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Abstract

We present a framework for reasoning about actions that not
only solves the frame and ramification problems, but also the
state default problem—the problem to determine what nor-
mally holds at a given time point. Yet, the framework is
general enough not to be tied to a specific time structure.
This is achieved as follows: We use effect axioms that draw
ideas both from Reiter’s successor state axioms and the non-
monotonic causal theories by Giunchiglia et al. These axioms
are formulated in a recently proposed unifying action calculus
to guarantee independence of a specific underlying notion of
time. Reiter’s default logic is then wrapped around the result-
ing calculus and plays a key role in solving the ramification
as well as the state default problem.

Introduction

Reasoning about actions is one of the fundamental abilities
cognitive agents must possess in order to be successful in
their environments. Although KR research in this area has
gone on for at least four decades now and has produced a
plethora of competing approaches, there are still challenges
to be met. In the light of the large variety of existing ap-
proaches unifying treatments are called for. Moreover, al-
though several of the standard problems like the frame prob-
lem or the ramification problem have been solved individu-
ally in restricted settings, a combination of the solutions in
more general settings is still lacking.

The Unifying Action Calculus (UAC) (Thielscher 2010)
is an important step towards the much needed unifying treat-
ment of action theories. The UAC is a first order calculus
which abstracts away from a particular solution of the frame
problem. Moreover, and maybe even more importantly, it
abstracts away from a particular time structure. As demon-
strated in (Thielscher 2010) various specific approaches like
situation calculus (McCarthy 1963), event calculus (Kowal-
ski and Sergot 1986; Shanahan 1997), or fluent calculus
(Thielscher 1999) can be reconstructed as special instanti-
ations of the UAC. Results obtained for UAC then immedi-
ately apply to all instantiations, which is a tremendous ad-
vantage.

The main goal of this paper is to develop an integrated
solution to three different problems: the frame problem, the
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ramification problem, and the state default problem. The
frame problem (how to represent what does not change) and
the ramification problem (how to represent indirect effects of
actions) have received considerably more attention than the
state default problem (how to represent what normally holds
in a state under certain conditions). This is at least partly due
to the fact that, based on the work of Reiter (Reiter 1991),
we now have robust monotonic solutions to the frame prob-
lem. The basic underlying idea is that, rather than relying on
a non-monotonic logic, the frame problem is solved by ad-
equate (first order) effect axioms which exactly specify the
effects of actions on fluents.

Also our approach will rely on monotonic—yet carefully
reformulated—effect axioms. However, non-monotonic rea-
soning still is highly relevant. In most realistic settings
agents have partial knowledge about their environment only.
Extending incomplete knowledge about a particular state
with plausible conclusions, based on adequate default rules,
is often the best an agent can do—and action theories should
be able to capture this aspect, in addition to providing a so-
lution to the frame and ramification problems.

To handle these non-monotonic aspects adequately our
approach will be based on Reiter’s default logic (Reiter
1980), one of the most prominent and most expressive non-
monotonic formalisms. It will turn out that default logic not
only allows us to represent state defaults, but also to han-
dle ramifications adequately. A notorious problem arising
with the treatment of indirect effects are self-justifying cy-
cles. These can elegantly be avoided using default logic.

Since we aim at a broadly applicable solution, UAC is the
obvious starting point. However, we need to give up some
of UAC’s generality. Since we want an integrated solution
of the three mentioned problems, we cannot abstract away
from solving the frame problem. For this reason our ap-
proach will be based on a particular solution of the frame
problem. However, it will still be completely independent
of the underlying time structure. Hence, it will be general
enough to be applicable to different specific formalisms like
situation calculus or event calculus.

The technical challenge then is to come up with ade-
quately modified effect axioms which are able to accom-
modate default conclusions and indirect effects. This may
look simpler than it actually is. Simply representing a state
default like “if f holds then normally also f ′ holds” as the
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Reiter default Holds(f, s) : Holds(f ′, s)/Holds(f ′, s) does
not work since this default is at odds with the effect axiom.
Our solution will be based on the use of certain special pred-
icates which, intuitively, allow us to decouple information
about potential default conclusions and what actually is ac-
cepted in the successor state.

A fluent f can hold, respectively not hold, in a state s for
different reasons: (a) because it is a direct or indirect effect
of an action leading to s, (b) because an applicable state de-
fault says so, or (c) because of persistence. Of course, these
reasons can be in conflict, for instance if an effect contradicts
a default conclusion, or if a default conclusion contradicts
persistence. We thus need to introduce priorities among the
potential reasons to solve these conflicts. The most natural
priorities which are also implicit in our approach are (from
most to least preferred)

direct/indirect effects < default conclusions < persistence.

To capture these priorities we not only need an adequate
effect axiom, but also a rather sophisticated representation
of state defaults and indirect effects in default logic. For
this reason we introduce a domain description language with
simple constructs for defaults and ramifications. Specifica-
tions in this language are then translated to default theories.

Since the primary purpose of the paper is to illustrate how
problematic interactions of action effects, default conclu-
sions, and the persistence assumption can be handled, we
restrict the presentation to actions with unconditional, local
effects. Our approach can, with minor adjustments, be ex-
tended to conditional and non-local action effects as well;
we however fear that this would complicate the reader’s un-
derstanding of the principles underlying our integrated solu-
tion to the three aforementioned problems.

The paper is organized as follows. We first give the neces-
sary background about UAC and default logic. We then dis-
cuss an elegant solution of the frame problem within UAC
based on a particular effect axiom. In the subsequent section
we present our solution to the state default problem based
on a modification of this effect axiom and a particular rep-
resentation of state defaults in default logic. We then intro-
duce a default logic-based solution to the ramification prob-
lem, followed by a discussion of the combination of these
approaches. Related work and open research topics are dis-
cussed in the concluding section.

Background

The Unifying Action Calculus

The unifying action calculus was proposed in (Thielscher
2010) to allow for a treatment of problems in reasoning
about actions that is independent of a particular calculus.
It is based on a finite, sorted logic language with equality
which includes the sorts FLUENT, ACTION, and TIME along
with the predicates < : TIME×TIME, that denotes a (possibly
partial) ordering on time points; Holds : FLUENT × TIME,
that is used to state that a fluent is true at a given time point;
and Poss : ACTION × TIME × TIME, that means “action a is
possible starting at time s and ending at time t.”

