
A Knowledge Engineering Methodology for
Rapid Prototyping of Planning Applications

Abstract

When deploying planning applications as part of greater intel-
ligent systems there is an underlying knowledge acquisition,
engineering and representation process that has to be under-
taken. In this paper we propose a methodology that enables
both a fast and easy knowledge acquisition, engineering an
representation of planning knowledge and it also enables an
easy knowledge sharing between the planning engine and ei-
ther other subsystems or even end users.

Introduction

Knowledge acquisition and representation is a key issue in
the development of planning applications either for small
domains or for large-scale deployments. In most cases, plan-
ning engines are just one more part of the whole architec-
ture and the integration of planning algorithms cannot ig-
nore this because the domain knowledge that they use to
work is also shared with other systems or even human op-
erators. In addition to this, planning domain knowledge is
not always explicitly stated since the beginning. The aim of
this paper is enabling an easy knowledge acquisition stage
of planning domain knowledge and enabling a good level
of knowledge sharing either with other processes or human
operators. In order to achieve this two-folded goal a method-
ology based on the use of well known technologies is pro-
posed. We will focus on how, once the knowledge relative
to the planning objects model and the planning problem has
been modeled within Protégé Frames (National Library of
Medicine 2009), this knowledge model can be easily and
quickly translated into a representation understandable by
a planner either an HTN planner or a flat one following a
CommonKADS(Schreiber et al. 1999) methodology. When
a brand new planning application is being built, the planning
domain knowledge is under constant evolution and changes.
The methodology presented in this paper allows both, an
easier exchange of knowledge with other subsystems or hu-
man operators, and a quick and robust regeneration of most
PDDL sentences both in the problem and in the domain files,
leading to a faster and reliable evolution of the planning ap-
plication.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The life-cycle of a brand new planning

application

The building of a planning application from scratch is a
handcrafted work nowadays. Planning engineers have to
study the problem at hand and build a knowledge model.
If some previous database is available it may help a little but
since these data repositories were not designed to be used
by a planning algorithm, they usually lack of the desired
level of detail or precision and many times they need to be
re-worked anyway. As the project goes on, and following
a typical, spiral-based knowledge acquisition scheme based
on interviews and prototypes, new capabilities of the plan-
ning engine are incrementally agreed between end users and
planning engineers. This leads to an enormous amount of
planning engineering work in the form of representing new
PDDL predicates, initial states, objects, properties and so
on. And last, but no least, potential syntactic mistakes may
appear during PDDL hand-coding.

The CommonKADS underlying timeline

Planning engineers may follow the CommonKADS method-
ology to give a formal envelope to this knowledge engi-
neering effort. Previous works (Kingston, Shadbolt, and
Tate 1996) show that, since a planning application is also
a knowledge-based system, this methodology can be used
as the underlying timeline for the design and representation
of planning domain knowledge. In a planning setting, the
Agent and Organization models might gather all the knowl-
edge available about the domain objects that take part in the
system, the relations between them and the existing con-
straints, that finally is represented as the domain knowl-
edge category of the Knowledge model. The Task model
may be used to detect those knowledge-intensive processes
that might be better supported by planning techniques. The
Knowledge model (apart from the object model) may con-
tain all inferencing mechanisms of the problem, that is, ab-
ductive or deductive inference processes needed in the plan-
ning process or even the knowledge relative to actions and
to compound tasks, decomposition schemes, in the case of
HTN planning. Communication model may be used to estab-
lish a way to define mixed-initiative or collaborative prob-
lem solving strategies, though it does seem to provide much
better support in a planning application for the stages of plan

138

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

Luis Castillo and Juan Fernandez-Olivares and Antonio Gonz´ alez

Gonzalo Milla and David Prior and Lluvia Morales and José Figueroa
Universidad de Granada

Vı́ctor Pérez-Villar
Boeing Research and Technology Europe

´



execution and monitoring, that is out of the scope of this
paper. Finally, the Design model might be understood as
the representation of all the above knowledge sources into
the final representation, in our case, the PDDL domain and
problem files ready to be used by a planning engine. Let us
see how the ontology editor Protégé may be used to cover
the agent, organization and knowledge models.

