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Abstract

With the most resource intensive tasks in games offloaded to
special purpose processors, game designers now have the op-
portunity to build richer characters using more complex AI
techniques than have been used in the past. While additional
CPU time makes improved AI feasible, better tools for build-
ing agents are needed to make good interactive characters a
reality. In this paper we present the BEHAVEngine and Be-
haviorShop which enable the creation of rich interactive char-
acters.

Introduction
Artificial Intelligence in video games lags behind AI in gen-
eral (Nareyek 2004). In the past, graphics have been the
major bottleneck in games, resulting in a lack of spare CPU
cycles to devote to better AI. With the recent development
of powerful GPUs, graphics and even physics calculations
have been offloaded to special purpose CPUs. This leaves
more system resources available to the AI developer, there-
fore providing a new opportunity to use state of the art AI
techniques in games. There is a further problem beyond
system resources though—building AI is difficult and games
with tens or hundreds of characters may need a lot of custom
AI to provide a rich experience. We propose that the solu-
tion to this second problem is to make it easier for designers
to build intelligent agents (game characters).

Our current research project is an effort to create the Pho-
toshop of AI—an application that allows anyone to quickly
and easily build intelligent agents. The primary focus of this
work is agents for games and training simulations, especially
for use by law enforcement, warfighters, and educators. In-
dividuals in these areas may not have a background in AI,
but still have useful applications for agents in trainint simu-
lations within their domain.

The DASSIEs (Dynamic Adaptable Super-Scalable Intel-
ligent Entities) project is composed of three major parts: the
agent builder user interface, the agent engine to implement
the generated agents, and game information services. Our
agent builder, BehaviorShop, is designed to provide an in-
tuitive interface for building agents. The BEHAVEngine
(Behavior Emulating Hierarchically-based Agent Vending
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Engine) accepts agent descriptions specified in our agent
description language and instantiates the intelligent agents.
The CGUL (Common Games Understanding and Learning
Toolkit) is a collection of game services which provides in-
formation about the game environment, including world ge-
ometry (Youngblood, Hale, & Dixit 2008).

Background
Over the years, many different agent and cognitive architec-
tures have been developed. Our goal is to build an architec-
ture appropriate for gaming that takes advantage of results
from cognitive psychology as well as the best practices of
this prior work.

In game AI, FSMs (Finite State Machines) are the most
commonly used method of driving character AI. They can
be used very effectively to build AI, but the number of tran-
sitions between states can quickly grow to an unmanageable
level. While it is the simplest method of building AI, it can
also be very difficult to work with for this reason. Behavior
Trees or Hierarchical Finite State Machines are a variation
on FSMs, which are also commonly used in games (Fu &
Houlette 2004). These can reduce the complexity of the top
level FSM, but are still time-consuming to build.

Brooks’ subsumption architecture is a layered approach
to intelligence that is used in many robotics applica-
tions (Brooks 1986). Subsumption-based systems use multi-
ple simple behavior layers which may be triggered based on
sensor input. The layers do not interact with one another, but
higher priority layers may subsume or suppress the output of
lower priority layers. Pure subsumption architecture is de-
signed as a reactive control method, but the concept was ex-
panded with behavior-based artificial intelligence (Matarić
1992). Instead of being a top-down approach, like behavior
trees, subsumption is a bottom-up approach to intelligence.

Cognitive architectures, as compared to basic agent archi-
tectures, aim for psychological plausibility by building sys-
tems that take into account results from cognitive psychol-
ogy. Examples of cognitive architectures include ACT-R and
Soar (Anderson 1996; Laird, Rosenbloom, & Newell 1987).
One example of the constraints placed upon these systems
is the production rule timing in ACT-R; by default, rules
take at least 50 ms to fire, and different modules have other
timing constraints that have been determined empirically to
match with results from psychology. Cognitive psychology
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Figure 1: Screenshot of RobotFlow, developed by Univer-
sity of Sherbrooke

provides theories about perception such as the existence of
mechanism like visual iconic memory and the phonological
loop (Sperling 1960; Baddeley 1997). Iconic memory pro-
vides a brief period of retention after visual stimuli have dis-
sipated, while the phonological loop is a mechanism which
maintains a short period of aural memory. These concepts
may be integrated into cognitive architectures as a way to
verify the psychological theory and provide more human-
like behavior. Cognitive architectures are primarily research
systems (though Soar has been applied to game AI, and
ACT-R used to control mobile robots).

