
Query and Predicate Emptiness in Description Logics

Franz Baader
TU Dresden, Germany

baader@inf.tu-dresden.de

Meghyn Bienvenu and Carsten Lutz
Universität Bremen, Germany
(meghyn|clu)@uni-bremen.de

Frank Wolter
University of Liverpool, UK

wolter@liverpool.ac.uk

Abstract

Ontologies can be used to provide an enriched vocabulary for
the formulation of queries over instance data. We identify
query emptiness and predicate emptiness as two central rea-
soning services in this context. Query emptiness asks whether
a given query has an empty answer over all data sets for-
mulated in a given signature. Predicate emptiness is defined
analogously, but quantifies universally over all queries that
contain a given predicate. In this paper, we determine the
computational complexity of query emptiness and predicate
emptiness in the EL, DL-Lite, and ALC-families of descrip-
tion logics, investigate the connection to ontology modules,
and perform a practical case study to evaluate the new rea-
soning services.

Introduction

In recent years, the paradigm of ontology-based data access
(OBDA) has gained increased popularity. The general idea
is similar to querying in incomplete databases under con-
straints: an ontology is used to provide a conceptual model
of the application domain; when querying instance data, an
open-world semantics is adopted and the ontology is treated
as a set of logical constraints that is used to derive additional
answers. This approach to query answering has been taken
up with particular verve in the context of ontologies formu-
lated in a description logic (DL), see for example (Calvanese
et al. 2009; Lutz, Toman, and Wolter 2009) and references
therein. Since DLs are expressive logical languages, DL-
based ontologies allow one to capture general constraints on
the data, to provide additional vocabulary that can be used
when formulating queries, and to translate between vocab-
ularies in the case that the data vocabulary is different from
the query vocabulary, which is common e.g. in a data inte-
gration context (Calvanese et al. 2007).

The OBDA approach is fueled by the recent availabil-
ity of professional and comprehensive ontologies that aim
at providing a ‘standard vocabulary’ for the targeted ap-
plication domain. In particular, there are many popular
“off-the-shelf” ontologies in the bio-medical domain such
as SNOMED CT, NCI, and Galen, which are all formu-
lated in a DL and allow an easy and inexpensive adoption

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of OBDA in bio-medical applications such as querying elec-
tronic medical records (Patel et al. 2007). Such ontologies
typically have a very broad coverage and often contain tens
or even hundreds of thousands of predicates that embrace
various subject areas such as anatomy, diseases, medication,
and even social context and geographic location. On the
one hand, this broadness enables the use of these ontolo-
gies in a large number of applications. On the other hand,
it also means that only a small fragment of the vocabulary
described in the ontology will occur in the instance data of
any given application. The remaining predicates, which oc-
cur only in the ontology but not in the data, can often still be
used in queries in a meaningful way, thus enriching the vo-
cabulary that is available for query formulation—in fact, this
is a main aim of OBDA. Due to the size and complexity of
the involved ontologies and vocabularies, however, it is of-
ten difficult to know whether and how a given such predicate
can be used in a query. In particular, even basic properties
are difficult to check by hand, such as whether a designed
query can ever produce a non-empty answer and, closely re-
lated, whether a given predicate can meaningfully be used in
any query (details below).

To assist with such problems, we distinguish between two
scenarios: queries may be fixed once and forever during the
design of the application (fixed query case), or they may be
formulated freely at runtime of the application (free query
case). In the fixed query case, the query is formulated at a
point in time when only the vocabulary (set of predicates) Σ
of the data is known, but no concrete data exists. Note that
this is a standard scenario in the database world, where the
application design involves producing a schema that fixes
the vocabulary, but often also the design of queries that are
to be executed during runtime. To identify mistakes in the
query, it is therefore a central problem to decide query empti-
ness, i.e., whether a given query q provides an empty answer
over all data sets formulated in a given vocabulary Σ. This
problem is a standard one in many subareas of database the-
ory such as XML, see e.g. (Benedikt, Fan, and Geerts 2008)
and references therein. In a DL context, it has first been
considered in (Lubyte and Tessaris 2008).

In the case of free queries, it is not possible to con-
sider a fixed set of queries at design time of the applica-
tion. However, to assist with the formulation of queries
at run-time, it is possible to select already at design time

192

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

the set of those predicates that can meaningfully be used
in a query. Of course, we again assume that the data vo-
cabulary is fixed at application design time, as is standard
in database design. Formally, we want to decide predi-
cate emptiness, i.e., whether for a given predicate p and
data vocabulary Σ, it is the case that all queries q that in-
volve p yield an empty answer over all data sets formulated
in Σ. Predicate emptiness is loosely related to predicate
emptiness in datalog queries as studied e.g. in (Vardi 1989;
Levy 1993).

The purpose of this paper it to perform an in-depth study
of both query emptiness and predicate emptiness in the con-
text of DLs. We consider the two most common kinds of
queries in DL-based OBDA, instance queries and conjunc-
tive queries, and determine the (un)decidability and compu-
tational complexity of query emptiness and predicate empti-
ness for a broad range of DLs including members of the EL,
DL-Lite, and ALC families of DLs. The results range from
PTIME for basic members of the EL and DL-Lite families
via NEXPTIME for basic members of the ALC family to un-
decidable for ALC extended with functional roles (ALCF).
Note that because of the presence of a selected data vocabu-
lary Σ and the quantification over all data sets formulated in
Σ, query emptiness and predicate emptiness do not reduce
to standard reasoning problems such as query entailment or
query containment. Formally, this is witnessed by our un-
decidability result for ALCF , which should be contrasted
with the decidability of query entailment and containment in
this DL, cf. (Calvanese, De Giacomo, and Lenzerini 1998).

We also introduce a new notion of an ontology module,
called Σ-substitute, which is based on predicate emptiness.
Σ-substitutes can be used instead of the (much larger) origi-
nal ontology when answering queries over data sets that are
formulated in the restricted vocabulary Σ. Finally, we carry
out a case study to give an idea of the number of predicates
that are not in Σ but still non-empty in practical cases. Note
that it is these predicates by which the ontology enriches the
vocabulary available for query formulation. We also com-
pare Σ-substitutes to existing notions of modularity, both in
theory and practice.

Some proofs are deferred to the appendix, avail-
able at http://www.informatik.uni-bremen.de/∼clu/papers/
index.html.

Preliminaries

We use standard notation for the syntax and semantics of
DLs, please see standard references such as (Baader et al.
2003) for full details. In particular, we use NC, NR, and
NI to denote countably infinite sets of concept names, role
names, and individual names, C, D to denote (potentially)
composite concepts, A, B for concept names, r, s for role
names, and a, b for individual names. We consider various
DLs throughout the paper, the most basic ones being EL,
which offers the constructors�, C�D and ∃r.C; and ALC,
which offers ¬C, C � D, and ∃r.C. We use the usual calli-
graphic letters to denote extensions, in particular I to denote
the extension with inverse roles, F to denote the extension
with functional roles, and subscript ·⊥ to denote the exten-

sion with the bottom concept. When working with func-
tional roles, we assume that a countably infinite number of
such roles is available, instead of adding a concept construc-
tor (≤ 1 r). The semantics of DLs is based on interpretations
I = (ΔI , ·I) as usual.

Ontologies are formalized in terms of TBoxes, by which
we mean a set of concept inclusions (CIs) C � D. Data is
stored in an ABox, i.e., a set of concept assertions A(a) and
¬A(a) and role assertions r(a, b). To distinguish this kind
of ABox from ABoxes that admit composite concepts in
concept assertions, we sometimes use the term literal ABox.
We use Ind(A) to denote the set of individual names used in
the ABox A. An interpretation is a model of a TBox T (resp.
ABox A) if it satisfies all concept inclusions in T (resp. as-
sertions in A), where satisfaction is defined in the standard
way. An ABox A is consistent w.r.t. a TBox T if A and T
have a common model.