The use of the Protégé ontology editor

Firstly, it allows to easily represent planning domain knowl-
edge (except that related to actions) in a well known frame-
work with a graphical interface, focusing on the relevant as-
pects of this knowledge: objects, properties and relations
and ignoring the details of such representation in predicate
logic. The knowledge represented in Protégé Frames form
can be translated into usual PDDL syntax with an automated
procedure and all the sections of PDDL 2.1 domain and
problem file can be automatically generated. This transla-
tion process is a great advantage since it immediately pro-
vides valid PDDL files after each revision of the ontology.
Secondly, the knowledge in the Protégé ontology can also
be easily shared and exchanged both with other components
of the application like web applications, GIS systems like
Google Maps, or other databases and also with human op-
erators. This allows end users to modify planning domain
knowledge from easy-to-use web forms without having to
know about ontologies or predicate logic or artificial intel-
ligence in general. In order to provide these advantages,
the following steps have been given. On the one hand,
the Protégé ontology has to be backed up on a back-end
database in MySQL. This is automatically done through the
Protégé GUI. On the other hand, a web service named On-
toserver has been designed and implemented over that back-
end providing simultaneous access through the web to the
ontology and allowing most kind of queries to it, such as
browsing the hierarchy of classes, querying instances, fol-
lowing links of properties, etc.

Automating planning domain and problem file
generation during the planning application
life-cycle

Thanks to the use of the Ontoserver service, the ontology
can be fully browsed and all the available knowledge can
be easily translated into PDDL form. All the sections of
a PDDL domain file are generated, except those related
to actions schemes. One of the easiest PDDL sections
to be generated is the :TYPES section. It is generated
just by browsing the hierarchy of available classes in the
ontology. Each class in the ontology is translated into
a valid PDDL type. Another very useful section is the
:CONSTANTS section. This section must contain all
valid symbols to be shared between any problem instance
of the planning domain. In this case, all the possible
values of a given enumerated slot are translated into
valid constants. The PDDL section :PREDICATES and
:FUNCTIONS are extremely important since they are
the main tool to encode the most important knowledge
to be considered by PDDL actions and states. Every

instance of the ontology has a set of slots. Every slot
represents a property (STRING, SYMBOL, INTEGER,
BOOLEAN, FLOAT) and has a value associated to it. Non-
numerical slots are treated as regular predicates following
the scheme (<slot-name> <instance-name>

<slot-value>). BOOLEAN slots a treated in a spe-
cial way following the closed world assumption, if they
are true, then they are translated as (<slot-name>

<instance-name>). Otherwise they are not translated.
Numerical slots are translated as functions following the
scheme (= (<slot-name> <instance-name>)

<numeric-value>). And finally, slots of type
INSTANCE, that represent binary relations between in-
stances (or classes), are translated following the scheme
(<slot-name> <source-instance-name>

<target-instance-name>). It is very easy to figure
out that the problem file follows the same scheme of
the browse-and-translate procedures seen before. Every
instance of the ontology is translated into a PDDL typed
object in the problem. The type of the object is the class
of the ontology it belongs to. And the initial state is a
simple dump of all the slots of all the instances present in
the ontology. The goal of the problem can be specified
as a parameter of the translation algorithm. In the case of
non-HTN planners, it must consist of a sequence of literals
to be made true. In the case of HTN planners it must consist
of a sequence of tasks to be decomposed.

Regarding knowledge sharing, having both plain PDDL
domain and problem files as the source files for the plan-
ning knowledge is a huge drawback to enable this exchange
of knowledge between all the agents involved in the whole
problem. However, given the infrastructure commented in
previous sections, this task is much easier. It’s time to recall
that Ontoserver is a web service that allows to browse the
ontology, its classes and instances through a clearly defined
API (Advanced Programming Interface). This allows other
systems to remotely access the ontology in a interoperable
manner and also to build interfaces so that human operators
can also access the ontology through any web browser.

Acknowledgements

This research is partially funded by the Spanish Center for
the Development of Industrial Technology (CDTI) through
the CENIT Program, part of the 2010 Ingenio initiative. This
support is gratefully acknowledged.

References

Kingston, J.; Shadbolt, N.; and Tate, A. 1996. Com-
monKADS models for knowledge based planning. ”Uni-
versity of Edinburgh Artificial intelligence Applications In-
stitute, Technical Report”.

National Library of Medicine. 2009.
http://protege.stanford.edu/. Version 3.4.1.

Schreiber, G.; Akkermans, H.; Anjewierden, A.; de Hoog,
R.; Shadbolt, N.; de Velde, W. V.; and Wielinga, B.
1999. Knowledge Engineering and Management – The
CommonKADS Methodology. The MIT Press.

139




