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Abstract

The MAPLE Game Playing System is a web application and
website that allows students to design and program game
playing agents using the Python programming language. The
system provides a platform for assignments in introductory
computer science courses and senior and graduate-level A.I.
courses. The website allows users to upload, use, and share
agents that play games such as the Prisoner’s Dilemma, Stag
Hunt, and Matching Pennies. In this paper, we discuss the
features and functionality of the system and suggest pos-
sible assignments within A.I. or introductory programming
courses.

Introduction
We have developed the MAPLE Game Playing System
(MGPS), an online two-player iterated normal-form game
playing system for students in introductory and advanced
college-level courses. MAPLE—an acronym for the re-
search lab in which the system was developed—stands for
Multi-Agent Planning and LEarning. Normal-form games
are a class of multi-agent competitive games that can be rep-
resented by a payoff matrix. The most well known normal-
form game is the prisoner’s dilemma game. Both prisoners
dilemma and other normal-form games are reviewed more
in the background section of this paper.

Since normal-form games have very simple rules, they are
an effective context within which to teach introductory com-
puter science. At the same time, designing an agent that op-
timally plays normal-form games is a challenging task, pro-
viding a platform for more advanced A.I. education and re-
search. Currently, tools for educators and researchers to use
for normal-form game development are limited. The MGPS
is designed to provide a centralized source for educators and
researchers to create new agents and hold tournaments to
test the effectiveness of agents against each other. With the
MGPS, instructors can assign their students to create their
own agents for playing both specific and general normal-
form games. Students would be able to test their agents
against their classmates’ agents, or against top-performing
agents designed in the research community. At the end of
the assignment, the instructor could organize tournaments
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cooperate defect
cooperate 3, 3 0, 5

defect 5, 0 1, 1

Figure 1: The payoff matrix for the prisoner’s dilemma
game. If both agents cooperate, they both get a payoff of
3, which is a better payoff than both defecting (1). If one
prisoner defects and one cooperates, the cooperator gets a
payoff of 0, and the defector gets a payoff of 5.

with all of the students’ agents competing in a variety of dif-
ferent normal-form games.

MGPS can also be used as a effective tool for research.
While research tournaments for normal-form game playing
agents are sometimes held, such as the Iterated Prisoner’s
Dilemma Competition (Kendall, Darwen, and Yao 2009), to
our knowledge there does not exist a centralized system of
agents against which researchers can test their agents. As
a result, researchers are forced to re-implement each agent
they want to test against before submitting their agent to a
competition. By using the MGPS, researchers can quickly
test their ideas against other cutting-edge agents without
having to re-implement the algorithms themselves. Further-
more, if a researcher missed an opportunity to participate in
an official tournament, they can easily recreate the tourna-
ment using MGPS to see how their agent would have fared.

We first review the structure of normal-form games and a
number of specific examples. We then discuss the organi-
zation and features of the MGPS, and how how the MGPS
can be effectively used in both introductory CS courses and
advanced A.I. courses. Finally, we present our conclusions
and future improvements that we would like to make to the
MGPS.

Background
In this section, we review the structure of normal-form
games, and give examples of specific games. Normal-form
games describe n-player games in which each of the n play-
ers can take one of m actions. All players choose their ac-
tions simultaneously so that no player knows the choice of
its opponents before making its own. Given the choice of
each player’s action, each player will receive a defined re-

305

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)



stag hare
stag 4,4 1,3
hare 3,1 3,3

(a) Stag Hunt

movie 1 movie 2
movie 1 3,2 0,0
movie 2 0,0 2,3

(b) Battle of the Sexes

heads tails
heads 1,-1 -1,1
tails -1,1 1,-1
(c) Matching Pennies

swerve straight
swerve 0,0 -1,+1
straight +1,-1 -10,-10

(d) Chicken

Figure 2: The payoff matrices for the two-player normal-form games Stag Hunt, Battle of the Sexes, Matching Pennies, and
Chicken

ward. These conditional rewards are usually represented by
a payoff matrix. In a two-player game with two possible ac-
tions, the payoff matrix would be a 2x2 matrix. The first
row would define the rewards the players would receive if
player one took the first action; the second row, the rewards
received if player one took the second action. Similarly, the
two columns would represent the rewards for each action of
the second player. For example, the cell in row one and col-
umn one defines the rewards if both player one and two took
the first action. While a player is not aware of what action
its opponents will take, it is aware of the payoff matrix.