The following definition introduces the fundamental types
of formulas of the UAC: they allow to express properties of

action domains at given time points and applicability condi-
tions and effects of actions.

Definition 1. Let �s be a sequence of variables of sort TIME.

• A state formula Φ[�s] in �s is a first-order formula with free
variables �s where

– for each occurrence of Holds(f, s) in Φ[�s] we have s ∈
�s and

– predicate Poss does not occur.

Let s, t be variables of sort TIME and A be a function into
sort ACTION.

• A precondition axiom for A(�x) is of the form

Poss(A(�x), s, t) ≡ πA[s] (1)

where πA[s] is a state formula in s with free variables
among s, t, �x.

• An effect axiom for A(�x) is of the form

Poss(A(�x), s, t) ⊃

(∃�y)((∀f)(Υ+[s, t] ⊃ Holds(f, t)) ∧

(∀f)(Υ−[s, t] ⊃ ¬Holds(f, t))) (2)

in which both Υ+[s, t] and Υ−[s, t] are state formulas in
s, t with free variables among f, s, t, �x, �y.1

It is clear that effect axiom (2) can only be used to con-
clude about the involved time points s and t. Alas, this is
no inherent restriction of the UAC: should the user desire to
make conclusions about time points t′ with s < t′ < t, they
have to add appropriate axioms.2

We next formalize how action domains are axiomatized
in the unifying action calculus.

Definition 2. A (UAC) domain axiomatization consists of
a finite set of foundational axioms Ω (by which the UAC is
instantiated by a concrete time structure, e.g. the branching
situations along with the usual ordering from Situation Cal-
culus), a set Π of precondition axioms (1), and a set Υ of
effect axioms (2); the latter two for all functions into sort
ACTION.

A domain axiomatization is progressing, if

• Ω |= (∃s : TIME)(∀t : TIME)s ≤ t and

• Ω ∪ Π |= Poss(a, s, t) ⊃ s < t .

In this paper, we are only concerned with progressing do-
main axiomatizations. To be able to reference the unique
initial time point, we use the macro Init(t) def= ¬(∃s)s < t.
We will then equip our domain axiomatizations with a set Σ0

of initial state axioms describing the state of the world at the
initial time point. These initial state axioms are state formu-
las of the form Init(t) ⊃ Φ[t] where Φ[t] is a state formula
in t.

1The original definition of UAC effect axioms is more general;
in this paper, we restrict their syntax for the sake of clarity. Vari-
ables �x and �y can be of any sort.

2For example, by instantiating UAC to the event calculus.
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Default Logic

In default logic (Reiter 1980) a default d is an expression

A : B1, . . . , Bn

C

where A, Bi, and C are first-order formulas. A is the pre-
requisite, B1, . . . , Bn are consistency conditions or justi-
fications, and C is the consequent. Note that we explic-
itly include justification-free defaults, that is the case where
n = 0. Such defaults behave like classical inference rules
and will be needed for handling ramifications later on. To
save space we often write the default as A:B1, . . . , Bn/C.

A default theory is a pair (D, W ), where W is a set of
sentences in first-order logic and D is a set of defaults.

A default is closed if its prerequisite, justifications, and
consequent are sentences, that is, have no free variables.
Otherwise, it is open. A default theory is closed if all its
defaults are closed; otherwise, it is open.

Extensions are deductively closed sets of formulas which
contain all elements of W , are closed under “applicable” de-
faults, and which are grounded in the sense that each formula
has a non-cyclic derivation. For closed default theories this
is captured by the following definition:

Definition 3. Let (D, W ) be a closed default theory. The
operator Γ assigns to every set S of formulas the smallest
deductively closed set U of formulas such that:

1. W ⊆ U ,

2. if A:B1, . . . , Bn/C ∈ D, U |= A, S �|= ¬Bi, 1 ≤ i ≤ n,
then C ∈ U .

A set E of formulas is an extension of (D, W ) if and only if
E = Γ(E), that is, E is a fixed point of Γ.

We will interpret open defaults as schemata representing
all of their ground instances. Therefore, open default the-
ories can be viewed as shorthand notation for their closed
counterparts.

We write W |≈skept
D Ψ to express that the formula Ψ is

contained in each extension of the default theory (D, W ).

The Effect Axiom

This section presents the effect axiom that will be employed
and elaborated throughout the paper. An axiom of this form
was first presented in (Thielscher 2010) and is, as mentioned
there, inspired by the work of (Giunchiglia et al. 2004).
In the most simple form of the effect axiom, we allow two
causes to determine a fluent’s truth value: persistence and
direct effects. Before introducing the axiom itself, we define
two macros that formalize the individual causes. The first
pair of macros expresses that a fluent f persists from s to t.

FrameT (f, s, t)
def
= Holds(f, s) ∧ Holds(f, t) (3)

FrameF (f, s, t)
def
= ¬Holds(f, s) ∧ ¬Holds(f, t) (4)

Suppose the direct (positive and negative) effects of an
action are given as a set of fluent literals. These can easily
be translated into “causes” for the purpose of designing an
effect axiom for that action.

Definition 4. Let A be a function into sort ACTION and ΓA

be a set of fluent literals with free variables in �x that de-
note the positive and negative direct, unconditional effects
of A(�x), respectively.

DirTA(�x)(f, s, t)
def
=

∨
F (�x′)∈ΓA,�x′⊆�x

f = F (�x′) (5)

DirFA(�x)(f, s, t)
def
=

∨
¬F (�x′)∈ΓA,�x′⊆�x

f = F (�x′) (6)

Recall that the restriction to unconditional, local effects is
solely for presentation purposes; there is no inherent prop-
erty of the approach that forbids more general action effects.

Now putting the causes “persistence” and “direct effect”
together yields the basic version of our effect axiom.

Definition 5. Let A be a function into sort ACTION. An ef-
fect axiom with unconditional effects and the frame assump-
tion is of the form

Poss(A(�x), s, t) ⊃

(∀f)(Holds(f, t) ≡ CausedT (f, A(�x), s, t)) ∧

(∀f)(¬Holds(f, t) ≡ CausedF (f, A(�x), s, t)) (7)

CausedT (f, A(�x), s, t)
def
=

FrameT (f, s, t) ∨ DirTA(�x)(f, s, t) (8)

CausedF (f, A(�x), s, t)
def
=

FrameF (f, s, t) ∨ DirFA(�x)(f, s, t) (9)

The macros CausedT ,CausedF will be re-defined sev-
eral times throughout the paper. (We will explicitly only de-
fine CausedT , the analogous macro definition of CausedF
can readily be obtained by replacing all causes by their neg-
ative versions.) When speaking about effect axiom (7), we
will understand it retrofitted with their “latest version.”