Instance queries (IQs) take the form A(v), and conjunc-
tive queries (CQs) take the form ∃�v.ϕ(�v, �u) where ϕ is a
conjunction of atoms of the form A(t) and r(t, t′) with
t, t′ terms, i.e., individual names or variables taken from a
set NV. We use term(q) to denote the set of terms used in
the query q. Note that we disallow composite concepts in
queries, which is a realistic assumption for many applica-
tions and required to enable a straightforward definition of
predicate emptiness below. Also note that instance queries
can only be used to query concept names, but not role names.
This is the traditional definition, which is due to the fact
that role assertions can only be implied by an ABox if they
are explicitly contained in it (and thus querying is ‘trivial’).
From now on, we use IQ to refer to the set of all IQs and
CQ to refer to the set of all CQs.

Let I be an interpretation and q an (instance or con-
junctive) query q with k answer variables v1, . . . , vk. For
�a = a1, . . . , an ∈ NI, an �a- match for q in I is a mapping π :
term(q) → ΔI such that π(a) = aI for all a ∈ term(q)∩NI,
π(t) ∈ AI for all A(t) ∈ q, and (π(t1), π(t2)) ∈ rI for
all r(t1, t2) ∈ q. We write I |= q[a1, . . . , ak] if there is an
(a1, . . . , ak)-match of q in I. For a TBox T and an ABox A,
we write T ,A |= q[a1, . . . , ak] if I |= q[a1, . . . , ak] for all
models I of T and A. In this case, (a1, . . . , ak) is a certain
answer to q w.r.t. A and T . We use certT ,A(q) to denote the
set of all certain answers to q w.r.t. A and T .

We use the term predicate to refer to a concept name or
role name and signature to refer to a set of predicates (in the
introduction, we informally called a signature a vocabulary).
Then sig(q) denotes the set of predicates used in the query
q, and similarly sig(T) (resp. sig(A)) refers to the signature
of a TBox T (resp. ABox A). Given a signature Σ, a Σ-
ABox (resp. Σ-concept) is an ABox (resp. concept) using
predicates from Σ only.

In the context of query answering in DLs, it is some-
times useful to adopt the unique name assumption (UNA),
which requires that aI �= bI for all interpretations I and
all a, b ∈ NI with a �= b. The results obtained in this pa-
per do not depend on the UNA. The following well-known
lemma shows that the UNA does not make a difference in
ALCI (and all its fragments such as EL and ALC) because
the certain answers to queries do not change.

193

Lemma 1. Let T be an ALCI-TBox, A an ABox, and q ∈
L. Then certT ,A(q) is identical with and without the UNA.

An analogous statement fails for ALCF , e.g. because the
ABox A = {f(a, b), f(a, b′)}, f a functional role, is con-
sistent w.r.t. the empty TBox without the UNA (and thus
cert∅,A(A(v)) = ∅), but inconsistent with the UNA (and
thus cert∅,A(A(v)) = NI).

Query and Predicate Emptiness

The following definition introduces the central notions stud-
ied in this paper.1

Definition 2. Let T be a TBox, Σ a signature, and L ∈
{IQ, CQ} a query language. Then we call

• an L-query q empty for Σ given T if for all Σ-ABoxes A
that are consistent w.r.t. T , we have certT ,A(q) = ∅.

• a predicate S L-empty for Σ given T if all L-queries q
with S ∈ sig(q) are empty for Σ given T .

We quantify over all ABoxes that are formulated in the
ABox to address typical database applications in which the
instance data changes frequently, and thus deciding empti-
ness based on a concrete ABox is not of much interest. As
an example, assume that ABoxes are formulated in the sig-
nature

Σ = {Person, hasDisease, DiseaseA, DiseaseB}

where here and in the following, all upper case words are
concept names and all lower case ones are role names. This
signature is fixed in the application design phase, similar to
schema design in databases. For the TBox, we take

T = {Person � ∃hasFather.(Person � Male),

DiseaseA � InfectiousDisease},

Then both the IQ InfectiousDisease(v) and the CQ
∃v.hasFather(u, v) are non-empty for Σ given T despite us-
ing predicates that cannot occur in the data, as witnessed
by the Σ-ABoxes {DiseaseA(a)} and {Person(a)}, respec-
tively. This illustrates how the TBox T enriches the vocabu-
lary that is available for query formulation. By contrast, the
CQ

∃v, v′.(hasFather(u, v)∧

hasDisease(v, v′) ∧ InfectiousDisease(v′)),

which uses the same predicates plus an additional one from
the data signature, is empty for Σ given T .

Regarding predicate emptiness, it is interesting to observe
that the choice of the query language is important. For exam-
ple, the predicate Male is IQ-empty for Σ given T , but not
CQ-empty as witnessed by the Σ-ABox {Person(a)} and
the CQ ∃v.Male(v). It thus makes no sense to use Male in
instance queries over Σ-ABoxes given T , whereas it can be
meaningfully used in conjunctive queries.

As every IQ is also a CQ, a predicate that is CQ-empty
must also be IQ-empty. As illustrated by the above exam-
ple, the converse does not hold. Also note that all role names

1In the workshop paper (Baader et al. 2009), the complement
of “L-predicate emptiness” was called “L-relevance”.

IQ-query
emptiness

IQ-predicate
emptiness

=

CQ-query
emptiness

CQ-predicate
emptiness

Lemma 6

Lemma 5

Trivial

Figure 1: Polytime reductions between emptiness notions.

are IQ-empty for Σ given any T since a role name cannot
occur in an instance query. By contrast, hasFather is clearly
not CQ-empty in the above example.

It follows from Lemma 1 that, in ALCI and its fragments,
query emptiness and predicate emptiness are oblivious as
to whether or not the UNA is made, both for IQ and CQ.
As established by the following lemma, this is also true in
ALCF—despite the fact that the certain answers to queries
can differ with and without the UNA. A proof is in the ap-
pendix.

Lemma 3. Let T be an ALCF-TBox. Then each CQ q is
empty for Σ given T with the UNA iff it is empty for Σ given
T without the UNA.

Since all DLs considered in this paper are fragments of
ALCI or ALCF , we are thus free to adopt the UNA or not.
In the remainder of this paper, we generally make the UNA
unless explicitly noted otherwise.

Definition 2 gives rise to four natural decision problems.

Definition 4. Let L ∈ {IQ, CQ}. Then

• L-query emptiness is the problem of deciding, given a
TBox T , a signature Σ, and an L-query q, whether q is
empty for Σ given T ;

• L-predicate emptiness means to decide, given a TBox T ,
a signature Σ, and a predicate S, whether S is L-empty
for Σ given T .

Clearly, these four problems are intimately related. In
particular, IQ-query emptiness and IQ-predicate empti-
ness are effectively the same problem since an instance
query consists only of a single predicate. For this rea-
son, we will from now on disregard IQ-predicate emptiness
and only speak of IQ-query emptiness. In the CQ case,
things are different. Indeed, the following lemma shows that
CQ-predicate emptiness corresponds to CQ-query empti-
ness where CQs are restricted to a very simple form. It is an
easy consequence of the fact that, since composite concepts
in queries are disallowed, CQs are purely positive, existen-
tial, and conjunctive.

Lemma 5. A ∈ NC (resp. r ∈ NR) is CQ-predicate empty
for Σ given T iff the conjunctive query ∃v.A(v) (resp.
∃v, v′.r(v, v′)) is empty for Σ given T .

Lemma 5 allows us to consider only queries of the form
∃v.A(v) and ∃v, v′.r(v, v′) when dealing with CQ-predicate
emptiness. From now on, we do this without further notice.

Trivially, IQ-query emptiness is a special case of CQ-
query emptiness. The following observation is less obvious.

194

Lemma 6. In any DL that includes the constructor ∃r.C,
CQ-predicate emptiness can be polynomially reduced to
IQ-query emptiness.

Proof. Let T be a TBox, Σ a signature, B a concept name
that does not occur in T and Σ, and s a role name that does
not occur in T and Σ. We prove that

1. A is CQ-empty for Σ given T iff the IQ B(v) is empty
for Σ ∪ {s} given the TBox T ′ = T ∪ TB ∪ {A � B},
where TB = {∃r.B � B | r = s or r occurs in T };

2. r is CQ-empty for Σ given T iff the IQ B(v) is empty for
Σ ∪ {s} given the TBox T ′ = T ∪ TB ∪ {∃r.� � B},
where TB is as above.