The most well known normal-form game is the Pris-
oner’s Dilemma (PD) (Axelrod 1980) (Axelrod and Hamil-
ton 1981), in which two prisoners find themselves in the fol-
lowing situation:

Two suspects are arrested by the police. The police
have insufficient evidence for a conviction, and, hav-
ing separated both prisoners, visit each of them to offer
the same deal. If one testifies (defects from the other)
for the prosecution against the other and the other re-
mains silent (cooperates with the other), the betrayer
goes free and the silent accomplice receives the full
10-year sentence. If both remain silent, both prison-
ers are sentenced to only six months in jail for a mi-
nor charge. If each betrays the other, each receives a
five-year sentence. Each prisoner must choose to be-
tray the other or to remain silent. Each one is assured
that the other would not know about the betrayal before
the end of the investigation. How should the prisoners
act? (Wikipedia 2009b)

The PD game can be represented using a variety of differ-
ent payoff matrices provided that the temptation to defect is
greater than the reward for both cooperating, that the reward
for both cooperating is greater than both defecting, and that
the reward for both defecting is greater than reward when a
player cooperates and their partner defects. One such payoff
matrix is shown in Figure 1.

The optimal strategy for an agent playing the PD, when
faced with only one game or a fixed known number of
games, is to defect, since defect-defect is the Nash Equi-
librium for PD. A Nash Equilibrium is defined as a solu-
tion concept for a game where no player would benefit from
changing their strategy if their opponents did not change
theirs (Nash 1950).

When the number of PD games to be played is not known,
and each player has a history of their opponent’s previ-
ous choices, the optimal strategy depends on the mixture of
strategies that each player employs. Games that are repeated
in this way are known as iterated games. For the iterated PD

(IPD), the best strategies are variations of tit-for-tat, where
the agent starts by cooperating in the first game and then per-
forms the same action as the opponent took in the previous
game. (Axelrod and Hamilton 1981).

While PD is a very common normal-form game with
some interesting properties, there are many other two-player
games, each with different properties and requiring different
strategies. Other two-player iterated normal-form games in-
clude Stag Hunt, Battle of the Sexes, Matching Pennies, and
Chicken. The payoff matrix for each of these can be found
in Figure 2. A more detailed description of these games and
more can be found on Wikipedia (2009a).

Stag Hunt represents a game of trust. In this game, each
player receives the highest reward when they both cooperate
(hunt for a large animal—a stag—together). If both defect
(independently hunt for an easy hare), then they each receive
a moderate reward. If one defects and one cooperates (co-
operator left waiting for the other to hunt for the stag), then
the cooperator receives a low reward, while the defector re-
ceives a moderate reward. If they both defect and hunt for a
hare on their own, they both receive a moderate reward. In
this game, each agent must trust the other agent to cooperate
in order to maximize each others’ rewards. If for some rea-
son, the agent believes that its opponent would defect, then
it would be better for the agent to defect in turn.

In the Battle of the Sexes game, each player has a dif-
ferent preferred action, representing a preferred movie. If
player one and two both choose to watch player one’s pre-
ferred movie, then they each receive a reward, with player
one receiving a slightly higher reward than player two. The
inverse is true if they both choose to watch player two’s pre-
ferred movie. If the players can’t agree on what movie to
watch, then no player receives a reward. Players need to fol-
low a cooperative strategy that allows them both to receive at
least some reward. Ideally, a player should be able to coerce
its opponent into its preferred choice merely by the choices
it makes in previous games.

The Matching Pennies game is a two-action variant of the
classic children’s game of Rock-Paper-Scissors. When the
two players’ actions match, player one receives a positive
reward and the player two receives a negative reward. When
the players’ actions are different, player two receives a posi-
tive reward and player one receives a negative reward. Gen-
erally the best strategy for this game is to play randomly.
However, if one player can identify the other player’s strat-
egy, they may be able to exploit it for higher total reward.