The design principle underlying our axiomatization tech-
nique is that of causation: a fluent holds at a time point that
is the end point of an action if and only if there is a cause for
that; similarly, a fluent does not hold if and only if there is a
cause for that, too.3

From now on, when speaking about domain axioma-
tizations, we will understand all effect axioms to be of
the form (7) and have the domain axiomatizations include
uniqueness-of-names axioms for all finitely many function
symbols into sorts FLUENT and ACTION.

For presentation purposes, we will make use of the con-
cept of fluent formulas, where terms of sort FLUENT play the
role of atomic formulas, and complex formulas can be built
using the usual first-order connectives. We will denote by
Φ[s] the state formula that is obtained by replacing all fluent
literals in a fluent formula Φ by Holds literals in s. The op-
erator |·| will be used to extract the affirmative component

3The attentive reader will have noticed that the syntax of axiom
(7) does not quite correspond to Definition 1. Simple syntactical
manipulations can however be conducted to transform the effect
axiom into a form that matches the structure of (2).
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of a fluent literal, that is, |¬f | = |f | = f . For reasons of ex-
pressiveness, we will allow fluent formulas to also contain
equality atoms, that will remain unchanged by the transla-
tion into state formulas.

Example 1. Consider the very simple action domain that
uses the fluents SOP(x) (object x is a sheet of paper) and
PA(x) (object x is a paper airplane) along with the action
Fold(x) that turns a sheet of paper x into the paper airplane
x. This is formulated as the (progressing) domain axiomati-
zation Σ = Ω ∪ Π ∪ Υ ∪ Σ0, where Π contains the precon-
dition axiom

Poss(Fold(x), s, t) ≡ Holds(SOP(x), s) ∧ s < t,

Υ contains effect axiom (7) characterized by ΓFold(x) =
{PA(x),¬SOP(x)}, and the initial state is given by Σ0 =
{Init(s) ⊃ Holds(SOP(P), s)}. We can now employ logi-
cal entailment to infer that after folding it in the initial time
point, the object P is no longer a sheet of paper but a paper
airplane:

Σ |= (Init(t0) ∧ Poss(Fold(P), t0, t1)) ⊃

Holds(PA(P), t1) ∧ ¬Holds(SOP(P), t1)

The first formal result about our effect axiom shows that
it correctly establishes action effects while still providing a
solution to the frame problem. For a ground action α =
A(�a), we use the abbreviation Γα

def= ΓA {�x �→ �a}.

Proposition 1. Let Σ be a domain axiomatization such
that Σ |= Poss(α, σ, τ) for some ground action α and time
points σ, τ , and let ϕ be a ground fluent literal.

1. Direct effects override persistence:
Let ϕ ∈ Γα. Then Σ |= ϕ[τ ].

2. The frame assumption is correctly implemented:
Let |ϕ| ,¬ |ϕ| /∈ Γα. Then Σ |= ϕ[σ] ≡ ϕ[τ ].

Proof.

1. We make a case distinction on ϕ’s sign.

(a) ϕ = |ϕ|:
By Definition 4, DirTα(ϕ, σ, τ) ≡ ϕ = ϕ ∨ . . ., hence
CausedT (ϕ, α, σ, τ) ≡ ϕ = ϕ ∨ . . .. By axiom (7)
and the assumption Σ |= Poss(α, σ, τ), we have
Σ |= Holds(ϕ, τ).

(b) ϕ = ¬ |ϕ|: Symmetric.

2. DirTα(ϕ, σ, τ) ≡ ⊥ and DirFα(ϕ, σ, τ) ≡ ⊥ due to
the assumption. Hence, by expanding macros (8) and
(9), we get CausedT (ϕ, α, σ, τ) ≡ FrameT (ϕ, σ, τ) and
CausedF (ϕ, α, σ, τ) ≡ FrameF (ϕ, σ, τ). Together with
assumption Σ |= Poss(α, σ, τ), this yields Σ |= (ϕ[τ ] ≡
(ϕ[σ]∧ϕ[τ ]))∧ (¬ϕ[τ ] ≡ (¬ϕ[σ]∧¬ϕ[τ ])) and, in con-
sequence, Σ |= (ϕ[τ ] ⊃ ϕ[σ]) ∧ (¬ϕ[τ ] ⊃ ¬ϕ[σ]).

The following theorem shows an interesting relationship
between our effect axioms with their particular solution to
the frame problem and Reiter’s successor state axioms (Re-
iter 1991) for the situation calculus.

Theorem 2. If unconditional action effects are represented
as in Definition 4, effect axioms (7) and successor state ax-
ioms are logically equivalent up to consistency of the effect
specifications.

Proof. See appendix.

State Defaults
An intelligent agent endowed with an internal world model
will virtually never have complete knowledge about the
world it is situated in. Therefore, an agent should have the
technical ability to resolve its uncertainty towards the state
of the world by making sensible default assumptions. In our
approach, this is done by easy-to-write condition/conclusion
pairs, that we call state defaults.

State defaults are a way of specifying conditions under
which a fluent normally holds (or does not hold, respec-
tively). These conditions are formulated by the user in a log-
ical language and then translated into rules of default logic.

Definition 6. A state default is of the form Φ/ψ, where Φ,
the prerequisite, is a fluent formula and ψ, the consequent,
is a fluent literal.

Concluding a single fluent literal will not allow us to
model disjunctive default knowledge; however, concluding a
conjunction of literals can be emulated by distributing them
over several rules with the same prerequisite.

Assuming a user has given their impression of how the
world normally behaves by specifying a set of state defaults,
we can now turn to translating these into the logical lan-
guage we employ in this work. The special predicate symbol
DefT (f, s, t) will be used to express that a fluent f is nor-
mally true at time point t. Likewise, DefF (f, s, t) means
that f is normally false at t. Note that this is not the same
as ¬DefT (f, s, t), which only means that f is not normally
true at time point t. The additional TIME argument s is used
to keep track of the starting time point of the action that
led to t. With this in mind, we can now define how to (au-
tomatically) create Reiter defaults from user-specified state
defaults. (Observe that all default rules thus created are nor-
mal.)