Building agents in these architectures can be difficult,
and researchers have developed graphical editors for build-
ing agents. RobotFlow was produced at the University of
Sherbrooke with the goal of creating a graphical builder for
robotic systems (Cote et al. 2004). Figure 1 shows the
RobotFlow interface with the model of a tele-operated agent
application. Behaviors can be dragged into place and con-
nected to set input and output streams. Underneath Robot-
Flow is the MARIE robotics middleware, which is an ex-
tremely flexible and extensible package for building robotic
systems.

Several simulation agent builders use FSMs for cre-
ating agent AI. SimBionic is a commercial pack-
age designed for building game AI, which provides
a HFSM agent modeling interface, debugger, and en-
gine (http://www.simbionic.com/). Simbionic is an ex-
tension of Fu’s BrainFrame software (Fu & Houlette
2002). Another commercial package for simulation AI
is AI.implant, a product of Presagis (Presagis 2001).
AI.implant allows creation of game agents using a variety of
methods, notably FSMs and HFSMs. Because these pack-
ages are commercial software, we cannot include screen-
shots of the agent interfaces in this paper. The commer-
cial interfaces are similar to, the RobotFlow interface in Fig-
ure 1.

Agent Wizard builds software agents through a question-
based system; the user answers questions on the different
facets of the desired agent, and it produces the correspond-
ing AI (Tuchinda & Knoblock 2004). Agent Wizard’s ap-
proach is very accessible, but is geared toward web software

Figure 2: The DASSIEs system: Information flow is labeled
with the large arrows showing a) the flow of the environment
information into CGUL for processing into knowledge, b)
the flow of processed information and created knowledge
for incorporation into the behavior construction task, c) the
flow of processed information and created knowledge to BE-
HAVEngine for use in reasoning and agent interaction, d)
the flow of agent action information to BehaviorShop for in-
corporation into the behavior construction task, e) the flow
of the behavioral model to BEHAVEngine for creation of
the simulation agent(s), and f) the control and perception in-
formation interchange between the BEHAVEngine and the
Simulation Environment.

agents instead of game agents. Also, as a result of this ap-
proach, the complexity of the agents is limited and Agent
Wizard is a more domain specific approach which does not
apply to game agents.

Design
The previous work in architectures, cognitive psychology,
and agent building interfaces has informed the development
of the DASSIEs project. While each of the existing architec-
tures and interfaces has its strengths, we have found it nec-
essary to develop new tools. Notably, we have found that
subsumption agents are more intuitive to the general public
than FSM or HFSM-based agents, and we use our interface
to explore this finding more fully. The existing agent ar-
chitectures are proprietary, defined too strongly by cognitive
plausibility, or do not take cognition strongly enough into
account. In addition, our goal is to provide a framework for
building cultural and social factors into agents to build truly
rich characters.

The overall design of our system can be decomposed
into three major parts: BehaviorShop, BEHAVEngine, and
CGUL. BehaviorShop is our GUI front-end for creating
agents, while BEHAVEngine interprets the agent descrip-
tion files. CGUL is a collection of game services which pro-
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Figure 3: The BehaviorShop Interface main screen. This
screen shows the architecture for a barista agent from our
Paris Café demonstration.

vide additional information and create knowledge for agent
consumption from game world information (eg, CGUL pro-
vides world geometry, object information, and fixed world
affordances to the agents). Figure 2 shows the full DASSIEs
system, and demonstrates the information flow between dif-
ferent components.

BehaviorShop
BehaviorShop allows users to build a subsumption-based
agent specification, and is integrated closely with our game
services and the BEHAVEngine. Figure 3 shows the main
screen of our interface: the user can add additional layers
through the + buttons and remove them using the - buttons.
Once a blank layer has been added, clicking on the layer
brings up the behavior editor (shown in Figure 4), which al-
lows the user to assign a pre-built behavior, any options it
needs (such as world points to visit), and under what con-
ditions the behavior will become active (trigger conditions).
The behavior editor also allows the user to specify how the
current behavior should subsume the output of lower layers;
higher layers can completely suppress the output of lower
layers, suppress only certain effectors, or throttle the behav-
iors to provide partial subsumption.