The proofs of Points 1 and 2 are similar and we concen-
trate on Point 1. First suppose that A is CQ predicate non-
empty for Σ given T . Then there is a Σ-ABox A such
that T ,A |= ∃v.A(v). Choose an a0 ∈ Ind(A) and set
A′ := A ∪ {s(a0, b) | b ∈ Ind(A)}. Using the fact that
T ,A |= ∃v.A(v) and the definition of A′ and T ′, it can
be shown that T ′,A′ |= B(a0). For the converse direc-
tion, suppose that B is IQ query non-empty for Σ ∪ {s}
given T ′. Then there is a Σ ∪ {s}-ABox A′ such that
T ′,A′ |= B(a) for some a ∈ Ind(A′). Let A be obtained
from A′ by removing all assertions s(a, b). Using the fact
that T ′,A′ |= B(a) and the definition of A′ and T ′, it can
be shown that T ,A |= ∃v.A(v).

Figure 1 gives an overview of the available polytime re-
ductions between our four (rather: three) problems. In
terms of computational complexity, CQ-query emptiness is
thus (potentially) the hardest problem, while CQ-predicate
emptiness is the simplest.

We remark that it is the use of the signature Σ that
makes our approach technically interesting. Indeed, de-
ciding query and predicate emptiness is simple when-
ever Σ contains all symbols used in the TBox. By
the described reductions, it suffices to consider CQ-
query emptiness. For a CQ q = ∃�v.ϕ(�v, �u), we set
Aq = {A(at) | A(t) is a conjunct in ϕ} ∪ {r(at, at′) |
r(t, t′) is a conjunct in ϕ} where at = t if t ∈ NI.

Theorem 7. Let T be an ALCFI-TBox, Σ a signature with
sig(T) ⊆ Σ, and q a CQ. Then q is empty for Σ given T iff
sig(q) �⊆ Σ or Aq is inconsistent w.r.t. T .

Proof. (“If”) Assume that q is non-empty for Σ given T .
Then there is a Σ-ABoxA that is consistent w.r.t. T and such
that certT ,A(q) �= ∅. This clearly implies sig(q) ⊆ Σ since
otherwise there is a predicate in sig(q) \ Σ and we can find
a model of A and T in which this predicate is interpreted as
the empty set, which would mean certT ,A(q) = ∅. It thus
remains to show that Aq is consistent w.r.t. T . To this end,
let I be a model of A and T , (a1, . . . , an) ∈ certT ,A(q),
and π an (a1, . . . , an)-match for q in I. Modify I by setting
aI

t = π(t) for all terms t used in q. It is readily checked that
the modified I is a model of Aq and T , thus Aq is consistent
w.r.t. T as required.

(“Only if”) Assume that sig(q) ⊆ Σ and Aq is consistent
w.r.t. T . Then sig(Aq) ⊆ Σ. Since clearly certT ,Aq

(q) �= ∅,
this means that q is non-empty for Σ given T .

The EL Family

We study query and predicate emptiness in the EL family of
lightweight DLs (Baader, Brandt, and Lutz 2005). In par-
ticular, we show that all three problems can be decided in
polynomial time in plain EL, whereas already CQ-predicate
emptiness is EXPTIME-complete in ELI and EL⊥. It is
interesting to contrast these results with the complexity of
subsumption and instance checking, which can be decided
in polynomial time in the case of EL and EL⊥ and are EX-
PTIME-complete in ELI (Baader, Brandt, and Lutz 2005;
2008).

Throughout this section, we assume that the UNA is not
imposed (cf. Lemma 1). Since DLs of the EL family do not
offer negation, it may seem more natural to define emptiness
based on positive ABoxes, i.e., ABoxes in which all concept
assertions are of the form A(a) with A a concept name. The
following lemma shows that this does not make a difference,
which allows us to henceforth restrict our attention to posi-
tive ABoxes.

Lemma 8. For every ELI⊥-TBox T , literal ABox A consis-
tent w.r.t. T , and conjunctive query q, we have certT ,A(q) =
certT ,A−(q), where A− is the restriction of A to assertions
of the form A(a) and r(a, b).

The proof of Lemma 8 and subsequent results relies on
canonical models, whose definition we recall here.

Let T be an ELI⊥-TBox and A a positive ABox that is
consistent w.r.t. T . For a ∈ Ind(A), a path for A and T is a
finite sequence a r1 C1 r2C2 · · · rn Cn, n ≥ 0, where the Ci

are concepts that occur in T (potentially as a subconcept)
and the ri are roles such that the following conditions are
satisfied:

• a ∈ Ind(A),

• T ,A |= ∃r1.C1(a) if n ≥ 1,

• T |= Ci � ∃ri+1.Ci+1 for 1 ≤ i < n.

The domain ΔIT ,A of the canonical model IT ,A for T and

A is the set of all paths for A and T . If p ∈ ΔIT ,A \ Ind(A),
then tail(p) denotes the last concept Cn in p. Set

AIT ,A := {a ∈ Ind(A) | T ,A |= A(a)}∪
{p ∈ ΔIT ,A \ Ind(A) | T |= tail(p) � A}

rIT ,A := {(a, b) | r(a, b) ∈ A}∪
{(p, q) ∈ ΔIT ,A × ΔIT ,A |

q = p · r C for some concept C}
aIT ,A := a for all a ∈ Ind(A)

It is standard to prove the following.

Lemma 9. IT ,A is a model of T and A such that:

1. for any a ∈ Ind(A) and ELI⊥-concept C, aIT ,A ∈
CIT ,A iff T ,A |= C(a);

2. for any k-ary conjunctive query q and (a1, . . . , ak) ∈ Nk
I ,

IT ,A |= q[a1, . . . , ak] iff (a1, . . . , ak) ∈ certT ,A(q).

We now prove Lemma 8.

Proof of Lemma 8. As “⊇” is trivial, we concentrate on
“⊆”. Suppose (a1, . . . , ak) /∈ certT ,A−(q). Then there is

a model I of T and A− such that I �|= q[a1, . . . , ak]. By

195

Point 2 of Lemma 9, IT ,A− �|= q[a1, . . . , ak]. To prove
that (a1, . . . , ak) /∈ certT ,A(q), it thus suffices to show
that IT ,A− satisfies all negative concept assertions in A.
Let ¬A(a) ∈ A. Since A is consistent w.r.t. T , we get
T ,A �|= A(a), hence T ,A− �|= A(a). By Point 1 of

Lemma 9, aI
T ,A− /∈ AI

T ,A− , so we are done.

As another preliminary, we show that in the EL family, a
converse of Lemma 6 can be established. We have found no
such reduction for DL-Lite and expressive DLs. Note that,
by the example given after Definition 2, the two emptiness
notions considered in Lemma 10 do not coincide even in EL.

Lemma 10. In ELI⊥, IQ-query emptiness can be polyno-
mially reduced to CQ-predicate emptiness.

Proof. We claim that the instance query A(v) is empty for
Σ given T iff B is CQ-empty for Σ ∪ {X} given the TBox
T ′ = T ∪{A�X � B}, where B and X are concept names
that do not occur in T .

For the “if” direction, assume that A is IQ non-empty
for Σ given T and let A be a positive Σ-ABox such that
T ,A |= A(a) for some a ∈ Ind(A). Set A′ := A∪{X(a)}.
It is easy to see that T ′,A′ |= ∃v.B(v) and thus B is CQ-
predicate non-empty for Σ ∪ {X} given T ′.

For the “only if” direction, assume that B is CQ non-
empty for Σ ∪ {X} given T ′ and let A′ be a positive
Σ ∪ {X}-ABox which is consistent with T ′ and such that
T ′,A′ |= ∃v.B(v). By Point 2 of Lemma 9, IT ′,A′ |=
∃v.B(v). We want to show that there is an a ∈ Ind(A′) with

aIT ′,A′ ∈ BIT ′,A′ . Assume to the contrary that there is no
such a. Let I be obtained from IT ′,A′ by setting

XI := {aIT ′,A′ | a ∈ Ind(A′)}

BI := BIT ′,A′ ∩ XI

It is easy to see that I is still a model of T ′ and A′.
By our assumption that there is no a ∈ Ind(A′) with

aIT ′,A′ ∈ BIT ′,A′ , we have BI = ∅, in contradiction to
T ′,A′ |= ∃v.B(v). Thus, the desired a ∈ Ind(A′) ex-

ists. By Point 1 of Lemma 9, aIT ′,A′ ∈ BIT ′,A′ implies
that T ′,A′ |= B(a). By definition of T ′, this implies
T ′,A′ |= A(a). Again by definition of T ′, this clearly im-
plies T ,A |= A(a), where A is obtained from A′ by drop-
ping all concept assertions of the form X(b). Since A is a
Σ-ABox and consistent w.r.t. T (since A′ is consistent w.r.t.
T ’), it witnesses that A(v) is non-empty for Σ given T .