Chicken is based on the “game of chicken,” in which two
automobile drivers are driving head-on towards each other.
If both players swerve their cars, neither wins, but they both
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Figure 3: Shown here is an ER diagram of the MGPS
database. MGPS allows registered users to create any num-
ber of agents that are programmed in the Python Program-
ming language. Users can also define their own normal-form
games. Any user can start their own tournament and can
choose the participating agents, regardless of whether that
user created the agents.

survive. If one player swerves, they both survive and one
player (the non-swerver) wins. If neither swerves, then the
players collide, and both die. The normal-form game is rep-
resented by “swerving” and “going straight” actions. When
both players swerve they each receive zero reward. When
one player swerves, the player who swerved receives a small
negative reward and the player who kept going straight re-
ceives a small positive reward. If both players go straight,
they each receive a large negative reward. The interest-
ing aspect of this game is that it is best for a player to go
straight when the other player swerves—but the risk of go-
ing straight is very large, because if the other player doesn’t
swerve, then there is a very large penalty.

Features and Organization
MGPS is implemented in CherryPy,1 an HTTP framework.
A feature of CherryPy is the ability to run the web applica-
tion within the built-in web server, which is convenient for
instructors or students if they want to run MGPS privately.
The only system requirements for running a private server
are Python 2.6 and CherryPy 3.1.2. The system is available
for public use on our servers for convenience.2

The structure of the MGPS is shown in an ER diagram
in Figure 3. MGPS provides user management, a central-
ized database of all submitted agents, a database of submit-
ted normal-form games, and the ability to host tournaments
that the MGPS will run and then report the results for.

Users make accounts on the website that store a personal
profile, as well as a list of the user’s agents (Figure 4).
Agents are publicly available to all users to add to tourna-
ments or to view. We plan on adding a privacy functionality

1CherryPy website: http://www.cherrypy.org/
2http://maple.cs.umbc.edu

Figure 4: The user page; from here, users can view any
agents a user has created and any other details the user has
provided about themselves.

to protect the source code of an agent, which would be useful
in a class environment where cheating might be a problem.

An agent’s source code must follow a strict template, hav-
ing four specific interface methods and one method that in-
stantiates the agent. Conforming to this template is impor-
tant because the system must know how to interact with the
agent. It is important to note that agents are not reinstanti-
ated between games (thus the need for start and end meth-
ods). In this way, agents can be designed to learn over the
course of an entire tournament. The four class methods that
must be available are the following:

• def start(self, board) – Tells the agent that a
new game will be starting. Any sort of initialization to
prepare for the game should be done here. The parameter
board is the game payoff matrix to be used.

• def get action(self) – Returns the action the
agent would like to perform next. Actions are enumer-
ated as numbers; in prisoner’s dilemma, 0 is cooperate
and 1 is defect. An agent may identify these differences
by examining the board object passed in the start method.

• def add result(self, iteration,
your choice,

your reward, your score, others choice,

others reward, others score) – Tells the agent
what happened in the previous round: what the agent’s
last choice was, the agent’s opponent’s last choice, the
payoff each received, and the two agents’ respective cu-
mulative payoffs from their match.

• def end(self) – Tells the agent that the round is
over. Any kind of maintenance that needs to be done can
be done here.

Once a user has finished programming their agent, they
can upload the Python code from their local computer to the
MGPS website using a simple web form.
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Figure 5: The interface for creating a new game. Users can
specify the payoffs for each choice, and the number of iter-
ations to play the game.

Because different normal-form games can require differ-
ent strategies, another ability of the system is allowing any
user to add games, as shown in Figure 5. A game defini-
tion includes the name of the game, the number of iterations
that agents should perform, the payoff matrix, and a short
game description. Once the game is added, anyone can start
a new tournament with the game. By default, the MGPS
comes with classic games such as Prisoner’s Dilemma, Stag
hunt, Battle of the Sexes, Matching Pennies, and Chicken
(Wikipedia 2009a).

MGPS has supporting functionality that makes playing
games easy and convenient. First, users select a subset of
agents from a list of all agents in the database to be included
in the tournament. Then, they select what user-generated or
standard game will be played by these agents. The interface
for this setup is shown in Figure 6. Once the preferences
have been submitted, the server runs the tournament, playing
each of the selected agents against each other agent. Several
statistics are recorded, including the sum of utility scores,
individual rounds and every action taken by an agent. As
shown in Figure 7, these statistics are provided in a detailed
report that is displayed once the tournament is completed;
the report is also saved for future viewing.