BehaviorShop provides the user with information about
the environment, behaviors, and trigger conditions which are
available to the agent. This information is directly queried
from CGUL and BEHAVEngine. Providing this informa-
tion dynamically guarantees that the user will always have
accurate information about the simulation environment and
capabilities available for agent creation.

While full agents can be built using only the simple be-
haviors available through the BEHAVEngine, users can also
combine behaviors to build additional complex behaviors.
Behaviors can also be modified using adverbs which de-
scribe both how the behavior executes a task and potentially
how the environment should animate the character. Addi-
tional depth can be applied to the character by using the

Figure 4: The BehaviorShop Interface behavior screen. This
screen allows the user to define a specific layer in the sub-
sumption agent. Note the map of the environment which is
received from CGUL, and the menus which are propagated
by querying BEHAVEngine.

other agent description categories.
The main category is Spatial. Basic agent behavior is de-

scribed here in this section, as described above. The Tac-
tical category provides an alternate mode of action for the
agent—tactical behavior is activated when the agent is un-
der duress, as occurs when the agent is involved in a combat
situation. The Properties tab allows the user to adjust the
agent’s behavior parameters, which are described in the BE-
HAVEngine section. Character interaction through speech
is created under the Discourse tab. Finally, specific cul-
tural values, norms, and beliefs can be added to the agent
using the tools in the Cultural tab. Cultural factors affect the
agent’s decisions in a variety of ways, notably in planning.

User-defined agents are then transformed into an agent
description language, which is currently a simple translation
into a subsumption description. This output is loaded by
BEHAVEngine to create the agents at runtime.

BEHAVEngine
We found that existing architectures did not meet our re-
quirements for DASSIEs. Most game AI middleware is pro-
prietary, without the ability to modify the engine itself. Sev-
eral middleware packages for mobile robotics are available,
but mobile robots typically have very noisy and information-
poor perceptions of the environment. Interactive characters
in virtual worlds can have very clean and information-rich
world models. Robotics middleware focuses on providing
a common interface for integrating complex software pack-
ages; our focus is on combining simple behaviors.

We have a few important design goals for our architec-
ture. The most important goal is to provide a platform for
research in discovering an ontology of behaviors. We hope
to develop a minimal set of low-level behaviors which can be
used to build any complex behavior that is needed. This re-
quires that our architecture provide a hierarchical behavior-
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Figure 5: The BEHAVEngine architecture diagram

building system.
The architecture must be scalable, in terms of both re-

sources and the number of agents that it can manage at
one time. It must run on anything from a resource-poor
sub-notebook or hardened laptop to a high-power multi-
core workstation. The architecture implementation must be
aware of cpu and memory resources, and use any-time tech-
niques to control its resource utilization.

Finally, the architecture must be modular. The first two
goals suggest a modularity of behaviors and a modularity
of computational components, but modularity goes beyond
these two requirements. The architecture should support re-
search in applying cognitive psychology to artificial intelli-
gence, therefore it should be possible to swap in different
models for perception, memory, and action.

The basis for our architecture is subsumption. We chose
subsumption for its power, as well as its inherent modular-
ity and parallelism. It also provides a simple direct transla-
tion of the description language used by BehaviorShop. We
use hierarchical subsumption, so each layer may consist of
a full subsumption instance itself. As a reactive method,
subsumption potentially suffers from unpredictability as the
complexity of the system increases(Simmons 1994). Our
current agent scenarios are simple enough that it has not yet
become a major issue, but we are planning to incorporate de-
liberative components to mitigate the problem in the future.
We find that the explosion in size of FSM-based approaches
causes more difficulty than unanticipated emergent behavior
in subsumption.