We now show that there is a very simple way to decide
IQ-query emptiness and CQ-predicate emptiness in EL,
based on the following lemma. Take an individual name
aΣ and define the total Σ-ABox as AΣ := {A(aΣ) | A ∈
Σ} ∪ {r(aΣ, aΣ) | r ∈ Σ}.

Lemma 11. For all conjunctive queries q, q is empty for Σ
given T iff certT ,AΣ(q) = ∅.

Proof. It is not hard to verify that q is empty for Σ given T
iff the CQ obtained by replacing in q all individual names
with answer variables is empty for Σ given T . Thus, we can
w.l.o.g. assume that q does not contain any individual names.

The “only if” direction is trivial. For the “if” direction, we
consider the contrapositive. Thus, let q be non-empty for
Σ given T . By Lemma 8, there is a positive Σ-ABox A
consistent with T such that certT ,A(q) �= ∅. Every model I
of AΣ and T can be turned into a model I ′ of A and T such
that

1. I and I ′ are identical modulo the interpretation of indi-
vidual names and

2. if d = aI′

for some a ∈ NI (and thus an answer variable
can be mapped to a in I′), then d = bI for some b ∈ NI

(and thus an answer variable can be mapped to a in I)

by simply setting bI
′

:= aI
Σ for all individual names b.

Given that q does not comprise individual names and us-
ing Points 1 and 2, it can also be verified that any match of
q in I ′ can be reproduced in I. It follows that certT ,A(q) ⊆
certT ,AΣ(q), whence certT ,AΣ(q) �= ∅ as required.

Lemma 11 provides a polytime reduction of CQ-predicate
emptiness (and thus also IQ-query emptiness) to CQ-
query answering where CQs are of the form ∃v.A(v) or
∃v, v′.r(v, v′). The latter problem can be trivially reduced
to the instance problem in EL enriched with the universal
role u, where uI = ΔI×ΔI for all interpretations I. Since
it is easy to extend the standard PTIME algorithm for the
instance problem in EL (Baader, Brandt, and Lutz 2005) to
this enriched version of EL, we obtain the following theo-
rem.

Theorem 12. In EL, IQ-query emptiness and CQ-
predicate emptiness can be decided in PTIME.

Note that we need very little for the proof of Theorem 12
to go through: it suffices that AΣ is consistent with every
TBox. It follows that for all DLs of this sort, deciding
IQ-query emptiness and CQ-predicate emptiness has the
same complexity (modulo complementation) as subsump-
tion/instance checking in the DL enriched with the universal
role. The upper bound is obtained as in the proof of Theo-
rem 12, based on instance checking. For the lower bound,
note that C is subsumed by D w.r.t. T iff B(v) is non-empty
for the signature {A} given T ∪ {A � C, D � B}, where
A, B /∈ sig(C, D, T). We thus obtain the following re-
sult for the DL ELI , for which subsumption and instance
checking are EXPTIME-complete (Baader, Brandt, and Lutz
2008), even with the addition of the universal role.

Theorem 13. In ELI, IQ-query emptiness and CQ-
predicate emptiness are EXPTIME-complete.

The simplest extension of EL in which the total ABox AΣ

is not consistent w.r.t. every TBox is EL⊥. Here, deciding
IQ-query emptiness and CQ-predicate emptiness is signif-
icantly harder than deciding subsumption/instance checking
(which can be decided in polynomial time).

Theorem 14. In EL⊥, IQ-query emptiness and CQ-
predicate emptiness are EXPTIME-hard.

Proof (idea). We consider IQ-query emptiness. The two
main ingredients to the proof are: first, a proof of the fact
that if the IQ B(v) is non-empty for a signature Σ given an

196

EL⊥-TBox T , then there is a Σ-concept C which is satis-
fiable w.r.t. T with T |= C � B. And second, a careful
analysis of the reduction underlying Theorem 36 in (Lutz
and Wolter 2009) which shows that it is EXPTIME-hard to
decide for a given EL⊥-TBox T , signature Σ, and concept
name B, whether there exists a Σ-concept C such that C is
satisfiable w.r.t. T and T |= C � B.

We now provide a matching upper bound for Theorem 14.

Theorem 15. In EL⊥, IQ-query emptiness and CQ-
predicate emptiness are EXPTIME-complete.

Proof (idea). We first show that if an ABox witnesses non-
emptiness of an IQ A(v), then there is a tree-shaped ABox
that witnesses non-emptiness of A(v). This enables a deci-
sion procedure based on automata on finite trees, which is
detailed in the appendix.

We now take a glimpse at CQ-query emptiness showing
that, in EL, this problem is not harder than IQ-query empti-
ness.

Theorem 16. In EL, CQ-query emptiness can be decided in
PTIME.

Proof (idea). The proof utilizes Lemma 11 and proceeds by
showing that in the case of the total Σ-ABox AΣ, emptiness
of certT ,AΣ(q) for a CQ q can be decided in polytime.

We do not pinpoint the exact complexity of CQ-query
emptiness in ELI and EL⊥. Note though that an EXPTIME

lower bound is obtained from Theorems 13 and 14, and a 2-
EXPTIME upper bound from Theorem 27 established later.

The DL-Lite Family

We study query and predicate emptiness in the DL-Lite fam-
ily of description logics (Calvanese et al. 2007). In partic-
ular, we show that IQ-query emptiness and CQ-predicate
emptiness are typically decidable in polynomial time for
members of the DL-Lite family without conjunctions on the
left-hand side of CIs such as DL-Litecore, DL-LiteR, and
DL-LiteF (Calvanese et al. 2007). In contrast, CQ-query
emptiness turns out to be coNP-complete in these DLs. The
situation changes for DL-Lite dialects in which conjunctions
are admitted on the left-hand side of CIs such as in DL-
Litehorn (Artale et al. 2009): in this case, all three problems
are coNP-complete.

We start by proving the coNP lower bounds which hold
already in the respective DL-Lite fragments without role
names (i.e., the corresponding fragments of propositional
logic).

Let Lcore be the DL that admits only CIs A � B and
A � B � ⊥ and let Lhorn be the DL that admits only CIs
A � A′ � B and A � B � ⊥, where A, A′, and B are
concept names.

Theorem 17. In Lhorn, IQ-query emptiness, CQ-query
emptiness, and CQ-predicate emptiness are coNP-hard. In
Lcore, CQ-query emptiness is coNP-hard.

Proof. The proof for Lhorn is by reduction from the
SAT problem for propositional formulas in conjunctive
normal form (CNF). Let ϕ = ψ0 ∨ · · · ∨ ψk be
a CNF formula, v0, . . . , vn the variables used in ϕ,
Aψ1 , . . . , Aψk

concept names for representing clauses, and
Av1 , A¬v1 , . . . , Avn

, A¬vn
concept names for representing

literals. We first define an Lhorn TBox T as follows:

• Avj
� A¬vj

� ⊥ for all j ≤ n;

• A�j
� Aψi

for all i ≤ k and each �j = (¬)vj that is a
disjunct of ψi;

• Aψ1 � · · · � Aψk
� B .

It is straighforward to show that B(v) is empty for Σ given
T iff ∃v.B(v) is empty for Σ given T iff ϕ is unsatisfiable.
For the Lhorn result, we drop the last CI from T and use the
CQ Aψ1(v) ∧ · · · ∧ Aψk

(v).

