , each which can be computed in polynomial time.

The acyclicity condition significantly relaxes condition
R3 from our previous work; for example, it allows us to ex-
press axioms δ6 and δ8 from Table 2. Intuitively, it ensures
that “canonical” models of Rv ∪Av (i.e., models containing
the least possible information derivable from Rv ∪ Av) do
not contain infinite chains of roles from Γ. We use this fact
in our algorithm to define a suitable blocking condition. We
explain this intuition on an example where Γ = {C, R, T},
Av = {A(a)}, and Rv contains the HT-rules (4)–(9).

A(x) → ∃R.B(x) (4)

A(x) → ∃S.B(x) (5)

A(x) → ∃S.C(x) (6)

S(x, y) ∧ S(x, z)→ y ≈ z (7)

B(x) ∧ C(x) → ∃S.A(x) (8)

R(x, y) ∧ C(y) → ∃T.D(x) (9)

Figure 2(a) shows a canonical model I of Rv ∪Av , and Fig-
ure 2(c) shows the relevant part of the corresponding depen-
dency structure G (for simplicity, we do not show the part of
the structure corresponding to Av). The repetitive structure
of I is represented in G as a cycle over nodes u and v. Since
S �∈ Γ, this cycle is not harmful, and Rv ∪ Av is acyclic
w.r.t. Γ. Note, however, that a dependency structure overes-
timates the canonical models; for example, G contains a link
between u and w labeled with T , which is not reflected in I .
This becomes important if, for example, we extend Rv with
the HT-rule (10). This extension clearly does not change
the canonical models of Rv ∪Av; however, the new depen-
dency structure, shown in Figure 2(d), contains a harmful
cycle. This is the price we pay for a polynomial acyclic-
ity test: a more detailed acyclicity check could enumerate
all canonical models, but this would often require (at least)
exponential time. Nevertheless, dependency structures pro-
vide us with a sufficient check. For example, assume that
we extended Rv with the HT-rule (11). The corresponding
dependency structure, shown in 2(e), contains a self-loop in
u, which is harmful; this reflects the infinite R-chain in the
canonical model shown in Figure 2(b).

D(x) → ∃R.A(x) (10)

S(x, y) ∧ C(y)→ ∃R.A(x) (11)

An Import-by-Query Algorithm We next present our
import-by-query algorithm that assumes Rv ∪ Av to be HT-
safe and acyclic w.r.t. Γ. We modify the standard hyper-
tableau algorithm in three ways. First, we introduce several
cut rules that nondeterministically guess all “relevant” asser-
tions involving the symbols in Γ. Second, we use theΩa-rule
to check whether the guesses related to Γ are indeed consis-
tent with Th. Third, we use a relaxed blocking condition.

Definition 9. The ALCHIQ Ωa-algorithm takes an oracle
Ωa

Th,Γ for Th an ALCHIQ TBox, a normalized ABox Av,

222

Table 4: Additional Rules

A-cut
If 1. s is not indirectly blocked in A and

2. {A(s),¬A(s)} ∩ A = ∅ with A ∈ Γ
then A1 := A ∪ {A(s)} and A2 := A∪ {¬A(s)}.

R-cut

If 1. s and t are not indirectly blocked in A,
2. R′(s, t) ∈ A with R′ ∈ Γ, and
3. {R(s, t),¬R(s, t)} ∩ A = ∅ with R ∈ Γ

then A1 := A ∪ {R(s, t)} and A2 := A∪ {¬R(s, t)}.

R−-cut

If 1. s and t are not indirectly blocked in A,
2. R(s, t) ∈ A with R ∈ Γ, and
3. {R(t, s),¬R(t, s)} ∩ A = ∅,

then A1 := A ∪ {R(t, s)} and A2 := A∪ {¬R(t, s)}.

≈-cut
If 1. s, s1, s2 are not indirectly blocked in A and

atomic roles R, R′ ∈ Γ exist such that
1.1 {R(s, s1), R

′(s, s2)} ⊆ A or

1.2 {R(s, s1), R
′(s2, s)} ⊆ A or

1.3 {R(s1, s), R
′(s2, s)} ⊆ A

then A1 := A ∪ {s1 ≈ s2} and A2 := A∪ {s1 �≈ s2}.

Ωa-rule
If Ωa

Th,Γ(A|Γ) = f and ⊥ �∈ A
then A1 := A ∪ {⊥}.

and a set of HT-rules Rv such that Rv ∪Av is acyclic w.r.t.
Γ and Rv is HT-safe w.r.t. Γ. The algorithm is obtained by
modifying Definition 1 as given next.