Definition 7. Let δ = Φ/ψ be a state default.

δInit

def
=

Init(t) ∧ Φ[t] : ψ[t]

ψ[t]
(10)

δPoss

def
=

Φ[t] ∧ ¬Viol δ(s) : Def (ψ, s, t)

Def (ψ, s, t)
(11)

Viol δ(s)
def
= Φ[s] ∧ ¬ψ[s]

Def (ψ, s, t)
def
=

{
DefT (ψ, s, t) if ψ = |ψ|

DefF (|ψ| , s, t) otherwise

For a set D of state defaults, the corresponding set of default
rules is defined as

DInit ,Poss

def
= {δInit , δPoss | δ ∈ D} . (12)

The intuition behind the Init default rules for the ini-
tial time point should be clear: whenever, initially, the pre-
requisite is fulfilled and there is no reason to believe other-
wise, we can safely assume the consequent. Note that we
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bypass the Def predicate in this case—this is not a prob-
lem since there is no action leading to the initial time point
and thus no effect axiom interfering with the default con-
clusion. For the Poss defaults concerning two time points
s, t connected via action application, we require that (1) the
state default’s prerequisite hold at the resulting time point t,
and (2) the state default not be violated at the starting time
point s. (A default violation occurs when the prerequisite of
a state default is known to be met, yet the opposite of the
consequent prevails.) We then conclude that the consequent
holds unless there is information to the contrary. The reason
we watch out whether the default was violated at the start-
ing time point is to prevent application of initially definitely
violated state defaults through irrelevant actions. Without
this precaution, any default conclusion, however unrealis-
tic, could be enforced by applying a dummy action (like
Wait)—a fine axiomatization of the ostrich algorithm.

Up to here, default conclusions and “hard facts” live
in completely different, disconnected worlds (Init defaults
aside). It is the first modification to our effect axiom that
brings them together: if a fluent is normally true (false) af-
ter applying an action we accept this as a cause for its being
actually true (false).

Definition 8. Let A be a function into sort ACTION. An ef-
fect axiom with unconditional effects, the frame assumption,
and simple normal state defaults is of the form (7), where

CausedT (f, A(�x), s, t)
def
= FrameT (f, s, t) ∨

DirTA(�x)(f, s, t) ∨ DefT (f, s, t) (13)

Note that, whenever it is definitely known that Holds(f, t)
after Poss(a, s, t), it follows from the effect axiom
that ¬DefF (f, s, t); a symmetrical argument applies if
¬Holds(f, t). This means that definite knowledge about a
fluent inhibits the opposite default conclusion.

But now imagine the following scenario: we know that
a fluent f holds at a time point s: Holds(f, s). Nothing
further is known about f—in particular no default infor-
mation. Then an action a occurs and leads to time point
t, i.e. Poss(a, s, t). The effects of action a do not in-
volve f , that is, Γa ∩ {f,¬f} = ∅. Intuitively, by per-
sistence, we should be able to conclude that f still holds
at t: Holds(f, t). But we only get the weaker conclusion
Holds(f, t) ∨ (¬Holds(f, t) ∧DefF (f, s, t)), which means
that f either stays true or becomes false due to a default con-
clusion. Since we know the latter is impossible, we would
like to incorporate this information somewhere, rather than
let the solution of one problem (the state default problem)
disrupt the solution of another (the frame problem). The fol-
lowing addition ensures that knowledge about impossibility
of default conclusions is adequately represented in our auto-
matic translations.

Definition 9. Let D be a set of state defaults, ψ be a fluent
literal, and s, t be variables of sort TIME. The default closure
axiom for ψ with respect to D is⎡

⎣ ∧
Φ/ψ∈D

¬Φ[t] ∨ViolΦ/ψ(s)

⎤
⎦ ⊃ ¬Def (ψ, s, t) (14)

Note that for a fluent literal ψ not mentioned as a consequent
in D the default closure axiom is just � ⊃ ¬Def (ψ, s, t).
For a domain axiomatization Σ and a set D of state defaults,
we denote by ΣD the default closure axioms with respect to
D and the fluent signature of Σ.

We are now ready to define the fundamental notion of
our solution to the state default problem: a default theory
where the incompletely specified world consists of a UAC
domain axiomatization augmented by suitable default clo-
sure axioms, and the default rules are the automatic transla-
tions of user-specified, domain-dependent state defaults.

Definition 10. Let Σ be a domain axiomatization and D be
a set of state defaults. The corresponding domain axiomati-
zation with state defaults is the pair (Σ ∪ ΣD,DInit,Poss).

The workings of all of the preceding definitions are best
understood with the help of an example domain.

Example 2. Recall the domain axiomatization Σ from Ex-
ample 1. We augment this domain by a state default saying
that paper airplanes normally fly.

δ = PA(z)/Flies(z) (15)

The corresponding default rules for the initial time point and
action executions are, respectively:

Init(t) ∧Holds(PA(z), t) : Holds(Flies(z), t)

Holds(Flies(z), t)

Holds(PA(z), t) ∧ ¬Viol δ(s) : DefT (Flies(z), s, t)

DefT (Flies(z), s, t)

where Violδ(s) = Holds(PA(z), s) ∧ ¬Holds(Flies(z), s).
The default closure axiom for (15) is

(¬Holds(PA(z), t) ∨ Viol δ(s)) ⊃ ¬DefT (Flies(z), s, t)

for the fluent literal Flies(z) and � ⊃ ¬Def (ψ, s, t) for all
other literals ψ. Putting all of this together yields the domain
axiomatization with state defaults (Σ∪ΣD ,DInit,Poss). Us-
ing default knowledge and skeptical reasoning now gives us
the desired conclusion that a sheet of paper initially folded
into a paper airplane indeed flies.

Σ ∪ ΣD |≈skept
DInit,Poss

(Init(t0) ∧ Poss(Fold(P), t0, t1)) ⊃

Holds(Flies(P), t1)

Much like it was the case for the simple form of our effect
axiom, there is also a formal result which shows that ax-
iom (7), apart from solving the frame problem, implements
a particular preference ordering among potential reasons for
a fluent to hold or not to hold. Taking state defaults into
account, the priorities become

direct effects < default conclusions < persistence.