We are planning on improving and expanding the func-
tionality of MGPS in the future. Most notably, we will add
noise to the game options. Noise in a game means that
with a certain probability, an agent’s desired action is re-
placed with a random action. This complicates the problem
and introduces concepts such as forgiveness and detection
of noise. Also, we will expand the system to include games
that are not normal-form, such as chess and checkers. This
will make the system more general and allow for a wider
diversity of games.

Usage in Introductory Computer Science
Courses

MGPS is well suited for introductory computer science
classes. The only prerequisite for students using the sys-
tem is a basic knowledge of Python and basic knowledge
of game theory. Python is an easy language to learn and
has been shown to be an excellent language for teaching in-
troductory computer science (Agarwal and Agarwal 2005)

Figure 6: Shown here is the interface for setting up a tour-
nament. A user can select which agents they would like to
participate, and the game to play.

(Ranum et al. 2006). A lecture on the basics of normal-form
games could be very abbreviated or explained in the assign-
ment prompt. For instance, students only need to understand
the payoff matrix formulation and how to determine the re-
wards players receive for any combination of actions.

In the MGPS, students can see immediate results of their
programs and can compare themselves to any number of
baselines provided by instructors or other students. Other
work studying the effects of games in computer science ed-
ucation has shown that immediate feedback is effective in
engaging students (Barnes et al. 2008). This sense of en-
gagement will encourage students to design agents that per-
form well. Also, the game theory topic is deep, and may in-
spire computer science students to research the field deeper
and get a head start on their senior classes.

A number of programming topics can be explored using
the MGPS infrastructure. The role of functions, parameters,
and return values can be taught by explaining how to use and
implement each of the required agent methods. The effect
of return values for instance can be easily demonstrated by
defining an agent that always cooperates (returns zero) and
having it play against an agent that always defects (returns
one).

The MGPS also serves as a good framework to describe
top-down design as each agent already has the top-level re-
quired methods listed. Students can practice designing from
a high level and defining stubs for the lower level methods
the top level methods would reference.

Object-oriented design can also be explained using the
MGPS, since each agent is a defined class. This provides
students with a framework to learn how to define additional

308



Figure 7: Shown here are the results displayed for a tourna-
ment consisting of two agents. The individual payoffs for
each iteration are reported, as well as the final cumulative
scores for each game.

methods and class variables that can be accessed by any
method in the object.

Since agents range widely in complexity, a wide range
of projects, in terms of difficulty, can be assigned. For ex-
ample, when working in PD, agents that always cooperate
or defect are the simplest, and can be used as a tutorial for
learning the system. From there, students can implement
tit-for-tat (TFT), in which the agent acts as the other agent
acted in the previous round. For example, if agent A (TFT)
is playing against another agent, it will cooperate if the other
agent cooperated, and will defect if the other agent defected.
To implement this strategy, the student must store the oppo-
nent’s previous action in a class variable that is assigned in
the add result method. Then, the student should program the
get action method to return this stored action. Next, students
can implement more complicated strategies such as ones that
determine the most common action by the opponent and then
choose an action to maximize its reward, assuming that the
other agent continues its trend. Random numbers can also be
used to make decisions, such as cooperating, but sometimes
defecting. For example, in the Matching Pennies game, it is
best to choose a random action.

Students can gain practice using lists by designing a
master-slave system where agents collude by performing a
specific sequence of actions, and then allow one agent (the
master) to receive the maximum reward by following a strat-
egy that is beneficial to the master. To implement this, stu-
dents would store a list containing the sequence of intro-
ductory actions they should execute to signal to the other
colluding agents who they are, and to check to see whether
they are playing against one of their fellow colluders.

Finally, students should be allowed to design and imple-
ment their own ideas and see how they compare to other
students’ agents.