We now prove matching upper complexity bounds, con-
sidering the logic DL-Litecore and leaving the straighfor-
ward extensions to more expressive DL-Lite dialects to the
reader. DL-Litecore is the fragment of ELI⊥ with existen-
tial restrictions ∃R.C (R of the form r or r−) replaced with
∃R and with conjunctions on the left-hand side of CIs al-
lowed only if the right-hand side is ⊥. Thus, a CI in DL-
Litecore is of the form

B1 � B2, B1 � B2 � ⊥

where B1 and B2 are concepts of the form ∃r, ∃r−, �, ⊥,
or A (for A ∈ NC). As DL-Litecore is a fragment of ELI⊥,
Lemma 8 holds, and so we can restrict our attention to posi-
tive ABoxes. However, we need a slightly modified version
of the canonical model constructed in the proof of Lemma 9,
presented in the following.

Let T be a DL-Litecore-TBox and A a positive ABox. We
construct the canonical model UK for K = (T ,A) as fol-
lows. Take an xR for every role R of the form r, r− such that
r occurs in K. A K-path is a finite sequence axR1 · · ·xRn

,
n ≥ 0, such that a occurs in A and

• T |= � � ∃R1 or there exists B(a) ∈ A such that T |=
B � ∃R1 or there exists r(a, b) ∈ A such that T |= ∃r �
∃R1 or there exists r(b, a) ∈ A such that T |= ∃r− �
∃R1;

• T |= ∃R−
i � ∃Ri+1 for all i < n.

Now define UK = (ΔU , ·U) by taking as ΔU the set of all
K-paths and constructing ·UK as follows:

• aUK = a for all a ∈ Ind(A);

• for all a ∈ Ind(A) and concept names A, a ∈ AUK iff
T |= � � A or there exists B(a) ∈ A such that T |=
B � A or there exists r(a, b) ∈ A such that T |= ∃r � A
or there exists r(b, a) ∈ A such that T |= ∃r− � A;

• for all axR1 · · ·xRn
∈ ΔUK such that n ≥ 1 and all con-

cept names A, axR1 · · ·xRn
∈ AUK iff T |= ∃R−

n � A;

• for all d1, d2 ∈ ΔUK , if d1, d1 ∈ Ind(A), then (d1, d2) ∈
rUK iff r(d1, d2) ∈ A. Otherwise (d1, d2) ∈ rUK iff d2 =
d1 · xr or d1 = d2 · xr− for some r.

It is not difficult to show the following:

197

Lemma 18. Let K be consistent. For any k-ary conjunc-
tive query q and (a1, . . . , ak) ∈ Nk

I , UK |= q[a1, . . . , ak] iff
(a1, . . . , ak) ∈ certK(q).

We are now ready to establish the announced PTIME re-
sult.

Theorem 19. In DL-Litecore, IQ-query emptiness and CQ-
predicate emptiness can be decided in PTIME.

Proof. We first consider IQ-query emptiness. Let T be a
DL-Litecore-TBox and Σ a signature.

Claim. For all concept names A, A(v) is not empty for Σ
given T if, and only if, (T ,A) |= A(a) for some ABox A
from the list

• {�(a)},

• {B(a)}, B ∈ Σ,

• {r(a, b)}, r ∈ Σ,

• {r(b, a)}, r ∈ Σ,

such that (T ,A) is consistent.

Since the instance problem ‘(T ,A) |= A(a)’ can be solved
in polynomial time in DL-Litecore (Calvanese et al. 2007),
it follows immediately from this claim that IQ-query empti-
ness can be decided in PTIME.

The “if” direction of the above claim is trivial. For the
“only if” direction, assume that A(v) is not empty for Σ
given T . By Lemma 8, there is a positive Σ-ABox A such
that A is consistent w.r.t. T and (T ,A) |= A(a0) for some
a0 ∈ Ind(A). By Lemma 18, this implies UT ,A |= A[a0].
By inspecting the construction of UT ,A, it is readily checked
that this implies that one of the following conditions holds:

• (T , {�(a0)}) |= A(a0);

• there exists B(a0) ∈ A with (T , {B(a0)}) |= A(a0);

• there exists r(a0, b) ∈ A with (T , {r(a0, b)}) |= A(a0);

• there exists r(b, a0) ∈ A with (T , {r(b, a0)}) |= A(a0).

This observation proves the “only if” direction.

The polynomial time algorithm for CQ-predicate empti-
ness is similar. In this case, one can easily show using
Lemma 18 that ∃v.A(v) is not CQ-empty for Σ given T if,
and only if, (T ,A) |= ∃v.A(v) for some ABox A from the
list {�(a)}, {B(a)}, B ∈ Σ, {r(a, b)}, r ∈ Σ, {r(b, a)},
r ∈ Σ, such that (T ,A) is satisfiable. The same character-
ization holds for queries of the form ∃v, v′.r(v, v′). Since
answering Boolean conjunctive queries in DL-Litecore is in
PTIME, it follows that CQ-predicate emptiness can be de-
cided in PTIME.

Theorem 20. In DL-Litecore, CQ-query emptiness can be
decided in coNP.

Proof (idea). One can show that if a CQ q is non-empty for
Σ given a DL-Litecore TBox T , then there exists a witness
Σ-ABox of size bounded by the size of Σ times the length
of q. An NP-algorithm checking non-emptiness is obtained
by guessing such a Σ-ABox together with a match of q in
some appropriately defined minimal model I of (T ,A), and

then checking in polynomial time that the match and the
model are as required.

The proofs of Theorems 19 and 20 are easily extended to
DLs such as DL-LiteF , DL-LiteR, and DL-Litehorn.

Expressive DLs

We consider the ALC family of expressive DLs, establishing
decidability results for ALC and ALCI, and undecidability
results for ALCF . We start with the former.

Our aim is to show that IQ-query emptiness and CQ-
predicate emptiness in ALCI are decidable in NEXPTIME.
As in the EL case, we first show that it is possible to con-
centrate on a single ABox AΣ instead of considering all Σ-
ABoxes. This ABox is defined as follows.

Definition 21. Let T be an ALCI-TBox and Σ a signature.
The closure cl(T , Σ) is the smallest set that contains Σ∩NC

as well as all concepts that occur (potentially as a subcon-
cept) in T and is closed under single negations. A type for T
and Σ is a set t ⊆ cl(T , Σ) such that for some model I of T
and some d ∈ ΔI , we have t = {C ∈ cl(T , Σ) | d ∈ CI}.
Let TT ,Σ denote the set of all types for T and Σ. We use
IT ,Σ to denote the canonical Σ-model of T , defined as:

ΔIT ,Σ = TT ,Σ

AIT ,Σ = {t ∈ TT ,Σ | A ∈ t}

rIT ,Σ = {(t, t′) ∈ TT ,Σ × TT ,Σ |
for all ∃r.C ∈ cl(T , Σ) : C ∈ t′ ⇒ ∃r.C ∈ t}

The canonical Σ-ABox AT ,Σ for T is defined as follows:

AT ,Σ = {A(at) | t ∈ AIT ,Σ ∧ A ∈ Σ} ∪
{¬A(at) | t /∈ AIT ,Σ ∧ A ∈ Σ} ∪
{r(at, at′) | (t, t′) ∈ rIT ,Σ ∧ r ∈ Σ}

It is easy to see that the cardinality of TT ,Σ is at most
exponential in the size of T and the cardinality of Σ, and
that the set TT ,Σ can be computed in exponential time by
making use of well-known EXPTIME procedures for con-
cept satisfiability w.r.t. TBoxes in ALCI . Thus, AT ,Σ is of
exponential size and can be computed in exponential time.

The following theorem provides the basis for our decision
procedure.

Theorem 22. A conjunctive query q is empty for Σ given T
iff certT ,AT ,Σ(q) = ∅.

To prove Theorem 22, we start by establishing a series of
helpful lemmas.

Lemma 23. IT ,Σ is a model of T and AT ,Σ.

Proof. It is straightforward to prove by induction on the
structure of C that for all C ∈ cl(T , Σ), we have C ∈ t
iff t ∈ CIT ,Σ . By definition of types, C � D ∈ T and
C ∈ t implies D ∈ t. Thus, IT ,Σ is clearly a model of T . It
is an immediate consequence of the definition of AT ,Σ that
IT ,Σ is also a model of AT ,Σ.