Theorem 3. Let Σ be a domain axiomatization, D be a
set of state defaults, δ = Φ/ψ ∈ D be a state default, E
be an extension for the domain axiomatization with state
defaults (Σ ∪ ΣD,DInit,Poss), ϕ be a ground fluent, and
E |= Poss(α, σ, τ) for some ground action α and time
points σ, τ .
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1. Effects override everything:

ϕ ∈ Γα implies E |= ϕ[τ ]

2. Defaults override persistence:

(A) Let ψ,¬ψ /∈ Γα;

(B) for each δ′ = Φ′/¬ψ ∈ D, let E �|= Φ′[τ ]; and

(C) E |= Φ[τ ] ∧ ¬Viol δ(σ).

Then E |= ψ[τ ].

3. The frame assumption is correctly implemented:
Let ψ,¬ψ /∈ Γα and for all defaults δ1 = Φ1/ψ, δ2 =
Φ2/¬ψ ∈ D, let E �|= Φi[τ ] or E |= Violδi

(σ). Then

E |= ψ[σ] ≡ ψ[τ ]

Proof. See appendix.

As important and nice as these properties are, a default
theory would be useless if it did not admit any extension at
all. But the existence of extensions for our default theories
follows immediately from a result by Reiter (1980), since
the default rules automatically created by Definition 7 are all
normal. If the involved domain axiomatization is consistent,
we can even guarantee all its extensions are consistent, too.

Theorem 4. Let Σ be a domain axiomatization and D be
a set of state defaults. Then the corresponding domain ax-
iomatization with state defaults (Σ ∪ ΣD,DInit ,Poss) has an
extension. If furthermore Σ is consistent, then so are all ex-
tensions for (Σ ∪ ΣD,DInit,Poss).

Proof. Existence of an extension is a corollary of (Reiter
1980, Theorem 3.1) since all defaults in DInit ,Poss are nor-
mal. If Σ is consistent, then so is Σ ∪ ΣD: for any model
I for Σ with I |= (∃f, s, t)DefT (f, s, t), we can build a

model I ′ for Σ with |DefT I′

| < |DefT I | by removing an

element from DefT I and adjusting HoldsI′

and PossI′

ac-
cordingly. The same can be done with respect to DefF ,
hence for any D there exists a model for Σ which is by the
syntactic structure of (14) also a model for Σ ∪ ΣD . Con-
sistency of all extensions now follows from (Reiter 1980,
Corollary 2.2).

Ramifications

To tackle the ramification problem, that is, the problem of
determining the indirect effects of actions (Ginsberg and
Smith 1987), we make use of causal relationships, a con-
cept employed in the solution to the ramification problem
in the fluent calculus (Thielscher 1997). These relationships
express under which conditions a change of the truth value
of a particular fluent induces a change of the truth value of
another fluent.

Definition 11. A causal relationship is of the form

χ causes ψ if Φ (16)

where Φ, the context, is a fluent formula; χ, the trigger, and
ψ, the effect, are fluent literals.

Causal relationships are straightforwardly translated into
“causes” in the sense of our effect axioms: whenever, for
an action execution from s to t, the context holds at t and
the truth value of the trigger has changed, then the effect ψ
of the causal relationship is an indirect effect of the action,
written Ind(ψ, s, t).

Definition 12. Let r = χ causes ψ if Φ be a causal rela-
tionship. Its associated ramification default is

δr
def
=

Φ[t] ∧ ¬χ[s] ∧ χ[t] :

Ind(ψ, s, t)
(17)

Ind(ψ, s, t)
def
=

{
IndT (ψ, s, t) if ψ = |ψ|

IndF (|ψ| , s, t) otherwise

For a set R of causal relationships, the corresponding set of
ramification defaults is defined as DR

def= {δr | r ∈ R}.

The additional causes of being an indirect positive or neg-
ative effect are easily integrated into effect axiom (7).

Definition 13. An effect axiom with unconditional effects,
the frame assumption, and indirect effects is of the form (7),
where

CausedT (f, A(�x), s, t)
def
= FrameT (f, s, t) ∨

DirTA(�x)(f, s, t) ∨ IndT (f, s, t) (18)

As before, the incorporation of ramifications into our ef-
fect axiom interferes with our solution of the frame problem,
but we can deal with this in a manner similar to the one for
state defaults.

Definition 14. Let R be a set of causal relationships, ψ be
a fluent literal, and s, t be variables of sort TIME. The rami-
fication default closure axiom for ψ with respect to R is

⎡
⎣ ∧

χ causes ψ if Φ∈R

¬Φ[t] ∨ χ[s] ∨ ¬χ[t]

⎤
⎦

⊃ ¬Ind(ψ, s, t) (19)

Again, for a fluent literal ψ not mentioned as an ef-
fect in R the ramification default closure axiom is just
� ⊃ ¬Ind(ψ, s, t). The fluent signature of a domain axiom-
atization Σ defines its associated set of ramification default
closure axioms, which we will write as ΣR for a particular
set R of causal relationships.

The fundamental notion of our solution to the ramifica-
tion problem is now a default theory comprised of a do-
main axiomatization extended by suitable ramification de-
fault closure axioms and default rules automatically created
from causal relationships.

Definition 15. Let Σ be a domain axiomatization and R
be a set of causal relationships. The corresponding do-
main axiomatization with ramification defaults is the pair
(Σ ∪ ΣR,DR).