Figure 5 shows the BEHAVEngine architecture. Infor-
mation is received from the game environment and CGUL
services, and passes to the Perception Model. The Percep-
tion Model filters the available percepts and affordances1,
and passes them on to the Memory Model. The Memory
Model may store transient percepts in the appropriate short
term memory (such as iconic memory for visual percepts)
before passing on the currently available affordances and

1We use affordances as per Gibson’s definition as being action-
able properties between the world and an actor (Gibson 1977). We
also include the relationships between actors.

percepts. Behavior parameters and adverbs are also stored
in the Memory Model. The Subsumption Module is respon-
sible for executing the actual agent behaviors, and includes
additional services and planning modules which assist with
discourse, tactical, and cultural factors. Information flows
bidirectionally between the Subsumption Module and the
Memory Model, allowing the behaviors and cultural factors
to modify the current adverbs and behavior parameters. Fi-
nally, effectors are passed to the Action Model, which re-
solves the actions of the agents. The output of the Subsump-
tion Module includes both effectors and world information
in the form of affordances: agents may add dynamic affor-
dances to the world, or change existing affordances.

Percepts Percepts are received from the game world and
CGUL. CGUL provides information about the environment
including object information and world geometry based on
a world decomposition created using DEACCON (Hale,
Youngblood, & Dixit 2008). The most basic percepts pro-
vide ego information, such as the agent’s current location
and action. In addition, affordances are modeled as percepts
which are received by the agent when it is within range. Per-
cepts are filtered by the Perception Model and then enter the
Memory Model. Some percepts are stored in the Memory
Model to provide short term memory allowing the Subsump-
tion Module time to respond to short temporal events.

Layered Behaviors The behaviors within the Subsump-
tion Module are either simple built-in behaviors, or com-
plex behaviors built from combinations of simple behaviors.
Each behavior layer includes information about triggering
conditions and a policy for subsuming lower priority behav-
iors. Behaviors make use of the behavior parameters and ad-
verbs that are stored in the memory model, and may change
the stored values. In addition, behaviors may query the cul-
tural and discourse information. Tactical behaviors may take
over when the agent is under duress.

Behavior Parameters Behavior parameters are values
which affect the agent in consistent ways across behaviors.
In cases of uncertainty, these parameters provide weight to
the options available to the agent. The parameters are also
intended to provide information for character animation. Be-
havior parameters modify actions within the layered behav-
iors. A subset of behavior parameters provide represen-
tations of Hofstede’s cultural dimensions (Hofstede 1996).
The Hofstede parameters are fixed once the agent is initial-
ized and cannot be modified by the behaviors.

Effectors An agent’s effectors either act directly in the
game world or can add (or remove) affordances to the world.
In a simulation of a café, for example, an agent may first en-
ter the café and sit (acting directly upon the world), and then
add an affordance that indicates it wishes to be served. A
waiter agent can monitor for customer affordances and re-
spond appropriately. This enables rich interactions between
agents without requiring world knowledge to be written into
the agents—while it is a goal to build agents which can un-
derstand the subtle social cues of every day interactions, in
most cases we need an agent which just acts correctly.
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Figure 6: The CULTURE Project: Paris Café Simulation

Action Models are used to filter the agent effectors. This
mechanism also combines the effector output of different
layers of the subsumption implementation, so that some be-
haviors may be throttled rather than fully subsumed. The
action model also translates effector requests into the form
required by the simulation, so changing the action model al-
lows the agent to be attached to different systems. Action ef-
fectors may also be modified by adverbs which control how
atomic actions are performed.

Affordances and Influence Points Affordances are repre-
sented as points attached to regions of the world navigation
mesh. They have a detection radius as well as an action ra-
dius, which defines the area in which the agent can act upon
them. Agents may add affordances to the world directly.

Influence points are added by the BEHAVEngine to pro-
vide additional information. These are an adaptation of
influence maps (Tozour 2001). Influence maps are used
in games to provide tactical information about the world,
such as how much power a particular group has in a re-
gion, or areas which have recently been dangerous. Influ-
ence maps rely on a discrete map of the world, but our nav-
igation meshes allow us to improve on influence maps us-
ing influence points. These are treated similarly to affor-
dances (Heckel, Youngblood, & Hale 2009).

Evaluation
Case Study
new

For a public demonstration, we have created a Paris Café
simulation using BEHAVEngine (see Figure 6). The Paris
Café simulation is an effort to create a cultural experience
using our engine and is part of a larger project to build cul-
tural simulations that individuals can use to learn about so-
cietal norms and expectations in other cultures.