Definition 24. Let A and A′ be literal ABoxes. An ABox
homomorphism from A to A′ is a total map h : Ind(A) →
Ind(A′) such that the following conditions are satisfied:

198

• A(a) ∈ A implies A(h(a)) ∈ A′;

• ¬A(a) ∈ A implies ¬A(h(a)) ∈ A′;

• r(a, b) ∈ A implies r(h(a), h(b)) ∈ A′.

Lemma 25. If T is an ALCI-TBox, q a CQ, T ,A |=
q[a1, . . . , an], and h is an ABox homomorphism from A to
A′, then T ,A′ |= q[a1, . . . , an].

Proof. We prove the contrapositive. Thus assume that
T ,A′ �|= q[a1, . . . , an]. Then there is a model I ′ of T
and A′ such that I ′ �|= q[a1, . . . , an]. Define a model I
by starting with I ′ and reinterpreting the individual names

in Ind(A) by setting aI = h(a)I
′

for each a ∈ Ind(A).
Since individual names do not occur in T , I is clearly a
model of T . It is also a model of A: if A(a) ∈ A, then
A(h(a)) ∈ A′ by definition of ABox homomorphisms.
Since I ′ is a model of A′ and by definition of I, it follows
that aI ∈ AI . The cases ¬A(a) ∈ A and r(a, b) ∈ A
are analogous. Finally, I ′ �|= q[a1, . . . , an] and the defini-
tion of I yield I �|= q[a1, . . . , an]. We have thus shown that
T ,A �|= q[a1, . . . , an].

Lemma 26. Let T be an ALCI-TBox and A a literal Σ-
ABox that is consistent w.r.t. T . Then there is an ABox ho-
momorphism from A to AT ,Σ.

Proof. Let I be a model of T and A and for each d ∈ ΔI ,
define tId = {C ∈ cl(T , Σ) | d ∈ CI}. Define h by setting

h(a) = at with t = tI
aI for all a ∈ Ind(A). Using the

definition of AT ,A, it is easy to see that h is indeed an ABox
homomorphism.

We are now ready to prove Theorem 22.

Proof of Theorem 22. The “only if” direction is trivial. For
the “if” direction, let certT ,AT ,Σ(q) = ∅. To show that q is
empty for Σ given T , take a Σ-ABox A that is consistent
with T . By Lemmas 25 and 26, certT ,AT ,Σ(q) = ∅ implies
certT ,A(q) = ∅ as required.

Theorem 22 is the key to a NEXPTIME algorithm for
IQ-query emptiness. This refutes our own conjecture of
NEXPTIME

NP -hardness from the workshop paper (Baader
et al. 2009) (unless NEXPTIME = NEXPTIME

NP).

Theorem 27. In ALCI, IQ-query emptiness and CQ-
predicate emptiness are in NEXPTIME.

Proof. By Lemma 6, it suffices to consider IQ-query empti-
ness. Thus, let T be an ABox, Σ a signature, and A(v) an
IQ for which emptiness for Σ given T is to be decided. The
algorithm first computes the canonical ABox AT ,Σ (in expo-
nential time) and then verifies in the following way that for
each a ∈ Ind(AT ,Σ), we have T ,AT ,Σ �|= A(a): guess a
map π : Ind(AT ,Σ) → TT ,Σ with ¬A ∈ π(a) and such that
(i) B(c) ∈ AT ,Σ implies B ∈ π(c), and (ii) r(b, c) ∈ AT ,Σ,
C ∈ π(c), and ∃r.C ∈ cl(T , Σ) implies ∃r.C ∈ π(b); then
check for each b ∈ Ind(AT ,Σ) that �

C∈π(b)
C is satisfiable

w.r.t. T (this takes at most single-exponential time in |T |
and |Σ|). The non-deterministic algorithm accepts if all sat-
isfiability checks succeed (for each a ∈ Ind(AT ,Σ)), and
rejects otherwise.

By Theorem 22, it suffices to show that

Claim. The algorithm returns “yes” iff AT ,Σ �|= A(a) for
all a ∈ Ind(AT ,Σ).

Proof of claim. For the first direction, suppose the algorithm
returns “yes”. Then for each a ∈ Ind(AT ,Σ), there is a map-
ping π : Ind(AT ,Σ) → TT ,Σ with ¬A ∈ π(a) which sat-
isfies conditions (i) and (ii) above and is such that �

C∈π(b)
C

is satisfiable w.r.t. T for every b ∈ Ind(AT ,Σ). But that
means we can find a model Ia of T and AT ,Σ such that

a �∈ AIa . In other words, for all a ∈ Ind(AT ,Σ), we have
T ,AT ,Σ �|= A(a).

For the second direction, suppose AT ,Σ �|= A(a) for all
a ∈ Ind(AT ,Σ). Then for each a ∈ Ind(AT ,Σ), we can find

some model Ia of T and AT ,Σ such that a �∈ AIa . So when
it is time to check a ∈ Ind(AT ,Σ), we guess the mapping π
such that π(b) is the type of bIa in the model Ia, i.e. π(b) =
{C | b ∈ CIa and C ∈ cl(T , Σ)}. By construction, π will
satisfy the required conditions, and each concept �

C∈π(b)
C

will be satisfiable w.r.t. T . So all of the satisfiability tests
will succeed, which means the algorithm returns “yes”.

The best known lower bound for the problems considered
in Theorem 27 is EXPTIME. It stems from an easy reduction
of satisfiability in ALC: a concept C is satisfiable w.r.t. T iff
A is CQ-predicate empty for Σ = ∅ and T = {¬C � A}.
For CQ-query emptiness, we can easily derive the following
results.

Theorem 28. In ALC and ALCI , CQ-query emptiness is
in 2-EXPTIME. In ALCI , it is 2-EXPTIME-complete.

Proof. The upper bound for CQ-query emptiness in ALCI
(and thus ALC) is obtained by simply computing the canon-
ical ABox AT ,Σ and certT ,AT ,Σ(q), and then checking
whether the latter is empty. This can be done in 2-EXPTIME

since it is shown in (Calvanese, De Giacomo, and Lenzerini
1998) that for all T , A, and q, the set certT ,A(q) can be com-

puted in time 2p(m)·2p(n)

with p a polynomial, m the size of
T ∪A, and n the size of q. The lower bound stems from the
facts that (i) CQ entailment in ALCI is 2-EXPTIME-hard
already for empty ABoxes (Lutz 2008) and (ii) a Boolean
CQ q is entailed by T and the empty ABox iff q is non-
empty for Σ = ∅ and T .

The best known lower bound for CQ-query emptiness in
ALC is EXPTIME. We conjecture that the upper bound can
be improved from 2-EXPTIME to NEXPTIME by adapting
the proof of Theorem 27 to the more intricate case of CQs.

We now show that the simple addition of functional roles
to ALC leads to undecidability of CQ-predicate emptiness,
thus also of IQ-query emptiness and CQ-query emptiness.
The proof is by reduction from a tiling problem that asks
for a tiling of a rectangle of finite size (but the size is nei-
ther fixed nor bounded). The reduction involves a variety
of technical tricks such as the treatment of concept names

199

that are not in Σ as universally quantified second-order vari-
ables, which allows one to enforce a grid structure by stan-
dard frame axioms from modal logic. In a similar way,
inverse roles are simulated by normal role names. When
conjunctive queries are considered and not instance queries,
the correctness proof of the reduction is surprisingly subtle
and easily the most intricate proof in this paper. Of course,
undecidability carries over to variants of ALCF that use a
concept constuctor (≤ 1 r) instead of functional roles as an
additional sort, and to all DLs with qualified or unqualified
number restrictions.

Theorem 29. In ALCF , CQ-query emptiness, IQ-query
emptiness, and IQ-predicate emptiness are undecidable.

An instance of the aforementioned tiling problem is given
by a triple (T, H, V) with T a non-empty, finite set of tile
types including an initial tile Tinit to be placed on the lower
left corner and a final tile Tfinal to be placed on the upper
right corner, H ⊆ T × T a horizontal matching relation,
and V ⊆ T × T a vertical matching relation. A tiling for
(T, H, V) is a map f : {0, . . . , n} × {0, . . . , m} → T

such that n, m ≥ 0, f(0, 0) = Tinit, f(n, m) = Tfinal,
(f(i, j), f(i+1, j)) ∈ H for all i < n, and (f(i, j), f(i, j+
1)) ∈ v for all i < m. It is undecidable whether an instance
of the tiling problem has a tiling.