Our example domain will illustrate the way indirect ef-
fects are treated in our framework.
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Example 3. The fact that a paper airplane that is wet does
not fly is expressed by the following causal relationships:

Wet(y) causes ¬Flies(y) if PA(y)

PA(y) causes ¬Flies(y) if Wet(y)

They are to be read as “whenever a paper airplane becomes
wet, it does not fly” and “whenever something that is wet
becomes a paper airplane, it does not fly,” respectively. The
corresponding ramification defaults are

Holds(PA(y), t) ∧ ¬Holds(Wet(y), s) ∧ Holds(Wet(y), t) :

IndF (Flies(y), s, t)

Holds(Wet(y), t) ∧ ¬Holds(PA(y), s) ∧ Holds(PA(y), t) :

IndF (Flies(y), s, t)

We again use the domain axiomatization Σ from Exam-
ple 1 and slightly modify the description of the initial
time point Σ0 to contain Init(t0) ⊃ (Holds(PA(P), t0) ∧
Holds(Flies(P), t0)); that is, there initially exists a paper air-
plane that flies. We add an action Dip(x) with the intended
meaning that object x is dipped into water. It is character-
ized by precondition axiom Poss(Dip(x), s, t) ≡ s < t and
set of effects ΓDip(x) = {Wet(x)}. Our formalism enables
us to infer that when this action occurs to an initially flying
paper airplane, then the plane cannot fly anymore:

Σ ∪ ΣR |≈skept
DR

(Init(t0) ∧ Poss(Dip(P), t0, t1)) ⊃

¬Holds(Flies(P), t1)

The existence of extensions for default theories of this
kind can again be guaranteed. Yet, for justification-free de-
fault rules, consistency of the domain axiomatization does
not imply consistency of the extension: a causal relationship
might be inconsistent with the action domain in that an indi-
rect effect openly contradicts a direct one. Having a single
inconsistent extension is therefore a clear indication of an
axiomatization error.

Theorem 5. Let Σ be a domain axiomatization and R be a
set of causal relationships. Then the corresponding domain
axiomatization with ramification defaults (Σ∪ΣR,DR) has
an extension.

Due to the groundedness of extensions in default logic,
this approach to dealing with ramifications is quite expres-
sive: it can deal with instantaneous change and circular de-
pendencies in between indirect effects.

Example 4 (Gear Wheel Domain). There are two in-
terlocked gear wheels, that can be separately turned and
stopped. Let the fluents W1, W2 express that the first
(resp. second) gear wheel is turning. The actions to ini-
tiate/end this are Turni, Stopi with effects ΓTurni

= {Wi},
ΓStopi

= {¬Wi}, i = 1, 2; there also exists a trivial action
Wait without any direct effects, ΓWait = ∅. The causality
relating the interlocked gear wheels is described as follows:
whenever the first wheel is turned, it causes the second one
to turn, and vice versa; whenever the first wheel is stopped,
it causes the second one to stop as well, and vice versa. The
respective causal relationships R

W1 causes W2 if �, ¬W1 causes ¬W2 if �,

W2 causes W1 if �, ¬W2 causes ¬W1 if �,

are straightforwardly translated into ramification default
rules DR. We take the domain axiomatization Σ to be
comprised of precondition axioms Poss(A, s, t) ≡ s < t for
all above-mentioned actions A, effect axioms (7) according
to Definitions 4 and 13, and the initial state characterized
by Init(t) ⊃ ¬Holds(W1, t) ∧ ¬Holds(W2, t), that is, both
wheels stand still. According to the domain axiomatization
with ramification defaults (Σ∪ΣR,DR) constructed by our
approach, turning one wheel causes both of them to turn:

Σ ∪ ΣR |≈skept
DR

(Init(t0) ∧ Poss(Turn1, t0, t1)) ⊃

Holds(W1, t1) ∧ Holds(W2, t1)

On the other hand, during waiting, the wheels keep their cur-
rent state.

Σ ∪ ΣR |≈skept
DR

(Init(t0) ∧ Poss(Wait, t0, t1)) ⊃

¬Holds(W1, t1) ∧ ¬Holds(W2, t1)

We remark that this default logic-based, calculus-
independent solution of the ramification problem subsumes
the solution of (Lin 1995): instantiating UAC to situation
calculus and translating Lin’s “causal rules” into Reiter de-
faults allows us to draw all conclusions that can be drawn by
the circumscription policy proposed there; in case of cyclic
dependencies, we can even draw more conclusions.

Combining State Defaults and Ramifications

The individual solutions of the state default and the ramifi-
cation problem can easily be integrated into a joint solution.
Both state defaults and causal relationships are translated to
Reiter defaults of a particular form, and these defaults just
need to be combined to a single default theory. However, as
before the effect axioms need to be modified adequately:

Definition 16. An effect axiom with unconditional effects,
the frame assumption, simple normal state defaults, and in-
direct effects is of the form (7), where

CausedT (f, A(�x), s, t)
def
= FrameT (f, s, t) ∨

DirTA(�x)(f, s, t) ∨ DefT (f, s, t) ∨ IndT (f, s, t) (20)

Definition 17. Let Σ be a domain axiomatization, D be
a set of state defaults, and R be a set of causal re-
lationships. The corresponding domain axiomatization
with state defaults and ramification defaults is the pair
(Σ ∪ ΣD ∪ ΣR,DInit ,Poss ∪ DR).

There is an issue that needs to be mentioned, however.
The default theories obtained for solving the state default
and the ramification problems individually are such that ex-
istence of extensions is guaranteed. In the former case this
is so because all defaults are normal, in the latter case be-
cause all defaults are justification free. Combining normal
and justification-free defaults can, however, lead to non-
existence of extensions.

Example 5. Consider the default theory with W = {A}
and D = {A:B/B, B:/¬A}. All defaults are either normal
or justification-free, yet no extension exists.
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Intuitively, the application of a default may indirectly cre-
ate a conflict with the prerequisite of the very same default.
Two different views seem possible:

• A default creating a conflict with its own prerequisite
should not be applicable when constructing an extension.

• Situations like this can be viewed as indicating a modeling
error. In terms of skeptical consequence, non-existence of
extensions is the same as inconsistency, and like the latter
it shows that the axiomatization needs to be debugged.

We believe both views are reasonable and refrain from tak-
ing sides. Nevertheless, we offer a technical solution repre-
senting the first view:

Definition 18. Let AX = (Σ∪ΣD ∪ΣR,DInit ,Poss ∪DR)
be a domain axiomatization with state defaults and ramifica-
tion defaults. E is a weak extension of AX iff it is an exten-
sion of (Σ∪ΣD∪ΣR,D∗

Init,Poss
∪DR), where D∗

Init ,Poss
is

a maximal subset of DInit ,Poss such that an extension exists.

Note that the minimization of defaults to be disregarded
implicit in this definition is to be read in terms of open de-
faults. Thus, if the number of state defaults is finite we can
guarantee existence of weak extensions.