Blocking. An unnamed individual s is blocking-relevant
in A if, for s′ the predecessor of s, we have

LA(s, s
′) ∩ Γ = LA(s

′, s) ∩ Γ = ∅.

Then, each individual s in an ABox A is assigned a blocking
status in the same way as in Definition 1, with the difference
that s is directly blocked by t if, in addition to the conditions
in Definition 1, both s and t are blocking-relevant.

Derivation Rules. The derivation rules are given in Ta-
bles 1 and 4. By A|Γ we denote the ABox obtained from A
by removing each assertion containing an indirectly blocked
individual and each assertion α such that sig(α) �⊆ Γ.

Our algorithm is indeed an import-by-query algorithm.

Theorem 7. The ALCHIQ Ωa-algorithm is an import-by-
query algorithm and it can be implemented such that it runs
in N2EXPTIME in the size of Rv ∪ Av with an exponential
number of calls to Ωa

Th,Γ.

We explain next the intuitions behind the proofs. All
derivation rules are clearly sound. Furthermore, due to
acyclicity, the chains of assertions involving roles from Γ
are bounded in length, which enables blocking and ensures
termination. We next sketch the completeness argument. Let
A be a clash-free ABox labeling the leaf of a derivation for
Rv , Av, and Ωa

Th,Γ, and let Rh be the set of HT-rules corre-
sponding to Th. To prove that Rv ∪ Av ∪ Th is satisfiable,
we extend A to a clash-free ABox Afin such that no deriva-
tion rule of the standard hypertableau algorithm is applicable
to Rv ∪Rh and Afin; thus, Rv ∪Rh ∪Afin is satisfiable,
and so is Rv ∪ Th ∪ Afin. The construction of Afin proceeds
as follows:

1. We take the projection A|Γ of A to Γ and split it up. In
particular, we define Anm to contain all assertions of A|Γ
involving individuals reachable from a named individual;

furthermore, for each nonblocked blocking-relevant indi-
vidual t, we define At to contain all assertions of A|Γ
involving individuals reachable from t.

2. We apply the standard hypertableau algorithm to Rh and
Anm, and Rh and each At; let Anm

fin
and At

fin
be clash-free

ABoxes labeling leaves of the respective derivations. The
Ωa-rule is not applicable to A so such ABoxes exist.

3. We define Afin as the union of A, Anm

fin
, and all At

fin
, plus

all assertions C(s) such that s is blocked in A by the

blocker s′, C(s′) ∈ As′

fin
, and sig(C) ⊆ sig(Rh).

Call the individuals from A old, and the individuals intro-
duced in the second step new; we then observe the following.
(1) Due to the cut rules, any assertion derivable by the hy-
pertableau calculus is present in A positively or negatively,
so the second step above cannot derive new assertions in-
volving only old individuals. (2) ABoxes Anm and At are
disjoint, so the HT-rules from Rh can be applied in Afin

only to subsets that correspond to Anm and At. (3) Due
to (1), no HT-rule from Rv can become applicable to asser-
tions involving only old individuals. (4) Due to HT-safety,
no HT-rule from Rv can become applicable to an assertion
of Afin that involves a new individual. (5) Due to (1) and
the third step from the construction above, if an individual
s is blocked in A, Anm

fin
, or At

fin
, then s is blocked in Afin

as well. Observations (1)–(6) then imply that no derivation
rule of the standard hypertableau algorithm is applicable to
Rv ∪Rh and Afin, which proves completeness.

Consider our running example in which Rv contains
the HT-rules (4)–(9), Av = {A(a)}, Γ = {C, R, T}, and
Th = {∃R.� � C, C � ∃T.C, C � E}. The ALCHIQ
Ωa-algorithm produces a derivation in which a leaf is labeled
with the ABox A shown in Figure 3(a); for simplicity, we
do not show the negative assertions. Individual f is directly
blocked by c in A, and assertions C(a) and C(d) are due
to the application of the A-cut rule. To construct Afin, the
assertions containing a symbol not in Γ are removed, re-
sulting in the ABox A|Γ shown in Figure 3(b). This ABox
is then split into connected components Anm, Ac, and Ad;
note that c and d are the only nonblocked blocking-relevant
individuals. Next, Anm, Ac, and Ad are completed w.r.t.
Rh using the standard hypertableau algorithm; figure 3(c)
shows the resulting ABoxes Anm

fin
, Ac

fin
, and Ad

fin
. Note that

the guesses of C(a) and C(d) in A are consistent with the
axiom ∃R.� � C from Th. Finally, Afin is obtained by tak-
ing the union of A, Anm

fin
, Ac

fin
, and Ad

fin
, and adding E(f);

the latter is because f is blocked by c and E(c) ∈ Ac
fin

. The
result is shown in Figure 3(d), and clearly no derivation rule
of the standard hypertableau algorithm is applicable to Afin.