For the reduction, let (T, H, V) be an instance of the tiling
problem with T = {T1, . . . , Tp}. We construct a signature Σ
and a TBox T such that (T, H, V) has a solution if and only
if a selected concept name A is CQ-predicate non-empty for
Σ given T .

The ABox signature is Σ = {T1, . . . , Tp, x, y, x−, y−}
where T1, . . . , Tp are used as concept names, and x, y, x−,
and y− are functional role names. We use the role names x
and y to represent horizontal and vertical adjacency of points
in the rectangle, and the role names x− and y− to simulate
the inverses of x and y. In T , we use the concept names
U, R, A, Y, Ix, Iy, C, where U and R mark the upper and
right border of the rectangle, A is the concept name used
in the conjunctive query, and Y , Ix, Iy , and C are used for
technical purposes explained below. We also require 6 aux-
iliary concept names Zc,1, Zc,2, Zx,1, Zx,2, Zy,1, and Zy,2.
In the following, for e ∈ {c, x, y}, we let Be range over all
Boolean combinations of the concept names Ze,1 and Ze,2,
i.e., over all concepts L1�L2 where Li is a literal over Ze,i,
for i ∈ {1, 2}.

The TBox T is defined as the union of the following CIs,
for all (Ti, Tj) ∈ H and (Ti, T�) ∈ V :

Tfinal � Y � U � R
∃x.(U � Y � Tj) � Ix � Ti � U � Y
∃y.(R � Y � T�) � Iy � Ti � R � Y

∃x.(Tj � Y � ∃y.Y)
�∃y.(T� � Y � ∃x.Y)

�Ix � Iy � C � Ti � Y
Y � Tinit � A

Bx � ∃x.∃x−.Bx � Ix

By � ∃y.∃y−.By � Iy

∃x.∃y.Bc � ∃y.∃x.Bc � C

U � ∀y.⊥
R � ∀x.⊥
U � ∀x.U
R � ∀y.R

�
1≤s<t≤p

Ts � Tt � ⊥

Observe that the concept name A used in the conjunctive
query occurs only once in the TBox, on the right-hand side
of a CI. Taken together, the upper part of T ensures the ex-
istence of a tiled n × m-rectangle in a witness ABox. The
concept name Y is entailed at every individual name in such
an ABox that is part of the rectangle. Observe that the CIs
for Y enforce the horizontal and vertical matching condi-
tions. The CI for C enforces confluence, i.e., C is entailed
at an individual name a if there is an individual b that is both
an x-y-successor and a y-x-successor of a. This is so be-
cause, intuitively, Bc is universally quantified: if confluence
fails, we can interpret Zc,1 and Zc,2 in a way such that nei-
ther of the two conjuncts in the precondition of the CI for
C is satisfied. In a similar manner, the CI for Ix (resp. Iy)
is used to ensure that x− (resp. y−) acts as the inverse of x
(resp. y) at all points in the rectangle, which means that x
(resp. y) is inverse functional within the rectangle.

To establish Theorem 29, it suffices to prove the following
lemma (see the appendix for details).

Lemma 30. (T, H, V) admits a tiling iff there is a Σ-ABox
A that is consistent with T and such that T ,A |= ∃v.A(v).

Σ-substitutes of a TBox

Apart from being a fundamental reasoning service in
ontology-based data access, predicate emptiness can also be
used to extract a module from a TBox to speed up query an-
swering. The idea is to exploit the information about empty
predicates for Σ given T to compute a subset T ′ of T that
can be used instead of T to query Σ-ABoxes without affect-
ing the certain answers. If T ′ is significantly smaller than T ,
then using T ′ instead of T to answer queries over Σ-ABoxes
should significantly speed up querying processing. This idea
is formalized by Σ-substitutes.

Definition 31. Let T ′ ⊆ T and L ∈ {IQ, CQ}. Then T ′

is a Σ-substitute for T w.r.t. L if for all Σ-ABoxes A and all
q ∈ L, we have that certT ′,A(q) = certT ,A(q).

Modules and module extraction have been studied exten-
sively in recent years (Stuckenschmidt, Parent, and Spac-
capietra 2009), and we briefly discuss the relationship be-
tween Σ-substitutes and existing notions of a module from
the literature. Most logic-based approaches to module ex-
traction demand that a Σ-module M of a TBox T is a sub-
set of T that gives the same answers to queries that use
only symbols from Σ (Grau et al. 2008; Konev et al. 2009;
2008; Kontchakov, Wolter, and Zakharyaschev 2010). Thus,
the main conceptual difference between Σ-substitutes and
Σ-modules from the literature is that Σ-substitutes give the
same answers to all queries regardless of their signature,
and so the restriction to Σ-symbols applies to the ABox only.
It follows that minimal Σ-modules as defined in (Konev et
al. 2008; Kontchakov, Wolter, and Zakharyaschev 2010)
cannot in general be used as Σ-substitutes.

200

As it is beyond the scope of this paper to investigate Σ-
substitutes in depth, we confine ourselves to a couple of im-
portant observations. Firstly, in ELI (and, therefore, various
EL and DL-Lite dialects) one can use CQ-emptiness in a
straighforward way to compute a Σ-substitute w.r.t. CQ. For

a TBox T in ELI and a signature Σ, we denote by T CQ
Σ the

set of all concept inclusions α ∈ T such that no X ∈ sig(α)
is CQ-empty for Σ given T .

Theorem 32. In ELI , T CQ
Σ is a Σ-substitute for T w.r.t. CQ

(and thus also w.r.t. IQ).

Note that by Theorem 16, T CQ
Σ can be computed in poly-

nomial time if T is an EL-TBox. It can be seen that a subset
T IQ

Σ defined in analogy to T CQ
Σ but based on IQ-emptiness

instead of CQ-emptiness cannot serve as a Σ-substitute w.r.t.
IQ even when T is formulated in EL or DL-Litecore.

Currently, no designated algorithms for computing Σ-
substitutes in more expressive DLs are available. Interest-
ingly, however, and in contrast to the Σ-modules discussed
above, semantic and syntactic ⊥-modules as introduced in
(Grau et al. 2008) turn out to be examples of Σ-substitutes.
To define ⊥-modules, let Σ be a signature. Two interpreta-

tions I and I ′ coincide w.r.t. Σ if ΔI = ΔI′

and XI = XI′

for all X ∈ Σ. A subset T ′ of a TBox T is called a seman-
tic ⊥-module of T w.r.t. Σ if for every interpretation I the
interpretation I′ that coincides with I w.r.t. Σ∪ sig(T ′) and
in which XI = ∅ for all X �∈ Σ ∪ sig(T ′) is a model of
T \ T ′. In (Grau et al. 2008), it is shown that extracting
a minimal semantic ⊥-module is of the same complexity as
standard reasoning. In addition, it is shown that a syntactic
approximation called the syntactic ⊥-module can be com-
puted in polynomial time. The following lemma establishes
the relationship between ⊥-modules and Σ-substitutes.

Lemma 33. Let T be a TBox in any of the DLs introduced in
this paper and let T ′ be a semantic ⊥-module of T w.r.t. Σ.
Then Σ ∪ sig(T ′) contains all predicates that are not CQ-
empty for Σ given T and T ′ is a Σ-substitute of T w.r.t. CQ.

Thus, one can use the algorithms from (Grau et al. 2008)
for computing semantic or syntactic ⊥-modules in a large
variety of DLs to obtain Σ-substitutes. In general, however,
⊥-modules can be much larger than a minimal Σ-substitute.
The following example shows that this can be the case al-
ready for acyclic EL-TBoxes and for the Σ-substitutes con-
sidered in Theorem 32. Further, empirical evidence is pro-
vided in the subsequent section.