Discussion

In this paper we proposed an integrated solution to the
frame, state default, and ramification problems based on a
unifying action calculus. The solution abstracts from the
underlying time structure and relies on a monotonic solution
of the frame problem. This is achieved through adequate ef-
fect axioms, together with a particular representation of state
defaults and causal connections in terms of Reiter defaults.

Our present work builds on our own preliminary results on
the use of mere atomic, normal defaults (and without con-
sidering ramifications) in the UAC (Strass and Thielscher
2009a; 2009b). Apart from that, the representation of state
defaults in general action theories has received surprisingly
little attention so far. A notable exception is (Lakemeyer and
Levesque 2009) where an approach is introduced based on
a variant of the situation calculus using the logic of “only
knowing.” Several essential differences between this work
and our approach exist:

• our approach is not restricted to the time structure of situ-
ation calculus;

• we handle defaults as well as ramifications, while the lat-
ter are not covered in (Lakemeyer and Levesque 2009);

• the treatment of defaults implicit in “only knowing” is the
one of AEL (Moore 1985). AEL has well-known prob-
lems with self-justifying cycles which do not arise in de-
fault logic. This qualifies the latter as much more ade-
quate for our purposes.

The non-monotonic causal logic of (Giunchiglia et al.
2004) (originating itself in (McCain and Turner 1995)) pro-
vides a constructor default ψ if Φ that could be inter-
preted as implementing the state default Φ/ψ. However,
upon closer inspection, it turns out that mapping a default
like our PA(z)/Flies(z) into default Flies(z) if PA(z)
won’t do, for the following reason. In Causal Logic, the

default default ψ if Φ ultimately translates to the causal
rule i : ψ ⇐ i : ψ ∧ i : Φ (for all time points i). Since simi-
lar causal rules are also used to address the Frame and Rami-
fication Problems, these defaults can easily lead to a conflict
with other causal rules if the consequent of a default is a
“regular” fluent. For instance, suppose our example default
were understood as

caused Flies(z) if Flies(z) ∧ PA(z)

with Flies being a regular fluent, which is subject to persis-
tence. Persistence is expressed by the two causal rules

i + 1 : Flies(z) ⇐ i : Flies(z) ∧ i + 1 : Flies(z)

i + 1 : ¬Flies(z) ⇐ i : ¬Flies(z) ∧ i + 1 : ¬Flies(z)

Now, consider a time point t at which ¬Flies(P) ∧ ¬PA(P)
holds, and take a successor time point t + 1 at which PA(P)
becomes true. The causal theory would then support a model
in which Flies(P) becomes true (since there would be a
“cause” for this, namely the default rule), but also a model
in which Flies(P) stays false (there would be a “cause” for
this, too, namely the persistence rule). Hence, it would not
follow that Flies(P) holds (by default) at t + 1. To handle
this example right, one would have to leave out the causal
rule stating persistence of the fluent Flies. But this would
lead to problems in other situations where there is no ac-
tion or default that says the truth value of Flies(P) should
change. In such situations persistence of Flies, and thus the
causal persistence rule leading to problems in the example
above, is obviously needed. (For the case of fluents that are
not subject to persistence, “statically determined” or “de-
fined” fluents, formulating a default for them has no effect
since their truth value cannot vary given fixed truth values
of the defining fluents.) Now even if we ignore interactions
of default rules with persistence rules and just look at a sin-
gle time point, the way a default causal law translates into a
Reiter default in the logic of (Giunchiglia et al. 2004) mod-
els the correct intuition only for complete extensions (exten-
sions that, for every formula, entail either the formula or its
negation): for example, the default causal law

default Flies(P) if PA(P)

becomes the causal rule

Flies(P) ⇐ Flies(P) ∧ PA(P) (21)

that is identified with the Reiter default

: Flies(P) ∧ PA(P)

Flies(P)
(22)

We firstly observe that the causal theory {(21)} has no
model; put in another way, the corresponding default the-
ory ({(22)} , ∅) has no complete extension. Secondly, the
only (incomplete) extension of this default theory is the set
E = Th({Flies(P)}), from which we can conclude the ob-
ject P flies although we do not even know whether it is a pa-
per airplane (since E does not say anything about PA(P)).
Hence, one cannot straightforwardly use (Giunchiglia et al.
2004) to default reason even about a single time point with-
out somehow sorting out the incomplete extensions first.
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Two further approaches exist that are related to our work.
In (Thielscher 2001) the fluent calculus is extended by de-
fault rules that enable an agent to assume away abnormal
qualifications of actions by default. The main differences to
our present work are: we are not restricted to a specific cal-
culus or time structure, and we handle general state defaults
rather than dealing with the specific case of action qualifica-
tions. In (Kakas, Michael, and Miller 2008) reasoning about
actions is combined with default reasoning in the framework
of an Action Description Language. The main difference to
our work is the use of a special-purpose syntax for default
and effect laws along with a tailor-made semantics with its
own definition of a linear time structure, models and entail-
ment. In contrast, our approach is formulated entirely within
classical first-order logic and default logic. The advantages
are, first, that the standard semantics for these logics apply;
second, that we can make use of known results, e.g. on the
existence of extensions; and, third, that standard inference
methods and theorem proving techniques can be employed
for automated reasoning with our domain axiomatizations.

Regarding future work, we already mentioned that there is
nothing inherent in the approach to state defaults presented
here that hinders us to incorporate more general action de-
scriptions. Still, this is not immediate—the effect axioms
have to be modified once again—, and we have not yet found
a solution that is conceptually as satisfactory to us as the ma-
terial presented here. What has not yet been considered, and
could in fact constitute more of a change, are disjunctive de-
fault conclusions and disjunctive action effects.