Usage in A.I. Courses
MGPS can be used as a supplement to an introduction to ar-
tificial intelligence class or a game theory class. Students
can be assigned to implement classic strategies in class,
which will give deeper understandings of the workings of
the agents, as well as the properties of the games. Scientific
experiments can be performed to compare strategies and an-

alyze the differences. For example, in which games are Nash
Equilibria relevant? Possible assignments, some of which
are inspired by research questions, include:

• Implement an agent that identifies Nash Equilibriums and
plays accordingly

• Implement a general game playing agent that learns a
strategy based on multiple games with multiple agents

• Implement an agent that models its opponents strategy
and computes expected utilities to determine the best ac-
tion

• Implement reinforcement learning for use in PD (Sand-
holm and Crites 1996)

• Implement evolving strategies in PD (Fogel 1993)

• Implement a master/slave collusion strategy in the noisy
PD (Rogers et al. 2007)

Assignments where students need to develop an agent
that can play any kind of two-player normal-form game can
be particularly interesting since different games can require
very different strategies.

MGPS was originally developed for the game theory sec-
tion of a senior/graduate-level multi-agent systems course,
taught by two of the authors of this paper. We ran two
competitions over the course of the semester and students
appeared to be very engaged and invested in their work.
The competitions pitted agents against each other in two
events: a standard prisoner’s dilemma competition and a
general game-playing competition. In the general game-
playing competition, the students did not know what games
were going to be played and thus had to design their agents
to adapt and analyze different game situations and how the
other agents were behaving. An interesting aspect of us-
ing these two separate formats was that agents which did
well in the Prisoners Dilemma often did poorly in some of
the other games. This inspired students to write even bet-
ter general-purpose agents that could perform just as well in
PD as PD-specific agents, and also perform well in any other
game. Students enjoyed reimplementation and open-ended
assignments using the system.

Conclusion
We have developed an entertaining and useful tool to teach
students basic programming concepts, as well as teaching
more advanced students about normal-form games. We be-
lieve that engaging students in exercises such as the ones
described in this paper motivate them to perform better in
the class and put more effort into their work. In the future,
we plan to add support for a wider range of game types;
source code privacy options; noise; and the ability for users
to submit agents to tournaments, rather than having the tour-
nament host select the agents.

References
Agarwal, K., and Agarwal, A. 2005. Python for CS1, CS2
and beyond. Journal of Computing Sciences in Colleges
20(4):262–270.

309



Axelrod, R., and Hamilton, W. 1981. The evolution of co-
operation. Science 211(4489):1390–1396.
Axelrod, R. 1980. Effective choice in the Prisoner’s
Dilemma. Journal of Conflict Resolution 3–25.
Barnes, T.; Powell, E.; Chaffin, A.; and Lipford, H. 2008.
Game2learn: improving the motivation of CS1 students. In
GDCSE ’08: Proceedings of the 3rd international confer-
ence on Game development in computer science education,
1–5. New York, NY, USA: ACM.
Fogel, D. 1993. Evolving behaviors in the Iterated Prisoner’s
Dilemma. Evolutionary Computation 1(1):77–97.
Kendall, G.; Darwen, P.; and Yao, X. 2009.
The Iterated Prisoner’s Dilemma competition.
http://www.prisoners-dilemma.com/.
Nash, J. 1950. Equilibrium points in n-person games. Pro-
ceedings of the National Academy of Sciences of the United
States of America 48–49.
Ranum, D.; Miller, B.; Zelle, J.; and Guzdial, M. 2006.
Successful approaches to teaching introductory computer
science courses with Python. In Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Edu-
cation, 396–397. ACM New York, NY, USA.
Rogers, A.; Dash, R.; Ramchurn, S.; Vytelingum, P.; and
Jennings, N. 2007. Coordinating team players within a noisy
Iterated Prisoner’s Dilemma tournament. Theoretical Com-
puter Science 377(1-3):243–259.
Sandholm, T., and Crites, R. 1996. Multiagent reinforce-
ment learning in the Iterated Prisoner’s Dilemma. Biosys-
tems 37(1-2):147–166.
Wikipedia. 2009a. List of games in game theory —
Wikipedia, the free encyclopedia. [Online; accessed 9-
September-2009].
Wikipedia. 2009b. Prisoner’s Dilemma — Wikipedia, the
free encyclopedia. [Online; accessed 9-September-2009].

310