The Paris Café is our first cultural simulation. It is a rep-
resentation of a street café in Paris, France, complete with
crowds, a wait staff, and seating. Users control an agent

which can sit at a table inside or outside of the café, watch
the crowds pass, and have some coffee. For our prototype
of the simulation, we created agents walking through the
streets, barista and waiter agents, and a customer agent. The
customer walks to the café and sits at a table outside (the
chair has an affordance added by the model creator indicat-
ing the agent may sit). The customer waits for the waiter
(adds a waiting for service affordance). A waiter notices the
customer (perceives the waiting for service affordance at one
of his tables) and takes the customer’s order (removes the
waiting for service affordance). The waiter then enters the
café, and places the order with the barista (setting a placed
order affordance). The simulation continues with each agent
adding and removing affordances according to the specified
rules. The interaction between the agents occurs dynami-
cally as a result of the behaviors, instead of being a pre-
written static script.

BEHAVEngine ran the Paris Café simulation with over 20
agents controlled on a single processor core while simulta-
neously running a game environment. The engine has been
tested running 80+ agents simultaneously on a notebook PC,
demonstrating the scalability of our implementation.

Pilot Studies
In the process of developing out first version of Behavior-
Shop we created several versions to try out different forms
of agent architectures. We started with a FSM builder that
just about everyone had difficulty creating agents with for
the reasons previously mentioned, but mostly because peo-
ple did not know where to start and then had problems
wiring the state transitions when the models grew beyond 5-
6 nodes. Exploring a HFSM (a.k.a., Behavior Tree) builder
also caused most participants difficulty. The initial results
from several lab visitors was so poor that we immediately
abandoned these approaches. To our surprise, the first tests
of a layered behavior builder were met with immediate satis-
faction and visitors were able to quickly create layered agent
behaviors.

A preliminary pilot study evaluation of an earlier version
of BehaviorShop (now subsumption based) conducted in a
public library showed very promising results. Fifteen users
were given the task of creating a game character for one
of five possible described roles using our tool, which in-
volved some complex behaviors (e.g., security of a target
location, information gathering from other characters, and
other military-type scenarios). Only one subject (male, over
50) quit in frustration citing a basic unfamiliarity with com-
puters. Eleven others created agents that behaved correctly
accomplishing all of the key behaviors desired for the as-
signed role (we compared the subsumptions between these
users and ones created from experts in our lab), while three
people created agents which performed an incomplete set
of behaviors. These incomplete agents did exhibit a num-
ber of designed behaviors of similar complexity to those of
the desired agents, but appeared more whimsical—reflecting
their designer’s inclinations that were reported to be their
“interpretation” of desired behavior. The sample population
ranged in age from just over 18 to mid-50s and was 53%
female. No user took longer than 15 minutes to create an
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agent—members of our research group were able to create
similar agents in 3-4 minutes—suggesting that our tool was
approachable and intuitive. These results were from a struc-
tured, but informal, testing session, but suggest that the cur-
rent work is on the right track.

Additional early testing with the most recent version of
BehaviorShop has also shown positive results. Four sub-
jects, who were visitors to our lab, with little to no AI back-
ground have successfully created complete agents with the
current release in similar scenarios to our other informal
studies. Our IRB-approved testing process covers these pi-
lot studies and in-lab constant testing as well as a full formal
study that we are currently about to begin to test Behavior-
Shop on a large sample population.

Conclusions and Future Work
Continuing work with the DASSIEs project will focus on
further refining the interface and creating a much larger set
of primitive behaviors for use with the agent builder. There
is further work to be done in the translation of user input into
the agent description language—this translation process is
currently direct, and does not attempt to discover user intent.
User intent is important, as it is likely users will make certain
common errors which can be corrected through analysis.

Our current agent description language is an ad-hoc XML
specification, but we are pursuing an adaption of situational
calculus to build a more general language.

We are currently running further studies to evaluate both
BehaviorShop and BEHAVEngine in implementing speci-
fied agents. For these studies, agents built by human sub-
jects in Behaviorshop are evaluated against agents built by
AI experts.

BehaviorShop and BEHAVEngine demonstrate that it is
possible to build an agent creation toolkit which is accessi-
ble to a general audience with no AI background. Our initial
studies show that subsumption-based builders are more in-
tuitive for AI-naive users while still being powerful enough
to create complex behaviors.
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