We finish this section with a note that, similarly as in our
previous work (Cuenca Grau, Motik, and Kazakov 2009,
Section 5.2), if Th is Horn, we can use an entailment oracle
instead of a satisfiability oracle, dispense with the nonde-
terministic cut rules, and use an oracle query rule that deter-
ministically completes an ABox with the missing assertions.
Such an algorithm issues oracle queries “on demand,” so it
is “goal oriented” and thus better suited to implementation.

223

A, C

B

B, C A, C

B

B, C

a

b

c d

e

f

R

S

S

R

S

(a) Clash-free ABox A

C

C

C

C

a

b

c d

e

f

R

R

A
nm

A
c

A
d

(b) ABox A|Γ

C, E

a

b

C, E

C, E

R

T

T

A
nm

fin

C, E c

C, E

C, E

T

T

A
c

fin

C, E

d

e

C, E

C, E

R

T

T

A
d

fin

(c) Saturation via Rh

A, C, E

B

B, C, E A, C, E

B

B, C, E
C, E

C, E C, E

C, E

C, E

C, E

a

b

c d

e

f

R

S

S

R

S

T

T T

T

T

T

(d) Extended ABox Afin

Figure 3: Completeness of the ALCHIQ Ωa-algorithm

Conclusion
In this paper, we have extended the import-by-query frame-
work from our previous work and have lifted many of its
original restrictions. Our results provide a flexible way for
ontology designers to ensure selective access to their ontolo-
gies. Our framework thus provides key theoretical insights
into the issues surrounding ontology privacy. Furthermore,
we believe our algorithms to be practicable when applied to
Horn ontologies; thus, our results provide a starting point for
the development of practical import-by-query systems.

The problem of import-by-query is novel, and we see
many open questions. From a theoretical point of view, it
would be interesting to explore the formal connection be-
tween import-by-query and interpolation. Furthermore, a
problem that is relevant to both theory and practice is to al-
low the hidden ontology to selectively export data and not
just schema statements. Finally, the framework should be
implemented and tested in practice.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2007. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, 2nd edition.

Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
Envelope. In Proc. IJCAI, 364–369.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2004. What to Ask to a Peer: Ontology-based
Query Reformulation. In Proc. KR, 469–478.

Cuenca Grau, B.; Horrocks, I.; Kazakov, Y.; and Sattler, U.
2008. Modular Reuse of Ontologies: Theory and Practice.
JAIR 31:273–318.

Cuenca Grau, B.; Motik, B.; and Kazakov, Y. 2009. Import-
by-Query: Ontology Reasoning under Access Limitations.
In Proc. IJCAI, 727–733. AAAI Press.

Horrocks, I.; Kutz, O.; and Sattler, U. 2005. The irresistible
SRIQ. In Proc. of OWLED.

Konev, B.; Walter, D.; and Wolter, F. 2009. Forgetting and
uniform interpolation in large-scale description logic termi-
nologies. In Proc. IJCAI. AAAI Press.

Kutz, O.; Horrocks, I.; and Sattler, U. 2006. The Even More
Irresistible SROIQ. In Proc. KR, 68–78.

Lutz, C., and Wolter, F. 2009. Deciding inseparability and
conservative extensions in the description logic EL. J. of
Symbolic Computation 45:151–286.

Lutz, C.; Walther, D.; and Wolter, F. 2007. Conservative Ex-
tensions in Expressive Description Logics. In Proc. IJCAI,
453–458.

Motik, B., and Horrocks, I. 2008. Individual Reuse in De-
scription Logic Reasoning. In Proc. IJCAR, 242–258.

Motik, B.; Shearer, R.; and Horrocks, I. 2009. Hypertableau
Reasoning for Description Logics. JAIR.

Stuckenschmidt, H.; Parent, C.; and Spaccapietra, S., eds.
2009. Modular Ontologies: Concepts, Theories and Tech-
niques for Knowledge Modularization, volume 5445 of
LNCS. Springer.

224