Example 34. Let T = {A � ∃s1.∃r1.�� ∃s2.∃r2.�, B ≡
∃r1.� � ∃r2.�} and Σ = {A}. The predicates that are not

CQ-empty for Σ given T and T CQ
Σ are A, s1, s2, r1, r2 and

T CQ
Σ comprises only the first CI of T . However, T has no

non-trivial ⊥-modules w.r.t. Σ.

Case Study

The aim of this section is to evaluate predicate emptiness
and Σ-substitutes in a real-world application, demonstrat-
ing the usefulness of these notions. Our application is
from the medical domain: ABoxes are used to store clini-
cal patient data using a suitable signature Σ that stems from

concepts roles IQ CQ axioms axioms

non-empty non-empty ⊥-mod. CQ-subst.

500 16 3557 4631 8910 4597

500 31 3654 4734 8911 4696

1000 16 5827 7385 14110 7349

1000 31 6242 7762 14147 7731

5000 16 18330 21451 33469 21427

5000 31 18469 21557 33616 21532

10000 16 29519 33493 47044 33489

10000 31 30643 34645 47256 34637

Figure 2: Experimental Results

real-world medical records, and the well-known ontology
SNOMED CT is used to provide additional vocabulary. To
show that our results are not specific to the chosen signature
and since additional signatures from real-world applications
are difficult to obtain, we also consider a number of ran-
domly generated signatures.

We have carried out two kinds of experiment. The first
one aims at understanding how many additional predicates
for query formulation are provided by SNOMED CT. We
consider IQ-query emptiness and CQ-predicate emptiness,
counting the number of symbols that are not in the input
signature Σ but still non-empty for Σ given T . In the sec-

ond experiment, we analyze the size of Σ-substitutes T CQ
Σ of

Theorem 32 and compare it to the size of the original ontol-
ogy and to ⊥-modules, which can be used as an alternative
to Σ-substitutes as discussed in the previous section.

The real-world signature was obtained by analyzing clin-
ical notes of the emergency department and the intensive
care unit of two Australian hospitals, using natural lan-
guage processing methods to detect SNOMED CT concepts
and roles2. SNOMED CT contains about 370,000 concepts
and 62 roles, but in the analyzed clinical notes only 8,858
concepts and 16 roles were detected. For this signature
Σ, 16,212 IQ-non-empty predicates and 17,339 CQ-non-
empty predicates were computed. Thus, SNOMED CT pro-
vides a substantial number of additional predicates for query
formulation, roughly identical to the number of predicates in
the ABox signature. These numbers also show that the ma-
jority of predicates in SNOMED CT cannot meaningfully be
used in queries over Σ-ABoxes, and thus identifying the rel-
evant ones via predicate emptiness is rather helpful. Some-
what surprisingly, the number of CQ-non-empty predicates
is only about 10% higher than the number of IQ-non-empty
symbols.

We also computed the Σ-substitute w.r.t. CQ of The-
orem 32, which contains 17,322 axioms. Thus, the Σ-
substitute is of about 5% the size of the original ontology
and can be expected to significantly speed up query process-
ing when used instead of the whole SNOMED CT. The ⊥-
module w.r.t. Σ turns out to be significantly larger than the

2See “Current Projects” at http://www.it.usyd.edu.au/∼hitru.

201

IQ-query CQ-predicate CQ-query

EL in PTIME in PTIME in PTIME

EL⊥ EXPTIME-c. EXPTIME-c. in 2-EXPTIME

ELI EXPTIME-c. EXPTIME-c. EXPTIME-h.

DL-Litecore in PTIME in PTIME coNP-c.

DL-Litehorn coNP-c. coNP-c. coNP-c.

ALC in NEXPTIME in NEXPTIME in 2-EXP, EXP-h.

ALCI EXPTIME-h. EXPTIME-h. 2-EXPTIME-c.

ALCF undec. undec. undec.

Figure 3: Complexity Results

computed Σ-substitute: it contains 27,383 axioms.
We have additionally analyzed randomly generated sig-

natures that contain 500, 1,000, 5,000, and 10,000 con-
cept names and 16 or 31 role names. Every signature con-
tained the special role name role-group, which is used in
SNOMED CT to implement a certain modeling pattern and
should be present also in ABoxes to allow the same pattern
there. For each number of concept and role names, we gen-
erated 10 signatures. Figure 2 shows the results, where the
numbers are averages for the 10 experiments for each size.
These additional experiments confirm the findings for our
real-world signature Σ: in each case, a substantial number
of additional predicates becomes available for query formu-
lation and Σ-substitutes are much smaller than the original
ontology and than ⊥-modules.

Conclusion

We have established a relatively complete picture of
the complexity of IQ-query emptiness and CQ-predicate
emptiness in the EL, DL-Lite and ALC families of DLs,
with complexities ranging from PTIME to undecidable. In
the case of the EL and DL-Lite family, the described algo-
rithms are rather simple and easily implemented (for DL-
Lite, one could e.g. use a SAT checker). First experiments
show that the computed signatures are typically of manage-
able size, and that the resulting ontology modules are signif-
icantly smaller than modules based on other popular notions
of modularity. We have also given some first results con-
cerning the complexity of CQ-query emptiness. Figure 3
gives a summary of what we have achieved. Relevant open
problems include the exact complexity of IQ-query empti-
ness in ALCI and of CQ-query emptiness in EL⊥ andALC.

Acknowledgements. We are grateful to Julian Mendez and
Dirk Walther for helping with the case study.

References

Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations. J.
of Artifical Intelligence Research 36:1–69.

Baader, F.; McGuiness, D. L.; Nardi, D.; and Patel-
Schneider, P., eds. 2003. The Description Logic Handbook.
Cambridge University Press.

Baader, F.; Bienvenu, M.; Lutz, C.; and Wolter, F. 2009.
Query answering over DL aboxes: How to pick the relevant
symbols. In Proc. of DL workshop.

Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Proc. of IJCAI, 364–369.

Baader, F.; Brandt, S.; and Lutz, C. 2008. Pushing the EL
envelope further. In Proc. of OWLED workshop.

Benedikt, M.; Fan, W.; and Geerts, F. 2008. XPath satisfia-
bility in the presence of DTDs. J. of the ACM 55(2):1–79.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; and Rosati, R. 2009. On-
tologies and databases: The DL-Lite approach. In Reason-
ing Web, volume 5689 of LNCS, 255–356.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In Proc. of PODS, 149–158.

Grau, B. C.; Horrocks, I.; Kazakov, Y.; and Sattler, U. 2008.
Modular reuse of ontologies: Theory and practice. J. of Ar-
tifical Intelligence Research 31:273–318.

Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2008. Se-
mantic modularity and module extraction in description log-
ics. In Proc. of ECAI, 55–59.

Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2009. For-
mal properties of modularisation. In Modular Ontologies,
volume 5445 of LNCS. Springer. 25–66.

Kontchakov, R.; Wolter, F.; and Zakharyaschev, M. 2010.
Logic-based ontology comparison and module extraction
with an application to DL-Lite. J. of Artificial Intelligence.

Levy, A. 1993. Irrelevance Reasoning in Knowledge Based
Systems. Ph.D. Dissertation, Stanford University.

Lubyte, L., and Tessaris, S. 2008. Supporting the design of
ontologies for data access. In Proc. of DL workshop.

Lutz, C., and Wolter, F. 2009. Deciding inseparability and
conservative extensions in the description logic EL. J. of
Symbolic Computation 45(2):194–228.

Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. of IJCAI, 2070–2075.

Lutz, C. 2008. The complexity of CQ answering in expres-
sive description logics. In Proc. of IJCAR, 179–193.

Patel, C.; Cimino, J. J.; Dolby, J.; Fokoue, A.; Kalyanpur,
A.; Kershenbaum, A.; Ma, L.; Schonberg, E.; and Srinivas,
K. 2007. Matching patient records to clinical trials using
ontologies. In Proc. of ISWC/ASWC, 816–829.

Stuckenschmidt, H.; Parent, C.; and Spaccapietra, S., eds.
2009. Modular Ontologies: Concepts, Theories and Tech-
niques for Knowledge Modularization, volume 5445 of
LNCS. Springer.

Vardi, M. Y. 1989. Automata theory for database theoreti-
cans. In Proc. of PODS, 83–92.

202