As a second (and more important) future research goal,
we will use the insights gained through this theoretical
framework to develop an actual, practical implementation.
This might seem a bit startling at first: after all, extension
existence for closed normal first-order default theories is not
even semi-decidable. Thus, we will have to make some
restricting assumptions towards the expressivity of the im-
plemented fragment of our theory. This is not a drawback
but only common practice in action theory-inspired imple-
mentations: both situation calculus and fluent calculus are
second-order logical formalisms, yet the programming lan-
guages based on them, Golog (Levesque et al. 1997) and
Flux (Thielscher 2005), are successfully used in practice.
Still, the reader might argue that default logic retains its high
computational complexity even through restriction to propo-
sitional logic.4 But in spite of such discouraging worst-case
complexity results, the close relationship of default reason-
ing with logic programming (Bidoit and Froidevaux 1987)
and the remarkable maturity of current implementations of
the answer set programming (ASP) paradigm (Gelfond and
Lifschitz 1991) make ASP the perfect candidate for putting
our framework into practice.
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Appendix
Proof of Theorem 2. Successor state axioms with direct effect
specifications (5, 6) can be expressed as UAC effect axioms by
replacing Do(A(�x), s) with t:

Poss(A(�x), s, t) ⊃

(∀f)[(Holds(f, t) ≡ DirTA(�x)(f, s, t) ∨

Holds(f, s) ∧ ¬DirFA(�x)(f, s, t)] (23)

Since (7) and (23) share the same predicates, it is quite useful to
introduce them through the following abbreviations:

• S for Holds(f, s),

• D for Holds(f, t),

• P for DirTA(�x)(f, s, t), and

• N for DirFA(�x)(f, s, t).

Now, (23) can be represented as

Poss(A(�x), s, t) ⊃ F (S,D, P, N)

where F (S, D, P, N)
def
= D ≡ P ∨ S ∧ ¬N .

Analogously, (7) is represented as

Poss(A(�x), s, t) ⊃ G(S, D, P, N)

where G(S, D, P, N)
def
=

(D ≡ S ∧ D ∨ P ) ∧ (¬D ≡ ¬S ∧ ¬D ∨ N).
The formulae F and G are logically equivalent to the unique

formulae bF and bG, respectively, that are in canonical conjunctive
normal form (CCNF), where uniqueness is understood to be up
to the order of the factors. The trivial conversion into CCNF is
omitted here. Uniqueness of CCNF guarantees that two formulae

are identical if they share the same CCNF. Comparison of bF andbG reveals that a set of ten disjuncts of bG strictly includes a set of

eight disjuncts of bF . Therefore, supplementing bF with the missing

disjuncts from bG one can establish an identitybG(S,D, P, N) ≡

(¬S∨¬D∨¬P∨¬N)
o
¬D∨¬P∨¬N

)
¬P∨¬N

∧( S∨¬D∨¬P∨¬N)
∧(¬S∨ D∨¬P∨¬N)

9>>>>>>>>=>>>>>>>>;
bF (S, D, P, N) .

o
D∨¬P∨¬N

∧( S∨ D∨¬P∨¬N)
∧(¬S∨¬D∨ P∨¬N)
∧( S∨¬D∨ P∨¬N)
∧(¬S∨ D∨¬P∨ N)
∧( S∨ D∨¬P∨ N)
∧(¬S∨ D∨ P∨ N)
∧( S∨¬D∨ P∨ N)

Taking into account the idempotency law, the two leftmost dis-

juncts of bF can be once more conjoined with the right part of the
identity. After that, combining together the four leftmost disjuncts

of bG and replacing formulae in CCNF with original ones, the iden-
tity reduces to

G(S, D, P, N) ≡ F (S,D, P, N) ∧ (¬P ∨ ¬N)

Thus, the effect axiom (7) is logically equivalent to:

Poss(A(�x), s, t) ⊃

(∀f)[(Holds(f, t) ≡ DirTA(�x)(f, s, t) ∨

Holds(f, s) ∧ ¬DirFA(�x)(f, s, t)) ∧

¬(DirTA(�x)(f, s, t) ∧ DirFA(�x)(f, s, t))]

Proof of Theorem 3. If E is inconsistent, the claims are immedi-
ate, so in what follows assume that E is consistent.

1. We make a case distinction on the sign of ψ.

(a) ψ = |ψ|:
By Definition 8, DirTα(ϕ, σ, τ ) ≡ ϕ = ϕ ∨ . . . and con-
sequently CausedT (ϕ, α, σ, τ ) ≡ ϕ = ϕ ∨ . . ., thus by ef-
fect axiom (7) and assumption E |= Poss(α, σ, τ ), we get
E |= Holds(ϕ, τ ).

(b) ψ = ¬ |ψ|: Analogous.

2. Assume E �|= ¬Def (ψ, σ, τ ). Together with assumption (C)
this means that default δPoss is applicable to E. Since
E is an extension, we have E |= Def (ψ, σ, τ ). Invoking
effect axiom (7) yields the claim. It remains to estab-
lish E �|= ¬Def (ψ, σ, τ ). By (Reiter 1980, Theorem 2.1),
there exist Ei, i ≥ 0, with E0 = Σ ∪ ΣD and for i ≥ 0,

Ei+1 = Th(Ei) ∪
n

β | α:β
β

∈ DInit,Poss , α ∈ Ei,¬β /∈ E
o

such that E =
S

∞

i=0 Ei. We first show E0 �|= ¬Def (ψ, σ, τ ).
Due to (A) and effect axiom (7), we know that E0 �|= ψ[τ ]
and E0 �|= ¬ψ[τ ]. By assumption (C), consistency of E,
and E0 ⊆ E, we get E0 �|= ¬Φ[τ ] ∨ Violδ(σ). In com-
bination with E0 �|= ¬ψ[τ ] this yields E0 �|= ¬Def (ψ, σ, τ ),
since default closure axioms and α’s effect axiom are the
only ways to conclude ¬Def (ψ, σ, τ ). Now assume to
the contrary that E |= ¬Def (ψ,σ, τ ). Then there is a
minimal integer i ≥ 0 such that Ei �|= ¬Def (ψ,σ, τ ) and
Ei+1 |= ¬Def (ψ, σ, τ ). This must be due to a default
δ′ = Φ′/¬ψ ∈ D with Ei |= Φ′[τ ] ∧ ¬Violδ′(σ). But then
Ei ⊆ E implies E |= Φ′[τ ], which is a contradiction to assump-
tion (B).

3. By the assumption that ψ and ¬ψ are not amongst α’s
direct effects, Σ |= ¬Dir(ψ,σ, τ ) ∧ ¬Dir(¬ψ,σ, τ ). The
second assumption ensures that the left-hand sides of
all relevant default closure axioms become true, hence
E |= ¬Def (ψ, σ, τ ) ∧ ¬Def (¬ψ, σ, τ ). In consequence,
CausedT (|ψ| , α, σ, τ ) reduces to FrameT (|ψ| , σ, τ ) (simi-
larly for CausedF ), which proves the claim.
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